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Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance.Many sHsps
exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding–compe-
tent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in
human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such
as Alzheimer’s, Parkinson’s and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen
species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-
crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-
crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential
therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development.
sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic ap-
optotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin
and Hsp27 are important factors for their functions.We propose a “dynamic partitioning hypothesis” for the pro-
miscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties
of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and
targetedmodulation of their expression and/or activity could be used as strategies in treating several human dis-
orders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes
particularly in the context of human health and disease.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Organisms and cells respond to various stress conditions such as en-
vironmental, metabolic or pathophysiological stress by selectively up-
regulating the expression of a group of proteins called the heat shock
proteins (Hsps). Based on their molecular masses these proteins have
been classified into six major families i.e. Hsp100, Hsp90, Hsp70,
Hsp60, Hsp40 and small heat shock proteins (sHsps). sHsps have sub-
unit molecular masses of 12-43 kDa and are characterized by the pres-
ence of a highly conserved stretch of 80-100 amino acids in their C-
terminal domains called the “α-crystallin domain” (ACD) that is flanked
by less conserved (except a few stretches) N-terminal domain (NTD)
and C-terminal extension (CTE) [1–3]. Somemembers of the sHsp fam-
ily such as Hsp27, αA- and αB-crystallin form large oligomeric species.

This review essentially deals with mammalian sHsps. Ten sHsps
(named HspB1 to HspB10) have been identified in the human genome
based on sequence homology [1]. For easy identification we have used
the old nomenclature for HspB1 (Hsp27), HspB4 (αA-crystallin),
lecular Biology (CCMB), Uppal
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HspB5 (αB-crystallin), HspB6 (Hsp20) and HspB8 (Hsp22). They have
been categorized as Class I or Class II [4]. Hsp27, αB-crystallin, Hsp20
and Hsp22 are Class I sHsps (Table 1). They are distributed widely, are
found in various tissues, are predominantly heat-inducible (Hsp22
heat-inducibility is cell type dependent [5]) and play an important
role in cell survival under conditions of stress. Class II sHsps include
HspB2, HspB3, αA-crystallin, HspB7, HspB9 and HspB10 which exhibit
a tissue-restricted pattern of expression (Table 1). Class II sHsps are be-
lieved to play a major role in development, differentiation and special-
ized tissue-specific functions [4].

Besides the molecular chaperone-like activity in preventing aggre-
gation of proteins/peptides, sHsps such as Hsp27 and αB-crystallin,
are involved in diverse cellular functions such as stress tolerance, pro-
tein folding, protein degradation, maintaining cytoskeletal integrity,
cell death, differentiation, cell cycle and signal transduction and devel-
opment [6–12]. Members of the sHsp family exhibit cardio and neuro-
protection, potent anti-apoptotic activity, pro-angiogenic property and
anti-inflammatory property involving interactions with several clients.
The promiscuous interactions and pleotropic functions of sHsps and
the underlying molecular mechanism is not completely understood.
These roles of sHsps have important implications in general health
and disease conditions. Hsp27 and αB-crystallin have been proposed
to be therapeutic targets [see review 13].
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Nomenclature, distribution and functions of human small heat shock proteins (see review [4] and references therein for details).

Name Subunit Mol.
Mass (kDa)

pI Tissue distribution Stress-inducibility Class Functions

Hsp27 (HspB1) 22.8 6.4 Ubiquitous, high levels in heart, striated
and smooth muscles

+ I Chaperone activity, stabilization of
cytoskeleton,
anti-apoptotic and anti-oxidant function

HspB2 (MKBP) 20.2 4.8 Heart, skeletal and smooth muscle - II Chaperones DMPK and enhances its kinase
activity.
Target protein-dependent chaperone
activity,
myofibrillar integrity, anti-apoptotic
function,
mitochondrial energetic, anti-apoptotic

HspB3 17.0 5.9 Heart, brain, skeletal and smooth
muscle

- II Target protein-dependent chaperone
activity,
Maintaining myofibrillar integrity

αA-crystallin (HspB4) 19.9 6.2 Abundant in eye lens. skeletal muscle,
liver, spleen, adipose tissue (low level)

- II Chaperone activity, genomic stability, eye
lens
refractive index

αB-crystallin (HspB5) 20.2 7.4 Ubiquitous, abundant in eye lens. High
levels in heart and muscle

+ I Chaperone activity, stabilization of
cytoskeletal
and nucleoskeletal matrix, cell cycle,
cardioprotection,
eye lens refractive index, regulation of
muscle differentiation, anti-apoptotic
function

Hsp20 (HspB6) 16.8 6.4 Ubiquitous, abundant in muscle - I Smooth muscle relaxation,
cardioprotection,
chaperone activity, anti-apoptotic

HspB7(cardiovascular heat shock
protein)

18.6 6.5 Heart and skeletal muscle. Adipose
tissue (low level)

- II Chaperone activity, maintaining
myofibrillar integrity,

Hsp22 (HspB8, E21G1, α-crystallin C) 21.6 4.7 Ubiquitous + (cell type
dependent)

I Chaperone activity, induction of autophagy

HspB9 (Hest shock protein beta-9,
cancer/testis antigen 51 (CT51))

17.5 9.0 Testis - II Role in cancer/testis antigen

HspB10 (Outer dense fibre of sperm
tails, ODF27, ODFPG, RT7, ODFP,
CT133)

28.3 8.4 Testis - II Elastic cytoskeletal structure
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This review highlights the important findings on the chaperone activ-
ity, structural aspects and the role of sHsps in various physiological and
pathophysiological processes. In oneof the following sections,wepropose
a “dynamic partitioning hypothesis” for promiscuous interactions and
pleotropic functions of sHsps. The general and potent protective functions
of some of the sHsps, particularly Hsp27, αB-crystallin and Hsp22, seem
to be exploited by cancer cells for their survival, proliferation and metas-
tasis. It emerges that developing strategies for conditional and targeted
modulation of expression and functions of sHsps is important for man-
agement of several disease conditions. Some sHsps are found extracellu-
larly and exhibit immunomodulation and anti-platelet aggregation
properties, implying that these sHsps and some of their derived peptides
may serve as potential therapeutic molecules.

1.1. Chaperone-like activity of small heat shock proteins

The ability to prevent the aggregation of proteins and polypeptides is
themost important function ofmany sHsps, especially under conditions
of stress that lead to unfolding of cellular proteins. This chaperone-like
function was first shown for the eye lens protein, α-crystallin, a
heterooligomer of two gene products, αA- and αB-crystallin, against
the heat-induced aggregation of β-crystallin, γ-crystallin and alcohol
dehydrogenase [14]. Murine Hsp25, human Hsp27 and bovine αB-
crystallin prevent aggregation of citrate synthase and α-glucosidase
[15]. Studies from our laboratory showed that α-crystallin prevented
the photo-aggregation of γ-crystallin [16,17], thermal aggregation of
ζ-crystallin, and carbonic anhydrase [18,19], DTT-induced aggregation
of α-lactalbumin [20] and refolding-induced aggregation of β-
crystallin [21]. Homo-oligomers of αA- and αB-crystallin also exhibit
chaperone property in preventing aggregation of various target proteins
[22–25].
Human Hsp20 forms dimers [26,27] and exhibits chaperone-like ac-
tivity in preventing the DTT-induced aggregation of insulin and the
heat-induced aggregation of yeast alcohol dehydrogenase [26]. Rat
Hsp20 forms 43-kDa dimers and 470-kDa multimers with the relative
ratio depending on protein concentration and exhibits poor
chaperone-like activity [28]. We have earlier shown that the heat-
induced expression of Hsp22 is cell type-dependent [5]. Studies from
our laboratory [5] and those of others [29] have shown that Hsp22 pre-
vents aggregation of several target proteins.

Studies from our laboratory have shown that HspB2 effectively
prevented the aggregation of alcohol dehydrogenase and insulin but
not that of citrate synthase [30]. HspB3, prevented the aggregation of al-
cohol dehydrogenase very effectively, and that of citrate synthase at
higher chaperone to target protein ratios but did not prevent the aggre-
gation of insulin [31]. Thus, unlike Hsp27, α-crystallins and Hsp22,
which are general chaperones, the chaperoning ability of HspB2 and
HspB3 appears to be target protein-dependent [30,31].

sHsps prevent the aggregation of target proteins by forming com-
plexes with the aggregation-prone partially unfolded states of
the target proteins [19,20,25,32]. We have earlier shown two types
of interactions of αA- and αB-crystallin with thermally induced
unfolding intermediates of citrate synthase – a reversible relatively
weak interaction with early unfolding intermediates that helps in
refolding the enzyme to its active state, and an irreversible interac-
tion with aggregation-prone late unfolding intermediate keeping it
in soluble complex [25]. Two modes of interactions, namely low af-
finity and high affinity modes, of αA- and αB-crystallin and Hsp27
with destabilized β-crystallin, T4 lysozyme and its destabilized mu-
tants, have also been reported by another laboratory [33–36]. The
target proteins bound to sHsps in vivo could be either subjected to
refolding or to degradation as discussed later.
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1.2. Temperature-dependence of chaperone-like activity

α-Crystallins, Hsp27, Hsp22 and HspB2 exhibit temperature-
dependent chaperone property in preventing aggregation of target
proteins. Studies from our laboratory have shown the temperature-
dependent chaperone-like activity ofα-crystallin using various aggrega-
tion systems [16–18,21,37]. Temperature-dependent conformational
change inα-crystallin leading to the increased exposure of hydrophobic
surfaces paralleled the increase in chaperone-like activity; α-crystallin
interactedwith partially unfolded proteins through appropriately placed
hydrophobic surfaces and prevented their aggregation [17,18,21,37].
Homo-oligomers of αA- and αB-crystallin also exhibit temperature-
dependent chaperone-like activity [22,23]. Hsp27 undergoes thermally
induced self-association, leading to increased oligomeric size, which cor-
related with increase in its chaperone-like activity [38]. Rat Hsp22 ex-
hibits heat-induced conformational changes with increased exposure
of hydrophobic surfaces and chaperone-like activity [5]. HspB2 acquires
a molten globule-like state and exhibits a monotonous increase in its
chaperone-like activity at elevated temperatures [30].

