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Abstract
In this paper, we extend some known elementary trigonometric inequalities, and their hyperbolic

analogues to Bessel and modified Bessel functions of the first kind. In order to prove our main results,
we present some monotonicity and convexity properties of some functions involving Bessel and mod-
ified Bessel functions of the first kind. We also deduce some Turán and Lazarević-type inequalities
for the confluent hypergeometric functions.
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1. Extension of Lazarević inequality to modified Bessel functions

The sine and cosine functions are particular cases of Bessel functions, while the hyper-
bolic sine and hyperbolic cosine functions are particular cases of modified Bessel functions.
Thus, it is natural to generalize some formulas and inequalities involving these elementary
functions to Bessel functions and modified Bessel functions, respectively.
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I. Lazarević [14, p. 270] proved that for all x �= 0 the inequality

cosh x <

(
sinh x

x

)3

(1.1)

holds and exponent 3 is the least possible.
Our main motivation to write this paper is inequality (1.1) which we wish to extend

to modified Bessel functions of the first kind. This paper is organized as follows: in this
section, we deduce a known Turán-type inequality and using this we extend (1.1) to the
function Ip defined below. Moreover, we present a generalization of the Turán, Lazarević,
and Wilker-type inequalities, in order to improve the known results in the literature. For
more details about the Turán-type inequalities, the interested reader is referred to the most
recent papers [2,4,10,13] on this topic and to the references therein. At the end of this
section, we extend some of the main results to confluent hypergeometric functions and we
improve a result of Ismail and Laforgia [10]. In Section 2, we extend the analogous of (1.1),
Wilker’s inequality (1.15) to Bessel functions, we deduce a known Turán-type inequality for
Bessel functions and we present some new inequalities involving the Bessel functions of the
first kind.

For p > − 1 let us consider the function Ip : R → [1, ∞), defined by

Ip(x) := 2p�(p + 1)x−pIp(x) =
∑
n�0

(1/4)n

(p + 1)nn!x
2n, (1.2)

where (p + 1)n = (p + 1)(p + 2) · · · (p + n) = �(p + n + 1)/�(p + 1) is the well-known
Pochhammer (or Appell) symbol defined in terms of Euler’s gamma function, and Ip is the
modified Bessel function of the first kind defined by [20, p. 77]

Ip(x) :=
∑
n�0

(x/2)2n+p

n!�(p + n + 1)
for all x ∈ R. (1.3)

It is worth mentioning that in particular we have

I−1/2(x) =√
�/2x1/2I−1/2(x) = cosh x, (1.4)

I1/2(x) =√
�/2x−1/2I1/2(x) = sinh x

x
, (1.5)

I3/2(x) = 3
√

�/2x−3/2I3/2(x) = −3

(
sinh x

x3
− cosh x

x2

)
. (1.6)

Thus, the function Ip is of special interest in this paper because inequality (1.1) is actually
equivalent to

[I−1/2(x)]−1/2+1 �[I−1/2+1(x)]−1/2+2. (1.7)

So in view of inequality (1.7), it is natural to ask: what is the analogue of this inequality
for modified Bessel functions of the first kind? In order to answer this question we prove
the following results.
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Theorem 1. Let p > − 1 and x ∈ R. Then the following assertions are true:

(a) the function p �→ Ip(x) is decreasing and log-convex;
(b) the functions p �→ Ip+1(x)/Ip(x), p �→ [Ip(x)]p+1 are increasing;
(c) the following inequalities:

[Ip+1(x)]2 �Ip(x)Ip+2(x), (1.8)

[Ip(x)]p+1 �[Ip+1(x)]p+2, (1.9)

[Ip(x)](p+1)/(p+2) �Ip+1(x)�Ip(x), (1.10)

[Ip+1(x)]1/(p+1) + Ip+1(x)

Ip(x)
�2, (1.11)

hold true for all p > − 1 and x ∈ R. In (1.9), the exponent p is the best possible in the
sense that �= (p + 2)/(p + 1) is the smallest value of � for which Ip(x)�[Ip+1(x)]�
holds. Moreover, if x > 0 is fixed and p → ∞, then [Ip(x)]2 ∼ Ip−1(x)Ip+1(x);

(d) the inequality

Ip(x)

Ip+1(x)
− 1� log[Ip+1(x)]� log[Ip(x)] (1.12)

holds true for all p�0 and x ∈ R.