Hydrogen-deuterium exchange of amide proton of α-crystallins by
NMR spectroscopy showed that hydrophobic regions around the resi-
dues 32-37 and 72-75 of αA- and 28-34 of αB-crystallin were exposed
above 30 °C [39]. More chaperone sites for target proteins are accessible
at higher temperatures (~60 °C) of α-crystallin complex saturated with
a different target protein at lower temperature (37 °C) [40]. Studies also
demonstrated an increased rate of subunit exchange for α-crystallins
[41,42] and Hsp27 [43], resulting in higher chaperone-like activity at
higher temperatures relevant to physiological heat-stress. However,
glutaraldehyde-cross linked bovine eye lens α-crystallin exhibited
higher chaperone-like activity than the native protein, indicating that
dissociation of subunits and chaperone-like activity are not correlated
[44]. A mutant (S4C) yeast Hsp26 which cannot dissociate to dimers
and exhibits significantly reduced subunit exchange shows
chaperone-like activity comparable to that of the native Hsp26 upon
thermal activation [45]. Therefore, in addition to dynamic subunit ex-
change, factors such as tertiary structural perturbation may be involved
upon thermal activation of sHsps. It appears that sHsps exist as popula-
tions of states at equilibrium controlled by temperature. The population
at lower temperature is relatively less efficient, while temperature-
induced redistribution of populations having altered conformation
(for example, tertiary structural perturbation [21]) with appropriately
placed, probably contiguous hydrophobic surfaces exhibit potent chap-
erone activity.

1.3. Effect of small molecules on the chaperone-like activity of sHsps

Studies have shown that perturbing the structure of sHsps such as
lens α-crystallin or homooligomers of αA- and αB-crystallin as well as
Hsp27 can increase the chaperone-like activity. Exposure of α-
crystallin to low concentrations of urea [17] or guanidine hydrochloride
[46] has been shown to perturb its structure, resulting in increased
chaperone activity.

As loss or decreased chaperone activitymay result in disease suscep-
tibility, the ability to enhance the chaperone-like activity using biocom-
patible small molecules could be of therapeutic importance. Small
biocompatible molecules such as ATP [47], pantethine [48], arginine
hydrochloride and aminoguanidine hydrochloride [49–51] have also
been shown to increase the chaperone-like activity of α-crystallin or
that of the homo-oligomers of αA- and αB-crystallin. Exposure to
arginine hydrochloride and aminoguanidine hydrochloride resulted in
subtle changes in tertiary structure, significant changes in the quaterna-
ry structure, increased exposure of hydrophobic surfaces [49] and
enhanced rate of subunit exchange [50] of α-crystallin as well as αA-
andαB-crystallin homooligomers. It is possible that argininehydrochlo-
ride and aminoguanidine hydrochloride also affect the structure of tar-
get proteins. However, since under the experimental conditions
(destabilizing), the model proteins continued to aggregate even in the
presence of these compounds, the observed increase in the suppression
of aggregation by sHsp can be attributed to increased chaperone activity
due to the observed structural and dynamic alteration of sHsp by these
compounds. Interestingly, arginine hydrochloride could also enhance
the chaperone-like activity of the R120G mutant of αB-crystallin,
which is associated with congenital cataract and desmin-related myop-
athy [51]. Methylglyoxal modification increased the chaperone-like ac-
tivity of Hsp27 towards the heat-induced aggregation of citrate
synthase [52].

α-Crystallins and Hsp27 bind ATP (but do not hydrolyse) in their
ACDs [47,53–56]. ATP has been shown to bind in the groove of β4-β8
strands of the ACDofαB-crystallin [57] (structural aspects are discussed
in detail later). ATP-binding leads to increased chaperone activity ofαB-
crystallin [53]. Interestingly, the β4-β8 groove has also been shown to
interact with CTE [58–60] and these regions are also implicated in inter-
actions with certain substrates [61]. It would be interesting to find out
whether ATP-binding would compete or allosterically control interac-
tion of the CTE and/or substrate binding to αB-crystallin.

1.4. Reactivation of enzymes

The fate of the target proteins of sHsps can be (i) reactivation to their
active state or (ii) degradation either by proteosomal or autophagy
pathways. sHsps have been demonstrated to reactivate target proteins
through at least three differentmechanismswhich are described below.

Hsp27 andα-crystallins interfere in the kinetic partitioning between
productive folding to active state and aggregation of target proteins [15,
25]. Interaction of α-crystallins with early unfolding intermediates of
citrate synthase reduces their partitioning into aggregation-prone inter-
mediates and results in enhanced population of early unfolding inter-
mediates that can be refolded to active state [25]. However, α-
crystallins form a soluble, stable complex with aggregation-prone late
unfolding intermediates of citrate synthase [25]. Murine Hsp25,
human Hsp27 or bovine αB-crystallin have been shown to increase
the refolding yields of citrate synthase and α-glucosidase upon
refolding from their urea-denatured state [15]. Presence of αA- and
αB-crystallin leads to increased refolding yield of the tetrameric qui-
none oxidoreductase (ζ-crystallin) from the urea-denatured partially
unfolded state with molten-globule like characteristics [62]. αB-
crystallin improves the reactivation of glucose-6-phosphate dehydroge-
nase (G6PD) upon refolding from its completely denatured state [63].
Thus, the chaperone activity of α-crystallins involves both transient/re-
versible and stable interactions depending on the nature of intermedi-
ates on the unfolding pathway; one leads to reactivation of the
enzyme activity while the other prevents aggregation [25,62].

Another mechanism by which sHsps reactivate target proteins in-
volves binding of ATP leading to conformational changes of the complex
and release of the refolding-competent target proteins. ATP-binding to
αB-crystallin not only increases the suppression of heat-induced aggre-
gation of target proteins, but also significantly enhances reactivation
yield [55]. α-Crystallin has been shown to bind to the molten globule
states of protein such as HIV-1 protease, xylose reductase and xylanase
II, which can be refolded in the presence of ATP [64–66].

The concerted action of sHsps (termed as “holdases’ [67]) in keeping
folding-competent targets in solution, and of other ATP-dependent
chaperones in reactivation of enzymes has also been demonstrated.
sHsps together with molecular chaperones from the Hsp70 and
Hsp100 family serve to maintain “proteostasis” in cells [see review
68]. Treating the α-crystallin-target protein complex with either rabbit
reticulocyte lysate (as a source of chaperones) or with purified Hsp70,
Hsp40, Hsp60 and an ATP-generating system, led to the reactivation of
the target proteins (luciferase and citrate synthase) [69]. Binding of
ATP to sHsps caused a conformational change in the sHsp, leading to
the release of the target protein,whichwas then reactivated in the pres-
ence of Hsp70 [70]. Unfolded intermediate(s) of citrate synthase bound
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by Hsp25 has been shown to be refolded in the presence of Hsp70
and ATP [71]. αB-crystallin-bound malate dehydrogenase can be
refolded to its active state by the Hsc70 chaperone machinery [72].
This concerted mechanism has also been demonstrated in prokaryotic
chaperone systems - E.coli sHsp IbpB bound and stabilized denatured
proteins which were demonstrated to be folded to their active state by
subsequent action of theDnaK/DnaJ/DnaE and theGroEL/GroES chaper-
one systems [73]. sHsps of E.coli, IbpA and IbpB function in cooperation
with ClpB andDnaK system in cell survival andheat tolerance, forming a
functional triade [74]. A study on the cooperative functions of chaper-
ones in S. cerevisiae cytosol shows that during the reactivation process,
substrate proteins are transferred from their complex with Hsp26
to Hsp104 andHsp70 (Ssa1) [75]. Thus, sHsps form a part of the cellular
chaperone network, preventing aggregation of target proteins
andmaintaining them in a folding-competent state, facilitating their re-
lease in an active state with the co-operation of ATP-dependent
chaperones.
1.5. sHsps may chaperone membrane proteins

αB-crystallin binds and prevents the aggregation of the mutant
form of two multispan transmembrane proteins and helps them at-
tain the proper functional folded state [76]. It prevents the formation
of inter-chain disulfide bridges between the lumenal ectodomains of
the aggregated mutant chains of Frizzled4 (responsible for a rare
autosomal dominant form of familial exudative vitreoretinopathy
(Fz4-FEVR)), enabling correct folding and appropriate compartmen-
talization on the plasma membrane. αB-crystallin helps the H1069Q
mutant of ATP7B Cu transporter that is associated with a common
form of Wilson’s disease to fold into a proper conformation, to
move to the Golgi complex, and to respond to copper overload like
wild-type ATP7B [76]. It appears that in the cases of mutants that
fail to attain the functional state, sHsps can target them to degrada-
tion. For example, Hsp27 binds to the mutant F508del cystic fibrosis
transmembrane conductance regulator (CFTR), and targets the mu-
tant CFTR to proteasomal degradation through F508del SUMOylation
[77]. Aquaporin 0 (AQP0) (also known as membrane intrinsic pro-
tein (MIP)) which is expressed exclusively in the lens during termi-
nal differentiation of fiber cells plays an important role in regulation
of water content and in cell-to-cell adhesion of the lens fiber cells.
The eye lens α-crystallin and the homo-oligomers of αA- and αB-
crystallin were able to prevent the heat-induced aggregation of
AQP0 and stabilize its secondary structure from heat-induced
unfolding by the formation of a stable complex [78].

sHsps bind to the aggregation-prone mutant membrane proteins
and keep them as soluble complexes. The subsequent mechanistic
events which determine the fate of the protein - namely, targeting it
to the appropriate destination in the functional state or targeting it to
degradation - are still to be understood. It is interesting that some of
the sHsps have also been shown to associate with membranes. For ex-
ample, both homo- and hetero-oligomers of αA- and αB-crystallin are
known to interact with lipid vesicles [79]. Association of α-crystallin
with membranes has been shown to modulate lipid membrane poly-
morphism: stabilizing liquid crystallin state of the bi-layer membrane
[80]. A study from our laboratory has shown that Hsp22 exhibits mem-
brane localization in cells and binds to lipid vesicles in vitro [81].Thus,
we hypothesise that the inherent tendency of sHsps to associate with
membrane would facilitate the sHsps-membrane protein (and/or their
mutants) complex to be in proximity to the membrane surface, which
would help in incorporation of the membrane proteins by preferential
partitioning to the membrane and either concerted or subsequent fold-
ing in the membrane environment. Thus, there are preliminary indica-
tions of involvement of some sHsps in membrane protein quality
control which need further studies both with respect to phenomenolo-
gy and mechanism.
1.6. Mutations of sHsps lead to neuropathies and myopathies

The pathological conditions due to mutations or modifications in
chaperones are generally termed as chaperonopathies [see review 82].
Detailed description of the various studies on the mutational effects
on sHsps accumulated over the period would be very exhaustive and
beyond the scope of the present focus of the review. The subject has
been specifically reviewed elsewhere [83–86]. Mutations or modifica-
tions in sHsps can lead to adverse pathological conditions due to either
(i) loss of their function leading to compromise in the ability of the cells
to cope up with stress, or (ii) toxic gain of function due to misfolding
and aggregation or improper interaction of the mutant chaperone
molecules themselves or with other cellular targets. Chaperonopathies
have been further classified as genetic or acquired, either by aging or
due to post-translational modifications. Decreased expression of αA-
crystallin with age and its post-translational changes in the retina
resulting in retinopathy is an example of acquired chaperonopathy [87].

Several mutations in sHsps in human are associated with pathologi-
cal conditions, mostly neuropathies and myopathies [see reviews
83–86]. Most of the mutations in sHsps are associated with similar but
not identical disease conditions, indicating that the sHsps, in addition
to their similar functions, also have distinct roles. Therefore, the exact
mechanism(s) by which each mutation causes disease could be differ-
ent, but converge into the pathways that are critical for survival and
function of particularly, muscle and neuronal tissues. Many of themuta-
tions are genetically dominant negative, implying that toxic gain of
function could be a dominant contributing factor in the pathogenesis.
For example, R120G mutation in αB-crystallin that leads to desmin-
related myopathy and congenital cataract [88] alters oligomeric size
and decreases chaperone activity [24,89]. R120GαB-crystallin forms
inclusions in cells that have amyloid-like character and exhibit propen-
sities to form amyloid-oligomers which are highly cytotoxic [90].
Further studies addressing the exact mechanism(s) bywhich individual
mutations manifest pathology and evolving strategy to tackle the
mutation-induced adverse effect are important to develop therapeutic
approaches for these chaperonopathies. The observation that over-
expression of other sHsps could rescue cells from, for example, R120G
αB-crystallin induced formation of intracellular inclusions and cell
death [91–93], provides a potential strategy to alleviate the toxic effect
of the mutant protein(s). A peptide aptamer has been shown to abolish
thedominant negative effect of R120GαB-crystallin bydisrupting its in-
teraction with Hsp27 [94]. Inhibition of histone deacetylase 6 in
R120GαB-crystallin transgenic mice leads to hyperacetylation of tubu-
lin and decreased aggregation of proteins and improved cardiac func-
tion [95]. Therefore, prevention of aggregate formation of R120GαB-
crystallin and/or its aberrant interactions with other proteins would
be potential modalities for treatment.

1.7. Structural aspects of sHsps

As mentioned earlier, sequence alignment of the sHsps shows a
highly conserved ACD which is flanked by the NTD and CTE, both of
which are variable in length and sequence except for a few conserved
stretches [1–3,96]. Crystal structures of the full-length prokaryotic
sHsp, Methanococcus jannaschii sHsp16.5 [97] and the plant sHsp,
wheat sHsp16.9 [98] that form mono-dispersed discrete oligomers are
available. Mammalian sHsps such as Hsp27, αB-crystallin, in general,
exist in polydispersed oligomeric populations and crystal structures of
full-length proteins have not yet been determined. However, crystal
structures of the ACDs of Hsp27, αA-crystallin, αB-crystallin and
Hsp20 show β-sheet rich immunoglobulin-like fold [99–103]. Fig. 1
shows dimeric arrangement of ACD of αB-crystallin and the models
proposed for a 24-mer oligomeric assembly of full-length αB-
crystallin. The ACD is primarily involved in inter-subunit interaction
[100,101] leading to dimerization. Both crystallography and solid state
NMR studies have shown that the dimeric ‘building block’ is composed



Fig. 1. Structural aspects of αB-crystallin. (A) Crystal structure of dimeric ACD of αB-
crystallin along with the peptide with the palindromic sequence, ERTIPITRE, derived
from the C-terminal extension (CTE) of the protein (shown red) bound to eachmonomer
[103]. The dimer interface is formed by pairwise and antiparallel interactions between ex-
tended β6 + 7 strands from each monomer [103]. Inset highlights the palindromic pep-
tide (yellow arrow shows the N-to-C direction) containing the IXI motif bound to the
hydrophobic groove between β4-β8 strands in an antiparallel direction to the β8 strand
[103]. (B) Oligomeric (24-mer)model ofαB-crystallin superimposed on the electron den-
sities of EM of αB-crystallin proposed by Jehle et al. [106]. Three dimers (two monomers
colored differently) form a triangular array (hexamer) on the surface of a multimer,
each connected via its IXI motif bound in the β4-β8 groove of a neighboring dimer
[106]. Four triangular hexamers arranged with tetrahedral symmetry (shown by the neg-
ative stained EM of αB-crystallin [105]) results in four threefold axes and three twofold
axes of symmetry with a central cavity (~4 nm dia). Flexible residues of the N- and C-ter-
mini identified byNMRweremodeled based ondifferent orientations of theACDs, and the
IXI motifs bound to them: half the subunits in a 24-mer have their C-terminal residues
166–175 on the surface and half have them pointing to the interior [106]. N-terminal res-
idues 1–10were loosely packed in the interior of themodel [106] that fits the radius of gy-
ration measured by SAXS [106] and the EM data of Peschek et al. [105]. (C) Pseudoatomic
model of a 24-meric αB-crystallin assembly proposed by Braun et al. [111] based on 3D-
constructed cryo EM and molecular modeling taking support from the results of NMR
spectroscopy, chemical cross-linking, mass spectrometry and previous negative stained
EM of αB-crystallin [105]. Different views of the oligomer with the docked model of αB-
crystallin 24-mer superimposed on cryo-EM density map - viewed along a two- (Left)
and a threefold symmetry axis intercepting the area (3o)(Center), and area showingα-he-
lical segments of theN-terminal domain (3c) (Right). The flexible C-termini appear to face
outward (surface) aswell as inward (towards inner cavity) in the oligomeric (24-mer) as-
sembly ofαB-crystallin in both themodels (B & C). However, the models seem to differ in
the spatial disposition of the flexibleN-terminal regions – the region is arranged inward to
the central cavity in (B) while it is arranged towards the surface in (C). Fig. 1(A-C) are
taken from references [103,106,111] respectively with permission from PNAS, USA.
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of a β-sandwich ACD core that assembles through anti-parallel pair-
wise interactions between extended β6-β7 strands [58,59,100,102,
103]. This dimer interface seems to be common to metazoan sHSPs,
and was found to occur in different registration states [58,59,100,102,
103], termed API, APII and APIII [60,103]. In solution, the ACD of αB-
crystallin predominantly exists with a dimeric intereface of APII register
[103]. The dimer serves as a building block for higher order oligomeriza-
tion in sHsps [69,100–104]. Most of the structural information on
oligomeric assembly available is with respect toαB-crystallin. Clubbing
information from biophysical data on the oligomeric size and image re-
construction using negative stained electron micrograph of αB-
crystallin, an oligomeric structure of 24-mer with a central cavity has
been proposed [105]. Based on solid state NMR studies and small-
angle X-ray scattering (SAXS) studies, an oligomeric structure of 24-
mer has been proposed [58].

A model of full-length αB-crystallin as a symmetric multimer of 24
subunits involving a hierarchy of interactions of the ACD, the CTE and
the NTD has been proposed based on solid-state NMR, SAXS [106],
and electron microscopy (EM) data [105]: Interactions between two
ACDs define a dimer. Three dimers, connected by the conserved IXI
motif from the C-terminus of one dimer binding to hydrophobic pockets
formed by the β4 and β8 strands on the edge of another dimer, define a
hexameric unit. Variable interactions (and hence multiple environ-
ments contributing to the heterogeneity in NMR signals) involving the
NTD form higher-order multimers [106]. Truncation of the NTD
[106–108] or the deletion of conserved stretches, SRLFDQFFG [109]
and FLRAPSWF [110] leads to formation of dimer to hexamer or smaller
oligomers of αB-crystallin, consistent with their role in building higher
order oligomeric structure. Further association of dimeric building
blocks on to existing openings in the shell of the 24-mer give rise to
higher-ordermultimeric assembly such as 26-, 28-mers, as the EM den-
sity contains six gapswith dimensions that can accommodate a dimer at
the edges of the three two-fold axes of the 24-meric species [106].

Another study has also proposedmodels of polydispersed species of
αB-crystallin ranging from 12-mer to 48-mer including the odd num-
bered multimeric species of 23-mer [111]. αB-crystallin oligomers
showed size and structural variability on cryo-electron micrographs
and about 30% of the particles could be assigned to the 24-meric assem-
bly with a 3D reconstructed model at 9.4-Å resolution [111]. The αB-
crystallin 24-mer is a hollow, spherical complex of approximately
13.5-nm diameter in which subunits are arranged according to tetrahe-
dral symmetry [111]. Two types of dimers have been proposed while
building the oligomeric assembly by molecular modeling using con-
straints from NMR data [58], the density maps of cryo-electron micro-
graphs, chemical cross-linking and mass spectrometry: an elongated
dimer, where the N- and C-termini come in close proximity, and a
bent dimer, where both the termini are disposed to opposite ends, are
arranged in a hexameric unit. The hexameric units in multiples or
with added monomer or dimeric units can be further assembled into
several multimeric species with reconstructed images represented in
the cryo-electron micrographs [111]. The model also shows that the
phosphorylation sites (S19, S45, S59) at the NTD are in close proximity
in the hexamer unit due to the assembly of N-terminals from three di-
meric units, suggesting that charge repulsion due to phosphorylation
can destabilize the oligomeric structure [111]. Cryo EM shows shifting
of mean populations of αB-crystallin to hexamer and 12-mer in
phosphorylation-mimickingmutants, while retaining the structural fea-
tures of the hexameric assembly of the wild type protein [72].

The flexible C-termini appear to face outward (surface) aswell as in-
ward (towards inner cavity) in the oligomeric (24-mer) assembly of
αB-crystallin in both themodels (Fig. 1B andC see [106,111] for details).
However, the models seem to differ with respect to the spatial disposi-
tion of the flexible N-terminal regions – the region is arranged inward to
the central cavity in themodel proposed in [106] (Fig. 1B), while it is ar-
ranged towards the surface in the model proposed in [111] (Fig. 1C).
The phosphorylation sites (S19, S45, S59) of αB-crystallin (discussed
later)would be readily accessible to the kinases if theNTDs are disposed
on the surface of the assembly, whereas subunit dissociation would be
the rate-limiting factor for phosphorylation events if the NTDs are dis-
posed inside the assembly. Whether phosphorylation of αB-crystallin
takes place in the oligomeric state or in the disassociated states that
are in equilibriumwith the oligomeric assembly needs to be investigat-
ed. Though the proposed models have given considerable insights into
the structural aspects of αB-crystallin, we are still far from giving an
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adequate structural basis, especially for the pleotropic functions of the
protein as well as those of sHsps in general. Considering the plasticity
of assembly as well as the dynamic (highly flexible) nature of the N-
and C-terminal regions [106,112], sHsps may exist in a wide spectrum
of interconverting conformational ensembles. The proposed models of
αB-crystallin [58,105,106,111] might represent a few of these ensem-
bles. The temperature-dependent faster subunit exchange process ap-
pears to be a unique feature of polydispersed vertebrate sHsps as well
asmonodispersed plant sHsps (rate constants in range of min−1) as op-
posed to very slow subunit exchange rate of other multimeric proteins
(rate constants in the range of day−1) such as tetrameric transthyretin
or hepatitis B capsid protein [see review 112]. Therefore, further under-
standing on structural and dynamic aspects with respect to other sHsps
is important. Structural information on individual sHspswould also pro-
vide information on the hetero-sHsp interactions - interface between
hetero-subunits might create new target interaction sites.
1.8. Structural-chaperone functional relationship of sHsps

Interchanging either the NTDs [113] or the CTEs [114] between αA-
and αB-crystallin resulted in chimeric proteins which were very differ-
ent in oligomeric size and chaperone-like activity from their wildtype
counterparts. Fusing the CTE of αB-crystallin to HspB3, which lacks a
CTE, modulated its chaperone-like activity and its oligomerization
[31]. Thus, oligomeric assembly and chaperone activity of a given sHsp
is inter-dependent on its NTD, ACD and CTE.