Proof. (a) For convenience, let us write

Ip(x) =
∑
n�0

bn(p)x2n where bn(p) := (1/4)n

(p + 1)nn! , n�0.

Clearly if p�q > − 1, then (p + 1)n �(q + 1)n, and consequently bn(p)�bn(q), for all
n�0. This implies that Ip(x)�Iq(x) for all x ∈ R, i.e. the function p �→ Ip(x) is
decreasing. Now for log-convexity of p �→ Ip(x), we observe that it is enough to show the
log-convexity of each individual term and to use the fact that sums of log-convex functions
are log-convex too. Thus, we just need to show that for each n�0 we have

�2 log[bn(p)]/�p2 = �′(p + 1) − �′(p + n + 1)�0,

where �(x) = �′(x)/�(x) is the so-called digamma function. But � is concave, and conse-
quently the function p �→ bn(p) is log-convex on (−1, ∞).

We note that there is another proof of the log-convexity of p �→ Ip(x). Namely, if
we consider the infinite product representation of the modified Bessel function of the first
kind Ip, then we have [20]

Ip(x) =
∏
n�1

(
1 + x2

j2
p,n

)
, (1.13)
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where jp,n is the nth positive zero of the Bessel function Jp. Using (1.13) we have

log[Ip(x)] =
∑
n�1

log

(
1 + x2

j2
p,n

)
.

Owing to Elbert [6], it is known that p �→ jp,n is concave on (−n, ∞) for all n�1.

Consequently, we have that p �→ jp,n and p �→ log jp,n are concave on (−1, ∞) for all

n�1. Hence, p �→ −2 log jp,n is convex, i.e. p �→ 1/j2
p,n is log-convex on (−1, ∞). But

this implies that for all n�1 the function p �→ log(1+x2/j2
p,n) is convex on (−1, ∞), and

consequently the function p �→ logIp(x) is convex too on (−1, ∞) as a sum of convex
functions.

(b) First we prove that the function p �→ Ip+1(x)/Ip(x) is increasing. From part (a)
of the this theorem, the function p �→ log[Ip(x)] is convex, and hence it follows that
p �→ log[Ip+a(x)] − log[Ip(x)] is increasing for each a > 0. Thus, choosing a = 1, we
obtain that indeed the function p �→ Ip+1(x)/Ip(x) is increasing.

Now suppose that p�q > − 1 and define the function �1 : R → R with relation

�1(x) := p + 1

q + 1
log[Ip(x)] − log[Iq(x)].

On the other hand,

�′
1(x) = p + 1

q + 1

[
I′

p(x)

Ip(x)

]
− I′

q(x)

Iq(x)
= 2xb1(q)

[
Ip+1(x)

Ip(x)
− Iq+1(x)

Iq(x)

]
,

where we used the differentiation formula I′
p(x) = 2xb1(p)Ip+1(x), which can be de-

rived easily from (1.2). Since p�q we have Ip+1(x)/Ip(x)�Iq+1(x)/Iq(x) and from
this conclude that the function �1 is increasing on [0, ∞) and is decreasing on (−∞, 0].
Consequently, �1(x)��1(0) = 0, i.e. [Ip(x)]p+1 �[Iq(x)]q+1 holds for all x ∈ R.

(c) Since p �→ Ip(x) is log-convex, for all p1, p2 > − 1, x ∈ R and � ∈ [0, 1] we have

I�p1+(1−�)p2(x)�[Ip1(x)]�[Ip2(x)]1−�.

Now choosing � = 1/2, p1 = p and p2 = p + 2 we conclude that (1.8) holds. Inequality
(1.9) follows from the monotonicity of p �→ [Ip(x)]p+1, while (1.10) is an immediate
consequence of (1.9) and the monotonicity of p �→ Ip(x). Moreover, since Ip(x) = 1 +
b1(p)x2+· · · and [Ip+1(x)]�=1+�b1(p+1)x2+· · · , we infer that �=b1(p)/b1(p+1)=
(p+2)/(p+1) is the smallest value of � such thatIp(x)�[Ip+1(x)]� holds. For inequality
(1.11), we use the generalized Lazarević inequality (1.9) and the arithmetic–geometric mean
inequality

1

2

[
[Ip+1(x)]1/(p+1) + Ip+1(x)

Ip(x)

]
�

√
[Ip+1(x)](p+2)/(p+1)

Ip(x)
�1.