The NTD has a preponderance of hydrophobic residues and provides
sites for interactions leading to higher order oligomerization of sHsps.
Truncation of sequences from the NTD of α-crystallin leads to formation
of tetrameric species with decreased chaperone activity and loss of
subunit exchange with other sHsps [108,115–117]. The conserved
sequence, (e.g., SRLFDQFFG of the NTD of α-crystallins) has a propensity
to adopt an amphipathic helix, and deletion of this sequence leads to a
significant decrease in oligomeric size and increased chaperone activity,
indicating that this region contributes to the higher order oligomerization
of αA- and αB-crystallin [109]. Similarly, deletion of 54FLRAPSWF61 also
results in decreased oligomeric size, increased accessible hydrophobic
surface and enhanced chaperone activity [110].

The individual regions, the NTD, ACD and the CTE of α-crystallins
display marked differences in their biophysical properties but each of
them independently exhibits chaperone activity to varying extents,
the N-terminal domain being the most active [118]. The NTD of Hsp27
is dynamic and binds to the destabilized target protein, T4 lyso-
zyme [119]. Studies using a cleavable fluorescent, photoactive cross-
linking agent sulfosuccinimidyl-2 (7-azido-4-methylcoumarin-3-
acetamido)-ethyl-1,3' dithiopropionate (SAED) andmass spectroscopic
analysis showed that the regions that 57APSWIDTGLSEMR69 and
93VLGDVIEVHGKHEER107 in αB-crystallin were involved in binding
to heat-denatured yeast alcohol dehydrogenase, whereas regions
75FSVNLDVK82 of αB-crystallin and 12RTLGPFYPSR21 and
71FVIFLDVKHFSPEDLTVK83 of αA-crystallin were identified as
melittin-binding sites in α-crystallin [120,122]. Using peptide array ap-
proach, it has been shown that many peptides derived from the NTD,
ACD and the CTE of αB-crystallin interacted with regulatory proteins
such as basic fibroblast growth factor (FGF-2), nerve growth factor
(NGF)‚ vascular endothelial growth factor (VEGF), insulin and β-
catenin), which also partly overlapped with sequences that interact
with partially unfolded proteins, suggesting a common function for
αB-crystallin in chaperone activity and the regulation of cell growth
and differentiation [61]. Mutational analysis of the β8 strand of αB-
crystallin reveals involvement of this strand in the chaperone property
of the protein [122]. Sequences corresponding to β strands 3, 8 and 9
from ACD of αB-crystallin seem to be the common sites for interactions
with various substrates for chaperone activity and some regulatory pro-
teins [61].
The CTE has a preponderance of charged residues and was believed
to play a solubilizer role in keeping the sHsps and their target protein
complexes in solution [123]. Our earlier study [124] showed that the
conserved IXI/V motif [96] in the CTE of αB-crystallin is involved in
inter-subunit interactions. Mutations of the isoleucine residues in the
IXI/V motif and truncations in bacterial and plantα-sHsps result in dis-
sociation of the subunits and loss of chaperone-like activity [125,126].
On the other hand, mutation of the hydrophobic residues of the motif
to glycine leads to alternative oligomeric assembly and increased chap-
erone activity in αA- and αB-crystallin [124]. Subsequent solid state
NMR and small angle X-ray scattering (SAXS) studies on αB-crystallin
show that the IXI (I159-P160-I161) motif is involved in interdimeric
and intermolecular interactions by binding to the substrate-binding
groove (β4 and β8 strands), which is released upon decrease in pH, po-
tentially leading to chaperone activation [59]. Crystal structures of the
NTD-truncated αA-crystallin (residues 59–163), and αB-crystallin
(residues 68–162) reveal bidirectional binding of the C-terminal tail
sequence IXI/V in the groove of the core formed by strands β4 and β8
[59].

The palindromic sequence around the IXI/V motif in αA-
(ERAIPVSRE) and αB-crystallin (ERTIPITRE) would allow bidirectional
interactions at the subunit interface and the dimeric interface. An anti-
parallel β sheet with three possible registration shifts (AP1 to AP3)
potentially enforces polydispersity of α-crystallins, which could be
evolved as mechanisms for chaperone action and for prevention of
crystallization, both necessary for transparency of eye lenses [59].
NMR relaxation experiments have revealed that the CTE of αB-
crystallin is highly dynamic. Its inter-subunit interactions (via the IXI
motif) are temperature-dependent and only a fraction of the molecule
exhibits binding of the IXI motif at physiological temperature [127].
Such dynamic fast exchange of the CTE between bound and free
states forms the regulatory mechanism in subunit exchange, polydis-
persity and chaperone activation. NMR studies showed that the IXI
motif-containing peptide derived from the CTE of αB-crystallin,
PERTIPITREEK, binds to the core ACD dimer of αB-crystallin and re-
placement of the isoleucine residues of the motif by alanine or glycine
abolishes the binding [60]. Moreover, IXI-mimicking peptides derived
from the CTEs of αA-crystallin, Hsp27 and HspB2 also show binding to
the ACD of αB-crystallin [60].

A mass spectrometric study on binding of the palindromic peptide
residues 156–164 (ERTIPITRE) or the peptide residues 156–175
(ERTIPITREEKPAVTAAPKK) of αB-crystallin to the dimers of ACD
shows that these peptides bind weakly to the domain and binding of a
second peptide to the dimer is less favoured [128]. The mass spectral
data on distribution of oligomeric species and subunit exchange process
of αB-crystallin were modeled as follows: (i) two interactions between
individual αB-crystallin monomers, corresponding to intra-dimer and
inter-dimer interfaces, (ii) individual oligomers are in dynamic equilib-
rium with their corresponding monomers (explaining the appearance
of oligomers comprising an odd number of subunits and in facile sub-
unit exchange), and (iii) the dimer interface is labile [128,129]. The eval-
uated thermodynamic association free energies of the edge and dimer
interfaces (ΔGd, and ΔGe, respectively) of αB-crystallin and a compari-
son of the relative effects of alaninemutations at various position in the
CTE on these free energies of association (ΔΔGd vs ΔΔGe) yields a neg-
ative correlation, indicating that destabilization of the C-terminal inter-
action stabilizes the intra-dimer interfaces [128]. It would be important
to find outwhether this observationwith respect toαB-crystallin is also
generally applicable to other sHsps, as this information would be useful
in designing peptide-based inhibitors (with high binding affinity) for
function of sHsps.

Thus, most of the work on the structural and chaperone functional
relationship with respect to αB-crystallin (and to some extent with
αA-crystallin) indicates a highly flexible assembly of the subunits with
substrate-binding involving regions spanning all three, the NTD, ACD
and the CTE. The prominent and most common sites appear to
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correspond to the region comprising β-strands 3, 8 and 9, while other
regions seem tomake substrate-dependent contacts [61]. Identification
of substrate-binding regions in other sHsps notably, Hsp27 andHsp20 is
required to understand the commonality or differences, if any, on the
structural-functional aspects of sHsps in general. It emerges that the re-
gions (strands 3, 8 and 9 and the β4-β8 groove) identified in αB-
crystallin might be useful for targeting functionality of the sHsp.

1.9. Phosphorylation of sHsps

sHsps such as Hsp27, α-crystallins, Hsp20 and Hsp22 are known to
get phosphorylated, especially under stress conditions. Phosphorylation
of sHspsmodulates a variety of their functions in cellular processes such
as apoptosis, cell cycle and differentiation (which are discussed later
wherever relevant). This section largely deals with the phosphorylation
of sHsps and its role in oligomeric structure and chaperone property. A
variety of stimuli leads to phosphorylation of serines(S), S15, S78, and
S82 in human Hsp27, S15 and S86 in murine Hsp25, and S15 and S90
in Chinese hamster Hsp27 [130–132]. Mitogen-activated protein kinase
(MAPK)-activated protein kinase 2 (MAPKAPK-2 or MK2 – substrate of
the p38 MAPK) is a prominent kinase that phosphorylates Hsp27 [130,
133–136]. MK2 mediates the signaling events during inflammation,
cell division and differentiation, apoptosis, and cell motility. Other
kinases such as PKC (S15, S78), MK5 (S78, S82) and PKB and PKD
(S82) are also known to phosphorylate Hsp27 (at the indicated sites)
in vivo [reviewed in 131]. Phosphorylation of Hsp27 has been shown
to be important for thermoprotection for cell survival, as the non-
phosphorylable mimic of Chinese hamster Hsp27 does not offer such
thermal protectivity [137].

Phosphorylation of Hsp27 in vitro and the mimicry of Hsp27 phos-
phorylation by mutations led to a decrease in the oligomeric size as
well as the ability to prevent the thermal denaturation and refolding
of citrate synthase in vitro [138]. On the other hand, a result of another
study [137] shows very little difference in the chaperone-like activities
of Chinese hamster wild type Hsp27, S15A/S90A-Hsp27 (the non-
phosphorylatable form) and S15E/S90E-Hsp27- (the phosphorylation-
mimic) towards the thermal aggregation of citrate synthase. It was ob-
served that oligomer dissociation required only S90 phosphorylation of
Chinese hamster Hsp27, while activation of thermoprotective activity
required the phosphorylation of both S90 and S15 [137]. Using various
deletionmutants andmodeling studies, it was proposed that the region
5-23 (containing the conserved WD/EPF motif in mammalian Hsp27),
which mediates important intramolecular interactions with hydropho-
bic surfaces of theα-crystallin domain of the protein, plays a crucial role
in chaperone activity and thermoprotection [137]. These interactions
and oligomerization are destabilized by S90 and S15 phosphorylation,
making the motif free to interact with targets [137].

Dissociation of Hsp27 oligomerwas a requisite for its recognition and
binding to destabilized T4 lysozyme mutants [35]. Both phosphorylated
Hsp27 and the phosphorylation mimic 3DHsp27 (S15D/S78D/S82D-
Hsp27) showdecreased oligomeric size and increased chaperone activity
against DTT-induced aggregation of insulin or α-lactalbumin [140]. In-
terestingly, phosphorylation at different sites of Hsp27has been reported
to discriminate its target proteins [141,142, see reviews 139,143]: Using
gel filtration chromatography to fractionate different Hsp27 species in
HeLa cell lysate and immunoprecipitation strategies, it was shown that
S15 phosphorylated Hsp27 (species less than 200 kDa) recognizes pro-
caspase 3, while S82 phosphorylated Hsp27 (species of 400–700 kDa)
recognizes histone deacetylase 6. Species of both S78 and S82 phosphor-
ylated Hsp27 (200–700 kDa) are capable of recognizing STAT2 (signal
transducer and activator of transcription 2) [142,143]. Further studies
are required for understanding the role of phosphorylation of Hsp27 to-
wards target recognition.

Both αA- and αB-crystallin are known to be phosphorylated. Vari-
ous stimuli are known to induce phosphorylation, which may have im-
plications in the regulation of their functions [144–146]. αA-crystallin
has been shown to undergo cAMP-dependent kinase-mediated phos-
phorylation at S122. Three other phosphorylation sites between resi-
dues 122 and 173 have also been identified, but the kinase responsible
is not known [147–149]. αB-crystallin has three phosphorylation
sites – S19, S45 and S59 [144]. S19 phosphorylation occurs in an age-
dependent manner. S45 phosphorylation is enhanced during mitosis
of cells. S59 phosphorylation is known to occur under heat stress condi-
tions [150].While the kinase responsible for the phosphorylation of S19
is not known, p44/42MAP kinase has been shown to phosphorylate S45
and MAPKAP kinase-2 selectively phosphorylates S59 [150].

Phosphorylated αB-crystallin or its mimic 3DαB-crystallin (S19D/
S45D/S59D-αB-crystallin) exhibit decreased oligomeric size compared
to the wild typeαB-crystallin [151]. It has been reported that phosphor-
ylation of αB-crystallin in rat lens does not affect its chaperone activi-
ty [152]. The degree of protection offered by the 3DαB-crystallin to
heat inactivation of luciferase in Chinese hamster ovary cells was found
to be relatively less than that of αB-crystallin [151]. Phosphorylation-
mimickingmutant exhibits less chaperone activity in preventing thermal
aggregation of lactate dehydrogenase (LDH) [151] and aggregation of a
model peptide ccβ-Trp peptide (a 17 amino acid model peptide that ex-
ists as a native-like coiled coil under ambient conditions but forms amy-
loid fibrils on increasing the temperature [153]) when compared to wild
type αB-crystallin [34]. However, other studies have shown increased
chaperone activity of phosphorylation-mimickingmutants or phosphor-
ylated αB-crystallin compared to the wild type αB-crystallin towards
many other target proteins. Phosphorylation-mimicking mutants of
αB-crystallin exhibit increased chaperone activity in binding to the
destabilized mutants of T4 lysozyme compared to the wild type protein
[34], towards aggregation of insulin and α-lactalbumin (upon their
disulfide reduction), heat stress-induced aggregation of catalase, alcohol
dehydrogenase orβ-crystallin andordered aggregation of κ-casein [154].
A study from our laboratory [155] showed that 3DαB-crystallin exhibits
higher chaperone activity towards heat-induced aggregation of citrate
synthase, DTT-induced aggregation of insulin and the amyloid fibril for-
mation of α-synuclein. A recent study showed that phosphorylation-
mimicking mutant of αB-crystallin (3EαB-crystallin) exhibits decreased
oligomeric size (to hexamer and 12-mer) and increased chaperone activ-
ity towards heat-induced aggregation of malate dehydrogenase and p53
compared to the wild type αB-crystallin [72].

Hsp20 is phosphorylated at S16 by cyclic nucleotide-dependent pro-
tein kinases. The phosphorylation-mimicking S16D mutation of Hsp20
did not affect the oligomeric status of Hsp20 but decreased the
chaperone-like activity [26]. Though phosphorylation of Hsp22 in vivo
is not known, mammalian Hsp22 is shown to be phosphorylated by
the cAMP-dependent protein kinase at S24 and S57 in vitro [156]. The
S57D-Hsp22 mutant and the double mutant, S24D/57D-Hsp22 exhibit-
ed changes in the local environment of tryptophan residues and in-
creased the susceptibility of Hsp22 to cleavage by chymotrypsin [156].
All the phosphorylation-mimicking mutants, particularly S24D/57D-
Hsp22, exhibited decreased chaperone-like activity compared to that
of Hsp22 [156]. Erk1 has also been shown to phosphorylate Hsp22 at
S24, S27 and T87 in vitro [157]. The phosphorylation-mimicking muta-
tions S24D, S27D and T87D, promoted concentration-dependent associ-
ation of Hsp22. While S24D and S27D mutations decreased the
chaperone activity of Hsp22, T87D mutation increased the chaperone
activity of Hsp22 [157].

Thus, phosphorylation could modulate the oligomeric population
and chaperone property of sHsps (Hsp27, αB-crystallin and Hsp22)
in vitro. Dynamic exchange of subunits of the oligomers under equilibri-
um conditions gives rise to polydispersed distribution [see review 158].
Phosphorylation-mimickingmutants show increased rate of subunit ex-
change [72,155]. Increased dynamics of sHsps and/or decreased oligo-
meric size upon phosphorylation may increase the interactive species/
surfaces with their clients and/or exposure of surfaces which are other-
wise less/not accessible to the corresponding targets. Though phosphor-
ylation of sHsps is observed in vivo under certain conditions, the
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mechanistic insight of role of phosphorylation and its structural-
functional relationship, especially in the in vivo context, is not complete-
ly understood. It is possible that nature uses phosphorylation as ameans
to either augment the function (increased interaction with the targets)
or to switch betweenmutually exclusive functions (target discriminato-
ry role/switching targets) of sHsps. Possibly the relative involvement of
these functionsmay differ among sHsps. As phosphorylation is a poten-
tial handle tomanipulate the function of sHsps, in depth understanding
on this aspect is important for designing strategies for sHsps-mediated
disease management.

1.10. sHsps and protein deposition diseases

Protein/polypeptide deposition diseases include mutated polyglu-
tamine protein aggregation, Alexander’s, Alzheimer’s, Parkinson’s,
spongiform encaphalopathies, glial fibrillary acidic protein, type II diabe-
tes, hereditary transthyretin amyloidosis etc., where disease-specific pro-
tein(s)/peptides misfold and aggregate in the form of fibrils termed
amyloid fibrils [159]. sHsps have been demonstrated to bind to partially
unfolded non-native states of proteins that are aggregation-prone and
prevent their aggregation. Some misfolded proteins can overwhelm the
chaperone and proteasomal degradation machinery, thus resulting in ag-
gregation (often cytotoxic) of such proteins either as amyloid or amor-
phous deposits. Factors that can prevent aggregation of these proteins
and facilitate their clearance could have therapeutic potential. Many
sHsps have been found in the amyloid deposits [160–164].

Partially unfolded or partially folded (in the cases of natively unfold-
ed proteins) species of proteins and peptide sequences with more hy-
drophobic residues, especially along with phenylalanine residues
[165], have tendency to aggregate. Aggregation of proteins/peptides
may either be ordered with intermolecular β-sheet formation called
amyloid fibrils [159] or amorphous. Generally, amyloid fibril formation
occurs with distinguishable nucleation (oligomers, short protofibrils
etc.,) and elongation steps [166,167]. A critical balance between hydro-
phobic and electrostatic interactions is important in amyloid fibril for-
mation [168]. In addition to their ability to prevent amorphous
aggregation, many of sHsps also prevent amyloid fibril formation and
cytotoxcity as discussed below.

Eye lens α-crystallin (composed of αA- and αB-crystallin) has been
shown to prevent the amyloid fibrillar aggregation of proteins such as
apolipoprotein C-II and serpin [169,170]. α-Crystallin interacts with
partially structured amyloidogenic precursors of apolipoprotein C-II,
suggesting that it inhibited the nucleation process of amyloid fibril for-
mation [169]. Human Hsp27 and the murine Hsp25 have been shown
inhibit the amyloid fibril formation of Aβ1-42 [171].

A study from our laboratory showed thatαB-crystallin prevented the
fibril formation of Aβ1-40 and Aβ1-42 [172]. αB-crystallin did not form a
stable complex with Aβ1-40 peptide but it interacted with Aβ1-40 fibril
seeds, preventing the amyloid fibril growth of the Aβ peptide [172].
αB-crystallin prevented the spontaneous amyloid fibril formation of
Aβ1-42 peptide, indicating thatαB-crystallin could also inhibit nucleation
and/or elongation steps of fibril formation [172]. Based on the study we
proposed [172] that α-crystallins can act on both nucleation and propa-
gation (elongation) process of amyloid fibril formation, its relative in-
volvement in these two phases of amyloid formation may depend on
the nature of the amyloidogenic species.If the amyloidogenic species
has significantly exposed hydrophobic surfaces, it may bind to this
state and inhibit the nucleation process itself. On the other hand, α-
crystallin could bind to thefibril nucleus, thus inhibiting thefibril elonga-
tion process [172]. Quartz crystal microbalance and analytical ultracen-
trifugation studies have also shown that αB-crystallin binds stably with
the fibril nucleus [173]. αB-crystallin binds to wild-type Aβ1-42 fibrils
and also binds tofibrils of E22GArcticmutationof Aβ1-42 along theentire
length and ends of the fibrils, inhibiting their elongation [173]. Experi-
ments with single molecule detection approaches such as confocal
two-color coincidence detection (cTCCD) and total internal reflection
microscopy (TIRFM) have shown that αB-crystallin binds to Aβ
oligomeric species, thereby preventing their growth into fibrils [174].
αB-crystallin, Hsp20 and Hsp27 inhibit aggregation of Aβ peptides and
cerebrovascular Aβ toxicity [175]. Interestingly, αB-crystallin binds to
cytotoxic oligomers of Aβ1-42, islet amyloid polypeptide (IAPP), and the
N-terminal domain of the prokaryotic hydrogenase maturation factor
HypF (HypF-N) to form larger species, prevents the oligomer interaction
with plasma membrane and decreases cytotoxicity [176].

The core ACD ofαB-crystallin itself is able to prevent the amyloid fi-
bril formation and the associated cytotoxicity of Aβ1-42 with efficiency
comparable to that of wild type αB-crystallin [103], indicating that the
Aβ-interacting sitemost likely resides in the ACD of the protein. Howev-
er, the core ACD of Hsp27 does not prevent the fibril formation of Aβ1-42

[103], implying that most probably the NTD of Hsp27 contributes to its
ability to prevent fibril formation of Aβ peptides.

α-Synuclein, which is a pre-synaptic, natively unfolded protein, as-
sembles into a fibrillar form,which is a hallmark of several neurodegen-
erative diseases of α-synucleinopathies including Parkinson’s disease
[see reviews 177,178]. Studies from our laboratory [155] as well as
from other laboratories [179–181] have shown that αB-crystallin pre-
vents the amyloid fibril formation of α-synuclein. Other sHsps such as
Hsp27, Hsp20, Hsp22 and HspB2B3-complex also prevent the fibril for-
mation of α-synuclein, with Hsp22 being more potent [179]. Another
study from our laboratory showed that HspB2 could also prevent the
amyloid fibril formation of α-synuclein [30]. Transient interactions
[179] as well as stable binding to fibril seed and prevention of elonga-
tion [179] have been implicated as mechanisms in preventing fibril for-
mation of α-synuclein by sHsps.