It remains just to prove the asymptotic formula [Ip(x)]2 ∼ Ip−1(x)Ip+1(x). In order to
prove the asserted result, we show that for p > 0 and x > 0 we have

1 <
[Ip(x)]2

Ip−1(x)Ip+1(x)
< 1 + 1

p
. (1.14)
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The left-hand side of (1.14) is the well-known Amos inequality [3, p. 243]. The right-hand
side of (1.14) can be deduced easily from (1.8) using the difference equation �(a + 1) =
a�(a).

(d) Using the the recurrence formula [20, p. 79] xIp−1(x) − xIp+1(x) = 2pIp(x) and
the Mittag–Leffler expansion [7, Eq. 7.9.3]

Ip+1(x)

Ip(x)
=
∑
n�1

2x

x2 + j2
p,n

,

where 0 < jp,1 < jp,2 < · · · < jp,n < · · · are the positive zeros of the Bessel function Jp,

we obtain that

Ip(x)

Ip+1(x)
− 1 = x

2(p + 1)

Ip(x)

Ip+1(x)
− 1 = x

2(p + 1)

Ip+2(x)

Ip+1(x)

= 1

p + 1

∑
n�1

x2

x2 + j2
p+1,n

.

On the other hand using the infinite product representation of the function Ip, i.e.

Ip(x) =
∏
n�1

(
1 + x2

j2
p,n

)
,

we have

log[Ip+1(x)] = log

⎡
⎣∏

n�1

(
1 + x2

j2
p+1,n

)⎤⎦=
∑
n�1

log

(
1 + x2

j2
p+1,n

)
.

Now using the equivalent form of inequality [14, p. 279] xx �ex−1, i.e. log x�1 − 1/x,

which holds for all x > 0, we conclude that for all p�0, n�1 and x ∈ R we have

log

(
1 + x2

j2
p+1,n

)
� x2

x2 + j2
p+1,n

� 1

p + 1

x2

x2 + j2
p+1,n

and consequently

log[Ip+1(x)]� Ip(x)

Ip+1(x)
− 1.

Finally, because the function p �→ Ip(x) is decreasing, we conclude that log[Ip+1(x)]�
log[Ip(x)], and with this the proof is complete. �

Concluding remarks:

1. First, we note that the Turán-type inequality (1.8) was proved earlier in 1951 by Thiru-
venkatachar and Nanjundiah [19], while in 1991 Joshi and Bissu [12] examined an
alternate derivation of (1.8) and slightly extended this inequality. However, our proof is
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completely different; moreover, part (a) of the above theorem provides a generalization
of (1.8). Recently, Ismail and Laforgia [10, Remark 2.4] proved for all p > − 1/2 and
x > 0 the inequality

Ip(x)Ip+2(x)� (2p + 1)(p + 2)

(2p + 3)(p + 1)
I2

p+1(x).

We note that, since (2p +3)(p +1) > (2p +1)(p +2), the above Turán-type inequality
is weaker than (1.8).

2. On the other hand, observe that using (1.4), (1.5) and (1.6) in particular for p = −1/2
the Turán-type inequality (1.8) becomes

x sinh2(x)�3(cosh x)(x cosh x − sinh x),

which holds for all x�0. Moreover, when x�0, the above inequality is reversed. We
note here that using (1.4) and (1.5), from inequality (1.9) we get (1.7), while from
Ip+1(x) <Ip(x) we obtain the well-known inequality tanh x < x, where x > 0.

3. Inequality (1.11) is a natural extension of the hyperbolic analogue of Wilker’s
inequality [21](

sin x

x

)2

+ tan x

x
> 2, (1.15)

where x ∈ (0, �/2). Namely, if we choose p =−1/2 in (1.11), then in view of (1.4) and
(1.5) we have the hyperbolic analogue of (1.15)(

sinh x

x

)2

+ tanh x

x
> 2,

where x �= 0. This inequality was proved recently by Zhu [22].
4. Recently, Stolarsky [17], among other things, proved that the monotonicity of the Hölder

mean is actually a consequence of a certain inequality for x �→ log cosh x. In this spirit,
he proved the following interesting inequalities:

log

(
sinh x

x

)
� coth x

x
− 1� log(cosh x),

where x > 0 and the first inequality is in fact equivalent to the inequality between the
logarithmic and identric means. Inequality (1.12) was motivated by the above result of
Stolarsky and based on numerical experiments we conjecture the following: for each
p ∈ (−1, 0) and x ∈ R we have

log[Ip+1(x)]� Ip(x)

Ip+1(x)
− 1� log[Ip(x)].