The ability of sHsps to prevent amyloid aggregation and cytotoxicity
appears to differ significantly depending on the amyloidogenic target.
Hsp20, HspB7, Hsp22 and HspB9 inhibited polyglutamine protein ag-
gregation effectively [182]; HspB7 and Hsp22 also inhibited cytotoxici-
ty, not only in cells but also in a Drosophila melanogaster model [182].
On the other hand, Hsp27,αA- andαB-crystallin did not prevent the ag-
gregation of mutated polyglutamine proteins. Interestingly, Hsp27 and
αB-crystallin efficiently prevented the aggregation of mutated proteins
that did not contain a polyglutamine stretch such as α-synuclein, GFAP
and superoxide dismutase 1 [182]. Thus, these studies reiterate the no-
tion that the ability of the sHsps to prevent aggregation of proteins also
depends on the properties of the intermediate/aggregation-prone
state(s) of proteins.

The physiological significance of binding of αB-crystallin (and other
sHsps?) to oligomeric species and fibrils could be (i) preventing further
elongation, (ii) preventing their cytotoxicity, (iii) stabilizing the fibrils
against scission, therefore preventing the creation of multiple nucleation
centers, and (iv) facilitating the clearance of inclusions by autophagy (de-
scribed later). Interestingly, an isolated report shows that αB-crystallin
binds to amyloid fibrils of apolipoprotein C-II, stabilizes the fibrils from
dilution-induced fragmentation, prevents elongation of partially formed
fibrils, and promotes the dissociation ofmature fibrils into solublemono-
mers [183]. This interesting aspect of dissociation of fibrils by sHsp needs
further investigation with different amyloidogenic proteins/peptides to
unravel the underlyingmechanism. One possible hypothesis is that bind-
ing of αB-crystallin to fibril ends affects the equilibrium between mono-
mer at the fibril termini and the free monomer in favour of free
monomer. It is also possible that binding of small molecules such as
ATP andmetal ions to sHsps complexedwith fibrils or oligomeric species
couldmodulate their ability, if any, to dissociate fibrils or oligomeric spe-
cies. Focusing investigations on finding out whether other sHsps (for ex-
ample Hsp27, HspB2, Hsp20) would also bind to oligomers and fibrils of
amyloidogenic proteins/peptides would be useful in this regard.

1.11. sHsps and metal ions interactions

Human beings are commonly exposed tometals ions such as copper,
cadmium, iron, aluminium and lead from various sources such as
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industrial waste, air pollution, cigarette smoking, fossil fuel emissions
and fertilizers. Toxic metal ions are known to be associated with oxida-
tive stress, cell death and diseases. Accumulation of Cu2+ has been
known to occur in genetic disorders such as Wilson’s and Menke’s dis-
ease [184,185]. Cu2+ has been implicated in several neurological disor-
ders [186–188]. Treating lens epithelial cells with Cu2+ induces the
expression of αA-crystallin, αB-crystallin and Hsp27, while Cd2+ in-
duces the expression of αB-crystallin and Hsp27 [189]. These observa-
tions suggest that sHsps play a role in metal ions-associated processes.
Cu2+ and Zn2+ significantly increase the chaperone-like activity of
αB-crystallin towards the DTT-induced aggregation of insulin, while
Ca2+ induces its aggregation [190]. However, the mechanism by
which the metal ions induced increase in the chaperone-like activity
of these sHsps is not known.

A study from our laboratory demonstrated, for the first time, that
αA- andαB-crystallin bind Cu2+with close to picomolar affinity, inhibit
the Cu2+-ascorbate-mediated generation of reactive oxygen species
(ROS) and confer cytoprotectivity [191]. Binding of Cu2+ resulted in
changes in their conformation and quaternary structures, and also led
to increase in their stability to guanidine hydrochloride-induced dena-
turation [191]. Interestingly, Cu2+ promoted the aggregation of the
presenile cataract-causing, folding-defective G98R mutant of αA-
crystallin [192,193]. Both the N- and C- terminal domains contribute
to the Cu2+-binding, and redox-attenuating properties and Cu2+-
binding regions span the entire sequence of the protein [194]. Small-
angle X-ray scattering and sedimentation velocity measurements
showed increase in the oligomeric size, suggesting that a single oligo-
mer of αB-crystallin can sequester a large number (~150) of Cu2+

ions (like a “Cu2+ sponge”) [194]. At least one Cu2+-binding site with
picomolar affinity in the α-crystallin domain of αB-crystallin has been
demonstrated [195]. NMR spectroscopic study showed that potential li-
gands coordinating Cu2+ were present in the loop regions connecting
the β3 and β4 strands, and the β5 and β6 + β7 strands, and involved
residues His83, His104, His111, and Asp109 [196]. These residues are
well conserved among different metazoans as well as in human αA-
crystallin, Hsp20 and Hsp27 [195]. Our recent study demonstrates
that human Hsp27 also binds Cu2+ with close to picomolar affinity, in-
hibits the Cu2+-ascorbate induced generation of ROS and confers
cytoprotection [196]. Treating the human neuroblastoma cell line,
Fig. 2. Schematic representation of the protective role of sHsps in aberrant Cu2+ homeo-
stasis [191,194,196]. Binding of Cu2+ by sHsps such as Hsp27 and αB-crystallin inhibits
Cu2+-mediated generation of ROS, oxidative stress, and amyloid aggregation/fibrillation
of Aβ peptides and α-synuclein which subsequently leads to cytoprotective effects.
These properties of sHsps have implications in neuroprotection under aberrant Cu2+ ho-
meostasis conditions [191,194,196]. Scheme reproduced with modification from [196]
with permission from Elsevier.
IMR-32, with Cu2+ leads to up-regulation of endogenous Hsp27, and
over expression of Hsp27 in these cells protects them from Cu2+-
induced cell death [196].

Considering increased expression of sHsps in neurodegenerative dis-
eases [197,161–163], accumulation of sHsps in amyloid plaques
[162–164], increased oxidative stress [186–188] and accumulation of
the redox-active Cu2+ in the brain of patients suffering from Alzheimer
disease [188], the Cu2+-binding and redox attenuation of these sHsps
has a protective role in Cu2+-homeostasis and neurodegenerative dis-
eases. Binding of Cu2+ to Aβ peptides, α-synuclein or prions is known
to result in disease-causing deleterious aggregation, generation of ROS
and cytotoxicity [186,187,198,199]. Fig. 2 schematically depicts the po-
tential protective role of αB-crystallin and Hsp27 in Cu2+-mediated ox-
idative stress, aggregation of Aβ peptide and α-synuclein and
neurodegeneration. Aβ peptides bind Cu2+ and generate H2O2 [198],
and Cu2+ induces aggregation of Aβ peptides [199]. α-Crystallins [191]
and Hsp27 [196] prevent the Cu2+-induced aggregation of Aβ1-40.
Hsp27 [196] and αB-crystallin (our unpublished results) prevent the
Cu2+-induced amyloid fibril formation of α-synuclein by dislodging
the Cu2+-bound to α-synuclein, rendering it less amyloidogenic [196].
Cu2+ and ascorbate-mediated generation of ROS is a potential means
of oxidative stress, given that the levels of ascorbate can reach as high
as 0.4 mM in brain extracellular fluid and to ~10 mM in neurons [200],
while Cu2+ can reach ~0.4mM in the brains of patientswith Alzheimer’s
disease [188]. α-Crystallins and Hsp27 may play protective role in the
process of Cu2+-induced aggregation of Aβ peptides and α-synuclein
as well as Cu2+-induced oxidative stress [191,196]. Since sHsps such as
αB-crystallin, Hsp27, HspB2, HspB3 and Hsp22 are also found in the
plaques of Aβ peptides in the brains of patients of Alzheimer’s disease
and in the Lewy bodies in patients with Parkinson’s disease [160,161,
201], investigating the binding of metal ions by these sHsps, their role
in the Cu2+ homeostasis and in these disorders, if any, would give in-
sights into this novel cytoprotective function of sHsps.

α-Crystallins also interact with metal ions such as Ca2+ and Zn2+.α-
Crystallin, the major eye lens protein (composed of αA- and αB-
crystallin), is involved in maintaining lens transparency. High levels of
Ca2+ (as high as 64 mM) are associated with cataract formation [202].
Ca2+ decreases the anti-aggregation activity and thermal stability of α-
crystallin [203,204]. The impaired chaperone activity would reduce its
ability to prevent aggregation of lens protein, thus playing a role in pro-
gressive loss of transparency and cataractogenesis [203,204]. Zn2+ inter-
acts with α-crystallin with dissociation constant in the sub-millimolar
range, increases its surface hydrophobicity, increases its stability to urea
denaturation as well as resistance to trypsin digestion and enhances its
chaperone activity by 30% [205]. Further studies are required to under-
stand the effect of metal ions on the structure and functions of sHsps
and their role in pathology involving aberrant metal ions homeostasis.

1.12. Hetero-oligomer formation between the subunits of sHsps

sHsps exchange their subunits to form hetero-oligomeric complexes
[41,42,206–208]. αB-crystallin co-purifies with Hsp27 from skeletal
muscle [209]. They associate with each other in vivo and form hetero-
oligomers in vitro [208–210]. αA- and αB-crystallin form hetero-
oligomers in vitro [41] and their hetero-oligomers (at 3:1 ratio respec-
tively) are isolated as α-crystallin from the eye lens [see reviews 211,
212]. Two types of hetero-oligomeric complexes – one consisting of
HspB2 and HspB3 and the other of Hsp27, αB-crystallin and Hsp20
have been found in muscle tissue [213]. Using various techniques in-
cluding gel-filtration chromatography, immunoprecipitation, yeast
two hybrid assay and FRET microscopy, Hsp22 was found to interact
with itself, HspB7, HspB2 and Hsp27 [214]. Using yeast two hybrid
assay and FRET microscopy, Hsp22 has been found to interact with
Hsp20, and αB-crystallin [215]. However, a cysteine mutant of Hsp22
corresponding to the C137 position of Hsp27 did not form cross-
linked hetero-dimers with other sHsps such as Hsp27, αB-crystallin
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andHsp20 efficiently [216]. On the other hand, similar cysteinemutants
of αB-crystallin and Hsp20 formed cross-linked hetero-dimers with
each other andwith Hsp27 efficiently [216]. It appears that Hsp22 inter-
actions with other sHsps warrant further investigation for clear under-
standing. While the formation and existence of hetero-oligomeric
species of two or more different sHsps occurs in vitro and in vivo, the
exact structural and functional consequences and their biological signif-
icance have not been completely understood. However, formation of
hetero-oligomers between sHsps modulates their chaperone activity.