By a confluent hypergeometric function, also known as a Kummer function, we mean
the function

�(a, c, x) = 1F1(a, c; x) =
∑
n�0

(a)n

(c)n

xn

n! for all x ∈ R
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defined for a, c ∈ R with c �= 0, −1, −2, . . . . It is known that [1, p. 509]

Ip(x) = 2p�(p + 1)x−pIp(x) = e−x�(p + 1/2, 2p + 1, 2x).

Thus, inequalities (1.8), (1.9) and (1.11) are equivalent with inequalities

[�(a + 1, 2a + 2, x)]2 ��(a, 2a, x)�(a + 2, 2a + 4, x),

[�(a, 2a, x)]a+1/2 �e−x/2[�(a + 1, 2a + 2, x)]a+3/2,

[e−x/2�(a + 1, 2a + 2, x)]2/(2a+1) + �(a + 1, 2a + 2, x)

�(a, 2a, x)
�2,

where a > − 1/2 and x ∈ R. In fact proceeding exactly as in the proof of Theorem 1,
we obtain the followings, which complete the above results.

Theorem 2. If a�c > 0 and x�0, then the function 	 �→ �(a + 	, c + 	, x) is log-
convex on [0, ∞). Moreover, if a, c > 0 and x�0, then the function 	 �→ �(a, c + 	, x) is
log-convex too on [0, ∞). In particular, the following inequalities:

[�(a + 1, c + 1, x)]2 ��(a, c, x)�(a + 2, c + 2, x), (1.16)

[�(a, c, x)](a+1)/(c+1) �[�(a + 1, c + 1, x)]a/c, (1.17)

[�(a + 1, c + 1, x)](a−c)/(c(a+1)) + �(a + 1, c + 1, x)

�(a, c, x)
�2 (1.18)

hold true for all a�c > 0 and x�0, where the exponent � = [a(c + 1)]/[c(a + 1)] is the
smallest value of � such that inequality �(a, c, x)�[�(a + 1, c + 1, x)]� holds. Moreover,
for all a, c > 0 and x�0, the following Turán-type inequality holds true:

�(a, c, x)�(a, c + 2, x)��2(a, c + 1, x). (1.19)

Proof. As in the proof of Theorem 1, let us write

�(a, c, x) =
∑
n�0

en(a, c)xn where en(a, c) := (a)n

(c)nn! , n�0.

Computations show that for each n�0 we get

�2 log[en(a + 	, c + 	)]/�	2 = f (a) − f (c),

where f : (0, ∞) → R is defined by f (x)=�′(x +	+n)−�′(x +	) and 	�0. It is well-
known that the function x �→ �′′(x) is increasing on (0, ∞), thus, for all x > 0, 	, n�0 we
have f ′(x) = �′′(x + 	 + n) − �′′(x + 	)�0. Therefore f is increasing, i.e. f (a)�f (c),

and consequently the function 	 �→ en(a + 	, c + 	) is log-convex on [0, ∞). Thus, the
function 	 �→ �(a + 	, c + 	, x) is also log-convex on [0, ∞), as we required. Similarly,
we have

�2 log[en(a, c + 	)]/�	2 = �′(c + 	) − �′(c + 	 + n)�0
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for all a, c > 0 and n�0, since the digamma function x �→ �(x) is concave, i.e. the
trigamma function x �→ �′(x) is decreasing. Consequently, the function 	 �→ �(a, c+	, x)

is also log-convex on [0, ∞), as we required.
Inequality (1.16) follows from the log-convexity of 	 �→ �(a + 	, c + 	, x). To prove

the inequality (1.17) consider the function �2 : [0, ∞) → R, defined by

�2(x) := a

c
log �(a + 1, c + 1, x) − a + 1

c + 1
log �(a, c, x).

Then from (1.16) we have

�′
2(x) = a(a + 1)

c(c + 1)

[
�(a + 2, c + 2, x)

�(a + 1, c + 1, x)
− �(a + 1, c + 1, x)

�(a, c, x)

]
�0,

where we used the differentiation formula c�′(a, c, x) = a�(a + 1, c + 1, x). Thus �2 is
increasing, and consequently �2(x)��2(0)=0. Since �(a, c, x)=1+e1(a, c)x +· · · and
[�(a +1, c+1, x)]� =1+ �e1(a +1, c+1)x +· · · for x in the neighborhood of the origin,
it follows that the smallest value of � such that inequality �(a, c, x)�[�(a + 1, c + 1, x)]�
holds is e1(a, c)/e1(a + 1, c + 1) = [a(c + 1)]/[c(a + 1)].

Finally, inequality (1.18) follows from (1.17) and the arithmetic–geometric mean in-
equality, while inequality (1.19) follows from the log-convexity of the function 	 �→
�(a, c + 	, x). �

Concluding remark: Recently, Ismail and Laforgia [10, Theorem 2.7] proved that if
c > a > 0 and x > 0, then the following Turán-type inequality holds true:

�(a, c, x)�(a, c + 2, x)� (c − a)(c + 1)

(c + 1 − a)c
�2(a, c + 1, x). (1.20)

We note that our result from Theorem 2, i.e. inequality (1.19) improves (1.20), because for
all c > a > 0 we have (c − a)(c + 1) < (c − a + 1)c.

2. Extensions of some known trigonometric inequalities to Bessel
functions

For p > − 1 let us consider the function Jp : R → (−∞, 1], defined by

Jp(x) := 2p�(p + 1)x−pJp(x) =
∑
n�0

(−1/4)n

(p + 1)nn!x
2n, (2.1)

where

Jp(x) =
∑
n�0

(−1)n(x/2)2n+p

n!�(p + n + 1)
for all x ∈ R

is the Bessel function of the first kind [20, p. 40]. It is worth mentioning that

J−1/2(x) =√
�/2x1/2J−1/2(x) = cos x, (2.2)

J1/2(x) =√
�/2x−1/2J1/2(x) = sin x

x
. (2.3)
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On the other hand, it is known that if ��3 and x ∈ (0, �/2), then the Lazarević-type
inequality

cos x <

(
sin x

x

)�

(2.4)

holds [14, p. 238]. Moreover, here the exponent � is not the least possible, i.e. if � > 3, then
there exists x1 ∈ (0, �/2), depending on �, such that (2.4) holds for all x ∈ (x1, �/2).

Observe that, using (2.2) and (2.3) inequality (2.4) for � = 3 can be rewritten as

[J−1/2(x)]−1/2+1 �[J−1/2+1(x)]−1/2+2, (2.5)

which is similar to (1.7). Note that because both members of (2.4) and (2.5) are even
functions, we can deduce that both of inequalities hold for |x| < �/2. So in view of inequality
(2.5), as in the first section, it is natural to ask: what is the analogue of this inequality for
Bessel functions?

Our first main result of this section answer the above question. Moreover, we present
some new inequalities for Bessel functions of the first kind.

Theorem 3. Let p > − 1 and let jp,n be the nth positive zero of the Bessel function Jp.

Further, consider the set 
 := 
1 ∪ 
2, where


1 :=
⋃
n�1

[−jp,2n, −jp,2n−1] and 
2 :=
⋃
n�1

[jp,2n−1, jp,2n].

Then the following assertions are true:

(a) the function x �→ Jp(x) is negative on 
 and is strictly positive on R\
;
(b) the function x �→ Jp(x) is increasing on (−jp,1, 0] and is decreasing on [0, jp,1);
(c) the function x �→ Jp(x) is strictly log-concave on R\
;
(d) the function x �→ Jp(x) is strictly log-concave on (0, ∞)\
2, provided p�0;
(e) the functionp �→ Jp(x) is increasing and log-concave for each fixedx ∈ (−jp,1, jp,1);
(f) the function p �→ Jp(x) is log-concave for each fixed x ∈ (0, jp,1);
(g) the function p �→ Jp+1(x)/Jp(x) is decreasing for each fixed x ∈ (−jp,1, jp,1);
(h) the function p �→ [Jp(x)]p+1 is increasing for each fixed x ∈ (−jp,1, jp,1);
(i) the following inequalities hold true for each � ∈ (0, 1) and x, y ∈ (0, ∞)\
2, x �= y

Jp(�x) > �pJp(x)[Jp(x)]�−1, (2.6)

[xJ ′
p(x)]2 > p[Jp(x)]2 + x2Jp(x)J ′′

p (x), (2.7)