A study from our laboratory [23] showed that the chaperone activity
of isolated bovine αB-crystallin was higher than that of αA-crystallin
and lens α-crystallin at lower temperatures, but the activity of αA-
crystallin and lens α-crystallin increased at higher temperatures. αA-
crystallin was found to bemore stable to temperature-induced changes
thanαB-crystallin, suggesting that the hetero-oligomers ofαA- andαB-
crystallin present in the mammalian eye lens (αA-: αB-crystallin: 3:1
ratio) may be of importance in providing appropriate stability and opti-
mal chaperone-like activity [23]. Investigation of the structural and
chaperone activity changes during the course of hetero-oligomer for-
mation by the exchange of subunits between homo-oligomers of αA-
and αB-crystallin at various ratios shows that hetero-oligomers display
differential chaperone-like activity which correlate with subunit ex-
change and the resulting large tertiary and quaternary structural chang-
es [41]. A study from another laboratory has shown thatαA-crystallin in
its hetero oligomer formed in vitro with αB-crystallin imparts stability
[217].

The hetero-oligomers of Hsp27 and αB-crystallin were intermediate
in terms of size and stability to heat stress relative to the two homo-
oligomers [208]. Hsp27 is an inferior chaperone, whereas αB-crystallin
is the determining factor of the hetero-oligomers in the suppression of
both amorphous and ordered aggregation of target proteins [208]. The
rate of subunit exchange betweenHsp27 andαB-crystallin, asmonitored
bymass spectrometry, was 23% faster than that between Hsp27 andαA-
crystallin and twice as fast compared to that between αA- and αB-
crystallin [208]. Co-expression of αB-crystallin and Hsp27 in HeLa cells
led to increase in phosphorylation of Hsp27 and increase in the activity
of glucose-6-phosphate dehydrogenase (whose activity is increased by
smaller sized phosphorylated Hsp27), indicating that potential hetero-
oligomer formation between Hsp27 and αB-crystallin can indirectly
modulate Hsp27 phosphorylation and function [218]. HspB2 and
HspB3 form a series of well defined hetero-oligomers, consisting of 4,
8, 12, 16, 20 and 24 subunits in vitro, inwhichHspB2 andHspB3 are pres-
ent in a 3:1 subunit ratio [207]. The HspB2-HspB3 complex exhibited
poor chaperone-like activity [207]. Studies from our laboratory [30,31]
showed that the homo-oligomers of HspB2 and HspB3 exhibited target
protein-dependent chaperone activity. Thus, it appears that the hetero-
oligomers ofHspB2-HspB3 acquire different activity from that of their re-
spective homo-oligomers.

Besides modulation of chaperone activity, hetero-oligomer forma-
tion can also regulate other, yet unclear, cellular processes. Hsp20 and
Hsp27 form two different hetero-oligomeric species of molecular
masses 100-150 kDa (lower concentration) and ~250–300 kDa (higher
concentration)with a stoichiometry of 1:1 [219]. Upon hetero-oligomer
formation with Hsp27, the rate of phosphorylation of Hsp20 by cAMP-
dependent protein kinase was inhibited [219]. Hsp20 inhibited the
MAPKAP-kinase 2 phosphorylation of Hsp27 upon hetero-oligomer for-
mation [219]. Thus, hetero-oligomer formation between Hsp27 and
Hsp20 can regulate phosphorylation events and hence the consequent
processes.

Hsp20 and αB-crystallin were found to be co-immunoprecipitated
from heart homogenates [220]. Immunofluorescence microscopy
showed that staining of Hsp20, αB-crystallin, and actin was predomi-
nantly in transverse bands – αB-crystallin and Hsp20 were associated
at the level of the actin sarcomere [220]. Phosphorylated Hsp20 as
well as phosphopeptide analogues of Hsp20 increased myocyte short-
ening rate. However, it is not clear whether myocyte shortening is
brought about exclusively by the hetero-oligomer or by the homo-
oligomers of αB-crystallin and Hsp20 and how the disruption of the
hetero-oligomer, if formed, affects myocyte shortening. A 700 kDa com-
plex of Hsp27 and αB-crystallin was found to be present in non-
oncogenic cells but not in oncogenic cells [221]. The complex falls
apart upon heat stress, but forms again upon recovery. It would be inter-
esting to find out the significance of the absence of this complex in on-
cogenic cells, and whether it serves a discriminatory purpose for the
immune system to eliminate tumor cells.

Point mutations in sHsps seem to alter inter-sHsp interactions. The
interactions of the congenital cataract causing mutant, R116C αA-
crystallin with αB-crystallin and Hsp27 increased almost 5-fold over
those with the wild type protein [222]. Interaction of R120G αB-
crystallin (which causes desmin-relation myopathy and congenital cat-
aract) with αA- and αB-crystallin is decreased compared to that with
the wild-type protein [222]. The αB-crystallin mutants, R120G, Q151X
and 464delCT exhibited abnormal interactions with Hsp20, whereas
the R120G and Q151X mutants exhibited altered interactions with
Hsp22 [223]. Using cyan (CFP) and citrine (CIT) fluorescent protein
tagged sHsp constructs, it was shown that K141E or K141N mutants of
Hsp22 (involved in inherited peripheral motor neuron disorders distal
hereditary motor neuropathy type II and axonal Charcot-Marie-Tooth
disease type 2 L) exhibit aberrantly increased interactions with them-
selves, wild-type Hsp22, αB-crystallin and Hsp27, but not with Hsp20
[224]. The S135F mutation in Hsp27 (also associated with these disor-
ders) exhibits increased interaction with wild-type Hsp22 [224].

Thus, mutations in sHsps alter the apparent inter-sHsp interactions.
It is possible that alteration in the inter-sHsp interactions leads to ab-
sence of the original interactions of the sHsp. It also acquires deleterious
gain of interaction of the mutant protein with the new partner. As mu-
tations alter native conformation, often increasing the aggregation pro-
pensities, some of the increased interactions of the mutants with wild
type sHsps are likely to be of the less-specific type chaperone-target
protein interactions through exposed hydrophobic surfaces rather
than specific replacement of subunits in the sHsp assemblies through
subunit exchange. Developing methods to distinguish these two types
of interactions among the mutant and wild type sHsps is important to
understand how alterations of inter-sHsp-interactions are involved in
pathological conditions.
1.13. Interactions of sHsps with cytoskeletal and nucleoskeletal elements

sHsps can interact and thereby affect the spatio-temporal organiza-
tion of the cytoskeletal components. αB-crystallin, Hsp27 and Hsp20
are present in high concentrations in vascular smooth muscle cells
[see review 225]. αB-crystallin and Hsp27 interact with intermediate
filaments, stabilize them and prevent their reorganization [226,227].
Immuno-precipitation experiments with lysates of L6 myoblast cells
demonstrated the association of αB-crystallin with tubulin; αB-
crystallin prevented the aggregation of tubulin in vitro [228]. αB-
crystallin is known to associate with desmin and chaperone it [226].
αB-crystallin can bind to and stabilize microtubules [229]. Hsp27 [230,
231] and αB-crystallin [232] bind and stabilize F-actin and prevent its
depolymerization. The phosphorylation mimic of Hsp27 has been
shown to prevent aggregation of actin upon thermal stress by binding
to form soluble complexes [233].

Studies from our laboratory [232] have shown that under conditions
of heat stress, αB-crystallin associates with actin fibers in H9C2 rat
cardiomyoblast cells in a S59 phosphorylation-dependent manner pro-
viding resistance to cytochalasin B-induced actin disorganization. Mu-
rine Hsp25 has been reported to inhibit actin polymerization [234].
Hsp20 is expressed both constitutively and inducibly in airway smooth
muscle and its cAMP-dependent protein kinase phosphorylated form
promotes airway smooth muscle relaxation [235]. Endogenous αB-
crystallin andHsp25 of H9C2 rat cardiacmyoblasts aswell as ectopically
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expressed αA-crystallin, Hsp20, HspB2 and HspB3 have been shown to
associate with actin cytoskeleton upon proteasomal inhibition [236].

A study from our laboratory [237] has shown that upon subjecting
C2C12 myoblasts to heat stress, αB-crystallin and Hsp25 translocated
to the nucleus, where they co-localized with the intracellular lamin A/
C and the splicing factor, SC-35 in the nuclear speckles. However, their
rolewithin the nucleus is largely unaddressed; presumably theymay af-
fect the stability of the nuclear components. They relocated to the cyto-
plasm upon recovery. Studies from other laboratories have shown that
pseudophosphorylated αB-crystallin also translocated to the nucleus
and colocalized with the splicing factor SC-35 in the nuclear speckles
[238,239]. FBX4, an adapter protein of the ubiquitin-protein isopeptide
ligase SKP1/CUL1/F-box, was also recruited to the nuclear speckles, sug-
gesting that αB-crystallin had a phosphorylation-dependent role in the
ubiquitination of a protein component of the nuclear speckles [238,
239]. It is important to investigate further the significance of interaction
of sHsps with nucleoskeletal elements.

As mentioned earlier, R120G mutation in αB-crystallin causes
desmin-related myopathy and congenital cataract. Lens fiber cells do
not have desmin, but have vimentin, CP 49 and filensin. R120G αB-
crystallin promoted the aggregation of vimentin in the lens, indicating
that increased interaction of the mutant protein with vimentin and
the resulting aggregation was the molecular basis for congenital cata-
ract [240]. R116C αA-crystallin interacted significantly less with actin
than wild type αA-crystallin [241]. Since both αA-crystallin and actin
are necessary for the proper development of lens, decreased interaction
of mutantαA-crystallin may perturb the normal differentiation process
of lens cells that is necessary for the lens transparency [241]. αB-
crystallin has been shown to bind to myofibrils in cardiac muscle
under conditions of ischemia. It binds to titin in the I-band of cardiac fi-
bers [242]. αB-crystallin binds to a discrete region of the I-band (in the
N2B region of the protein, titin) that moves away from the Z-disc when
sarcomeres are extended [243]. αB-crystallin bound to the immuno-
globulin region of titin between the N2B domain and the Z-disc and sta-
bilized it. The association of αB-crystallin with the I-band titin
prevented stress-induced unfolding [243]. Thus, sHsps are important
in maintaining cytoskeletal integrity.