J 2
p

(
x + y

2

)
>

(
x + y

2
√

xy

)2p

Jp(x)Jp(y), (2.8)

(j) the following inequalities hold true for all x ∈ (−jp,1, jp,1)

[Jp+1(x)]2 �Jp(x)Jp+2(x), (2.9)

[Jp(x)]p+1 �[Jp+1(x)]p+2, (2.10)

[Jp+1(x)]1/(p+1) + Jp+1(x)

Jp(x)
�2. (2.11)
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Proof. (a) It is known that [20, p. 498]

Jp(x) =
∏
n�1

(
1 − x2

j2
p,n

)
. (2.12)

Since 0 < jp,1 < jp,2 < · · · < jp,n < · · · we have that if x ∈ [jp,2n−1, jp,2n] or x ∈ [−jp,2n,

−jp,2n−1] then the first (2n− 1) terms of the above product are negative, and the remained
terms are strictly positive. Hence Jp becomes negative on 
. Now, if x ∈ (−jp,1, jp,1),
then clearly each terms of the right-hand side of (2.12) are strictly positive. Moreover, if
x ∈ (jp,2n, jp,2n+1) or x ∈ (−jp,2n+1, −jp,2n), then the first 2n terms are strictly negative,
while the rest is strictly positive. From this it follows that for the function Jp we have
Jp(x) > 0 for all x ∈ R\
.

(b) From part (a) the function Jp is strictly positive on (−jp,1, jp,1). Using the infinite
product representation (2.12) we obtain

d

dx
log[Jp(x)] = J′

p(x)

Jp(x)
= −

∑
n�1

2x

j2
p,n − x2

. (2.13)

From this, we deduce that the function x �→ Jp(x) is increasing on (−jp,1, 0] and is
decreasing on [0, jp,1), as we required.

(c) Using 2.13 and part (a) we conclude that

d2

dx2
log[Jp(x)] = −2

∑
n�1

j2
p,n + x2

(j2
p,n − x2)2

< 0

for all x ∈ R\
, and consequently Jp is strictly log-concave on R\
.
(d) Rewriting (2.1) as

Jp(x) = xpJp(x)

2p�(p + 1)
, (2.14)

the strict log-concavity of Jp follows from part (c). Indeed, the function x �→ xp is log-
concave on (0, ∞) for all p�0, which implies that Jp is strictly log-concave on (0, ∞)\
2
as a product of a log-concave and a strictly log-concave function.

(e) Using 2.12 we have

log[Jp(x)] =
∑
n�1

log

(
1 − x2

j2
p,n

)
.

On the other hand, it is known [15, p. 317] that for each n�1 the function p �→ 1/j2
p,n

is decreasing and convex on (−1, ∞). Consequently the functions p �→ 1 − x2/j2
p,n are

increasing and concave on (−1, ∞), as well as the functions p �→ log(1 − x2/j2
p,n). Thus,

the function p �→ log[Jp(x)] is increasing and concave for each fixed x ∈ (−jp,1, jp,1)

as a sum of increasing and concave functions.
(f) As in part (d) we use (2.14). Since the function p �→ �(p + 1) is log-convex and

p �→ Jp(x) is log-concave, the function p �→ Jp(x) is log-concave as a product of two
log-concave functions.
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(g) Since p �→ log[Jp(x)] is concave it follows that the function p �→ log[Jp+a(x)]−
log[Jp(x)] is decreasing for each a > 0. Choosing a = 1 we obtain that p �→ Jp+1(x)/

Jp(x) is decreasing, as we asserted.
(h) To prove the required result consider the function �3 : (−jp,1, jp,1) → R,

defined by

�3(x) : =p + 1

q + 1
log[Jp(x)] − log[Jq(x)],

where q �p > − 1. On the other hand,

�′
3(x) = p + 1

q + 1

[
J′

p(x)

Jp(x)

]
− J′

q(x)

Jq(x)
= −2xb1(q)

[
Jp+1(x)

Jp(x)
− Jq+1(x)

Jq(x)

]
,

where we used the differentiation formula J′
p(x) = −2xb1(p)Jp+1(x), which can be

derived easily from 2.1. Since q �p we have Jp+1(x)/Jp(x)�Jq+1(x)/Jq(x), we con-
clude that the function �3 is decreasing on [0, jp,1) and is increasing on (−jp,1, 0]. Conse-
quently, �3(x)��3(0) = 0, i.e. [Jp(x)]p+1 �[Jq(x)]q+1 holds for all x ∈ (−jp,1, jp,1).

(i) Because from part (c) Jp is strictly log-concave, due to definition one has

Jp(�x + (1 − �)y) > [Jp(x)]�[Jp(y)]1−�, (2.15)

where p > − 1, � ∈ (0, 1) and x, y ∈ R\
, x �= y. Choosing y = 0 in (2.15) and
taking into account (2.1) we obtain (2.6). Moreover, taking in (2.15) � = 1/2 from (2.1)
yields (2.8). For (2.7) we use again the fact that Jp is strictly log-concave, that is x �→
J′

p(x)/Jp(x) = J ′
p(x)/Jp(x) − p/x is strictly decreasing.

(j) Inequality (2.9) follows from the log-concavity of p �→ Jp(x), while inequality
(2.10) follows from part (h). Finally, the extension of Wilker’s inequality, i.e. inequality
(2.11) follows from (2.10) and the arithmetic–geometric mean inequality for the values
Jp+1(x)]1/(p+1) and Jp+1(x)/Jp(x). With this the proof is complete. �

Concluding remarks:

1. Recently Giordano et al. [8] proved that the Bessel function x �→ Jp(x) is log-concave
on (0, jp,1) for each p > − 1. We note that part (d) of the above theorem states that this
property for p�0 remains true on (0, ∞)\
2 too. Moreover, following the proof of part
(d), it is easy to see that the function x �→ Jp(x)/x is also log-concave on (0, ∞)\
2 for
all p�1. This was proved in [8] for x ∈ (0, jp,1), please see also [9] for more details.

2. Part (f) was proved earlier by Muldoon [15] using a different argument. Moreover, Ismail
and Muldoon [11] showed that the function p �→ Jp+1(x)/Jp(x) is decreasing when
p > − 1, x > 0 and x �= jp,n. We note that using part (g) and (2.1) we obtain that the
function

p �→ Jp+1(x)

Jp(x)
= x

2(p + 1)

Jp+1(x)

Jp(x)

is decreasing, but just for each x ∈ (−jp,1, jp,1).
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3. It is worth mentioning that the analogous of (2.6), (2.7) and (2.8) for modified Bessel
functions can be found in [5,16], while the Turán-type inequality (2.9) was proved earlier
for each x ∈ R by Szász [18], and later by Joshi and Bissu [12] using recursions. Finally,
observe that inequality (2.10) in particular for p = −1/2 reduces to the Lazarević-type
inequality (2.5), while (2.11) reduces to Wilker’s inequality (1.15). Here we used that
j−1/2,1 = �/2, which can be verified using the infinite product representation of the
cosine function [1, p. 75] and formula (2.12).
Recently, Neuman [16] proved that the function x �→ Ip(x) is strictly log-convex on R

for all p > − 1/2. We note that x �→ I−1/2(x) = cosh(x) is also strictly log-convex on R,
furthermore, we conjectured in [5] that x �→ Ip(x) is strictly log-convex on R for each
p > − 1. The following result provides a partial positive answer to the above conjecture
and is motivated by the proof of part (c) of Theorem 3.

Theorem 4. If p >−1, then the function x �→ Ip(x) is strictly log-convex on [−jp,1, jp,1],
where jp,1 is the first positive zero of the Bessel function Jp. Moreover, the function x �→
Ip(x)/Jp(x) = Ip(x)/Jp(x) is strictly log-convex too on (−jp,1, jp,1). In particular, the
following inequalities:

[
Ip

(
x + y

2

)]2

[
Jp

(
x + y

2

)]2
� Ip(x)Ip(y)

Jp(x)Jp(y)
, x, y ∈ (−jp,1, jp,1),

[
cosh

(
x + y

2

)]2

(cosh x)(cosh y)
�

[
cos

(
x + y

2

)]2

(cos x)(cos y)
, x, y ∈ (−�/2, �/2),

[
sinh

(
x + y

2

)]2

(sinh x)(sinh y)
�

[
sin

(
x + y

2

)]2

(sin x)(sin y)
, x, y ∈ (−�, �)

hold true and equality hold in each of the above inequalities if and only if x = y.

Proof. It is known that, using (2.12), the function Ip may be represented as

Ip(x) =
∏
n�1

(
1 + x2

j2
p,n

)
,

which implies that

d2

dx2
log[Ip(x)] = 2

∑
n�1

j2
p,n − x2

(j2
p,n + x2)2

> 0
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for all x ∈ [−jp,1, jp,1], and consequently Ip is strictly log-convex. Now using part
(c) of Theorem 3 the function x �→ 1/Jp(x) is strictly log-convex on (−jp,1, jp,1).
Hence, the function x �→ Ip(x)/Jp(x) = Ip(x)/Jp(x) is strictly log-convex too on
(−jp,1, jp,1), as a product of two strictly log-convex functions. Finally, the inequalities fol-
lows easily from the definition of log-convexity, taking into account that j−1/2,1 = �/2 and
j1/2,1 = �. �

Let us note the following trigonometric inequality which represent a partial answer to the
problem E 1277 proposed by Oppenheim and solved by Carver in American Mathematical
Monthly 65, 206–209 (1958): if a ∈ (0, 1/2] and |x|��/2, then [14, p. 238]

(a + 1) sin x

1 + a cos x
�x� �

2

sin x

1 + a cos x
. (2.16)

The following result extends (2.16) to the function Jp.

Theorem 5. If 0 < a�1/2, p� − 1/2 and x ∈ [−�/2, �/2], then

[a(2p + 1) + (a + 1)] Jp+1(x)

1 + 2a(p + 1)Jp(x)

�1�[a(2p + 1) + �/2] Jp+1(x)

1 + 2a(p + 1)Jp(x)
. (2.17)

Proof. Observe that when p = −1/2 from (2.2) and (2.3) it follows that (2.17) reduces to
(2.16), which is equivalent to

(a + 1)J1/2(x)�1 + aJ−1/2(x)�(�/2)J1/2(x). (2.18)

Recall the well-known Sonine integral formula [20, p. 373] for Bessel functions

Jq+p+1(x) = xp+1

2p�(p + 1)

∫ �/2

0
Jq(x sin �)sinq+1� cos2p+1� d�,

where p, q > − 1 and x ∈ R. From this, we obtain the following formula:

Jq+p+1(x) = 2

B(p + 1, q + 1)

∫ �/2

0
Jq(x sin �)sin2q+1� cos2p+1� d�, (2.19)

which will be useful in the sequel. Here, B(p, q)=�(p)�(q)/�(p + q) is the well-known
Euler’s beta function. Changing in (2.19) p with p − 1/2 and taking q = −1/2 (q = 1/2,
respectively) one has for all p > − 1/2 and x ∈ R

Jp(x) = 2

B(p + 1/2, 1/2)

∫ �/2

0
J−1/2(x sin �)cos2p� d�, (2.20)

Jp+1(x) = 2

B(p + 1/2, 3/2)

∫ �/2

0
J1/2(x sin �)sin2� cos2p� d�. (2.21)
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Thus, in view of (2.20) and (2.21), if we change x with x sin � in (2.18), and multiply (2.18)
with sin2� cos2p�, then after integration it follows that the expression

Ep(x) =
∫ �/2

0
sin2� cos2p� d� + a

∫ �/2

0
J−1/2(x sin �)(1 − cos2�)cos2p� d�

=1

2
B

(
p+1

2
,

3

2

)
+a

2
B

(
p+1

2
,

1

2

)
Jp(x)−a

2
B

(
p+3

2
,

1

2

)
Jp+1(x)

satisfies the following:

a + 1

2
B

(
p + 1

2
,

3

2

)
Jp+1(x)�Ep(x)� �

4
B

(
p + 1

2
,

3

2

)
Jp+1(x).

After simplifications we obtain that (2.17) holds. �

Following the proof of the above theorem the next result is quite obvious.

Theorem 6. For each p� − 1/2 the function Jp is concave on [−�/2, �/2].

Proof. Since the cosine function is concave on [−�/2, �/2], one has

J−1/2(�x + (1 − �)y)��J−1/2(x) + (1 − �)J−1/2(y),

where � ∈ [0, 1] and x, y ∈ [−�/2, �/2]. Changing x with x sin �, y with y sin �, from
(2.20) it follows that Jp(�x + (1−�)y)��Jp(x)+ (1−�)Jp(y) holds for all p� −1/2,
i.e. the function Jp is concave on [−�/2, �/2]. �
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