1.14. Anti-apoptotic function of sHsps

αB-crystallin prevents cell death induced upon oxidative stress and
upon treating with drugs such as staurosporin and doxorubicin [11,
244–246]. Both human αB-crystallin and Hsp27 have been shown to
prevent TNF-α-induced apoptosis – over-expression of these proteins
leads to increased levels of glutathione and decrease in TNF-α-
induced increase in ROS [245]. L929 cells expressing either Hsp27 or
αB-crystallin are resistant to apoptosis induced by staurosporine, an in-
hibitor of kinase C [246]. Such activity of these sHsps, which results in
increased levels of glutathione, thus, can indirectly contribute in
preventing cell death pathways triggered by high levels of ROS genera-
tion. Similarly, the ability of sHsps to interact with cytoskeletal elements
and protect them under conditions of stress can also prevent the cas-
cade of events leading to cell-death. There seems to be an apoptotic sig-
naling pathway linking cytoskeletal damages to mitochondria [231].
The F-actin depolymerizing agent, cytochalasin D, induces the release
of cytochrome c from mitochondria and subsequent activation of cas-
pase. The phenomenon was delayed in cells pretreated with phalloidin,
an F-actin stabilizer. Over-expression of Hsp27 leads to the intracellular
relocalization of Bid (and delayed release of cytochrome c from mito-
chondria) upon treatment with cytochalasin D, indicating that Hsp27
interfereswith apoptotic signals upstreamof themitochondrial apopto-
tic pathway [231].

Some sHsps have been shown to be involved in various stages in
inhibiting mitochondria-mediated apoptosis (Schematically depicted in
Fig. 3). Subjecting lens epithelical (HLE-B3) and a retinal pigment epithe-
lial cell line (ARPE-19 cells) to oxidative stress leads to translocalization
ofαB-crystallin to themitochondria and protection of themitochondrial
membrane potential [247]. αB-crystallin interacts with the pro-
apoptoticmolecules, Bax andBcl-Xs and prevents apoptosis by inhibiting
their translocation into mitochondria [248]. Hsp20 protects heart from
ischemia and reperfusion injury-induced necrosis and apoptosis, im-
proves recovery of cardiac function and reduces infarction [249]. Hsp20
interactswith the pro-apoptotic protein Bax, preventing its translocation
from the cytosol to mitochondria, leading to decreased caspase-3 activa-
tion [249]. Phosphorylation at S16 residue of Hsp20 is shown to be im-
portant for its anti-apoptotic and cardioprotective function [250].
Enhanced expression of Hsp27 indirectly inhibited Bax activation, oligo-
merization, and translocation to mitochondria, reducing the release of
both cytochrome c and apoptosis-inducing factor [251]. Hsp27 expres-
sion prevented the inactivation of Akt, a pro-survival kinase, and in-
creased the interaction between Akt and Bax, an Akt substrate during
metabolic stress. Thus, Hsp27 antagonizes Bax-mediated mitochondrial
injury and apoptosis by promoting Akt activation via a PI3-kinase-
dependent mechanism [251].

αB-crystallin interacts with cytochrome c and protects it against its
oxidation at the M80 residue [247]. Hsp27 inhibits cytochrome c-
mediated activation of caspases in the cytosol by interacting with cyto-
chrome c and prevents cytochrome-c-mediated interaction of Apaf-1
with procaspase-9 [252,253]. Hsp27 also prevents cytochrome c and
dATP-triggered activity of caspase-9, downstream of cytochrome c re-
lease [254].

Hsp27 also prevents apoptosis by inhibiting the release of the second
mitochondria-derived activator of caspases, Smac, which promotes ap-
optosis via activation of caspases [255]. Over-expression of αB-
crystallin in RPE cells protects from ER stress-induced apoptosis by at-
tenuating increases in Bax, CHOP, mitochondrial permeability transi-
tion, and cleaved caspase-3 [256].

SilencingαB-crystallin sensitized ARPE-19 cells to methyl glyoxal
(MGO)-induced apoptosis [257]. αB-crystallin interacts with the
caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in control
ARPE-19 cells, and MGO treatment leads to dissociation of caspase
subtypes from αB-crystallin [257]. Phosphorylation of αB-crystallin
on serine residues 19, 45 and 59 plays an important role in
preventing apoptosis in ARPE-19 cells [257]. However, it has also
been reported that S59-phosphorylated-αB-crystallin preferentially
interacts with and sequesters the anti-apoptotic molecule, Bcl-2 and
hence S59-phosphorylation down-regulates the anti-apoptotic func-
tion of αB-crystallin [258]. αB-crystallin suppresses apoptosis also
by binding to the pro-caspase-3 and the p24 processing intermediate
of caspase-3 and preventing its maturation to the proteolytically ac-
tive enzyme [259,260]. Hsp27 is also shown to bind to pro-caspase-3
[253,261,262].

Hsp27 also plays a role in the regulation of cellular senescence by
modulating the p53 pathway. The tumour suppressor, p53, is involved
in essential functions such as DNA repair, transcription, genomic stabil-
ity, senescence, cell cycle control and apoptosis [263]. Hsp27 is one of
the target genes of p53 and p53-dependent induction of Hsp27 expres-
sion has been observed [264]. Hsp27 inhibits p53-mediated induction of
p21/Waf1, an inhibitor of cyclin-dependent kinases and the major reg-
ulator of the senescence program. Hsp27 inhibited accumulation of
p21 and suppressed senescence in response to the p53 activator
nutlin-3, indicating that Hsp27 has a general effect on the p53 pathway
[265]. Over-expression of a phosphorylation-mimic of Hsp27 was
shown to result in the activation of p53/p21 in an ATM (Ataxia Telangi-
ectasia Mutated)-dependent manner [266]. Hsp27 phosphorylation
was found to increase the import of p53 into the nucleus and the ex-
pression of p53 target genes p21 and MDM2. Inhibition of Hsp27 phos-
phorylation was found to reduce p53 induction and p21 accumulation,
leading to apoptosis [266]. Thus, Hsp27, and its phosphorylation status,
plays an important role in regulating the p53 pathway and cell survival.
αB-crystallin has also been shown to interact with p53 in the cytoplasm
during hydrogen peroxide-induced apoptosis [267].



Fig. 3. Schematic diagram representing anti-apoptotic functions of sHsps at various stages of mitochondrial apoptotic pathways. αB-crystallin and Hsp20 interact with the pro-apoptotic
molecule, Bax and inhibit its translocation intomitochondria and the subsequent release of cytochrome c [248,249]. Hsp27prevents the inactivation of Akt, a pro-survival kinase, increases
the interaction of Aktwith its substrate, Bax, inhibiting Bax activation, oligomerization and translocation tomitochondria, thus inhibiting the release of cytochrome c (aswell as apoptosis-
inducing factor, not shown) [251].αB-crystallin and Hsp27 interactwith cytochrome-c and prevent cytochrome-c-mediated interaction of Apaf-1with procaspase-9 to form apoptosome
[247,252,253]. Hsp27 inhibits the release of the secondmitochondria-derived activator of caspases, Smac, which binds to the inhibitor of apoptosis proteins (IAPs) and promotes apoptosis
via activation of caspases [255].αB-crystallin andHsp27 interactwith procaspase-3 and prevent itsmaturation to active caspase-3 [253,257,259–262].αB-crystallin, HspB2 andHsp27 are
also found to localize to mitochondria [247,274,275], probably protecting their integrity and viability. The exact significance of such mitochondrial localization of sHsps is still to be ex-
plored. The scheme represents interactions of sHsps with factors on the apoptotic pathway shownmostly by pull-down or immunoprecipitationmethods and therefore does not indicate
stoichiometry or distinguish between direct and indirect interactions.
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Some sHsps also act on the extrinsic pathway, the receptor(s)-medi-
ated initiation of apoptotic events (Schematicaly depicted in Fig. 4).
Hsp27 inhibits apoptosis induced by the activation of the death receptor
Fas upon exposure to anticancer drugs. Expression of Hsp27 in L929
cells that express the cell surface Fas/APO-1 receptor prevents the apo-
ptosis induced by agonistic anti-APO-1 antibody [246]. Two apoptotic
pathways can be activated downstream of Fas- (i) A caspase-
dependent pathway mediated by the Fas-adaptor FADD, and (ii) the
caspase-independent pathway - the interaction of Fas with cytoplasmic
Daxx and apoptosis signal-regulating kinase (ASK1) triggering apopto-
sis. Fas activation also induces translocation of Daxx from the nucleus
(nuclear Daxx) to the cytoplasm. Hsp27 has been shown to act at the
latter pathway [12]. Phosphorylated dimers of Hsp27 interact with
Daxx, preventing its interaction with ASK1 and Fas, thus inhibiting
Daxx-mediated apoptosis [268]. Hsp27 also prevents the translocation
of nuclearDaxx to the cytoplasm.ASK1-mediatedpathway plays impor-
tant roles in oxidative stress- and endoplasmic reticulum (ER) stress-
induced apoptosis [269]. Activation of the kinase ASK1 leads to the acti-
vation of JNK via MKK4 andMKK7, resulting in apoptosis in response to
oxidative stress, endoplasmic reticular stress, DNA damage, or inflam-
mation [270]. The NTD of Hsp27 is known to physically interact with
the kinase domain of ASK-1, effectively inhibiting its activity [271].
Thus, Hsp27 inhibits ASK1-mediated cell death pathway and confers
neuroprotection [271,272]. Phosphorylation of Hsp27 (mediated by
protein kinase D) critically at S15 and S82 is important for neuroprotec-
tion [272].

HspB2 has been reported to be a negative regulator of the caspase-
dependent extrinsic apoptotic pathway [273]. Breast cancer cells stably
expressing HspB2 are resistant to apoptosis induced by TRAIL and TNF-
α. HspB2 inhibits the most proximal step in the extrinsic apoptotic
pathway, proteolytic activation of initiator caspases-8 and -10 [273]. Ac-
tivated caspase-8 and -10 can cause apoptosis either by activating
caspase-3, or by truncating Bid (to t-Bid), subsequently triggering its
translocation to mitochondria and initiating the mitochondrial apopto-
tic pathway [276]. The exact mechanism by which HspB2 inhibits the
activation of caspases-8 and -10 is not known. It is possible that
HspB2 may disrupt recruitment of both the adaptor protein FADD and
procaspases-8 and -10 to ligand-bound death receptor complexes
[273]. HspB2 is also shown to be localized to mitochondria [274]. At
higher levels of expression, HspB2 inhibits tBid-induced apoptosis, sug-
gesting that HspB2weakly inhibitsmitochondrial or postmitochondrial
apoptotic events [273]. It is likely that interaction of HspB2 with



Fig. 4. Schematic diagram representing the role of sHsps in the extrinsic apoptotic pathway through the membrane located Fas stimulation upon its external ligand binding – (i) HspB2
interferes in the caspase-dependent extrinsic apoptotic pathwaymediated by the Fas-adaptor, Fas associated death domain, FADD [273]. Engagement of FADD and pro-caspase-8 and -10
leading to activation of caspase-8 and -10,which can either activate caspase-3 resulting in apoptosis, or activate Bid by truncation subsequently triggering its translocation tomitochondria
and initiation ofmitochondrial apoptotic pathway [276]. HspB2 prevents activation of caspase8 and -10 [273], but the exactmechanismas towhether it interferes (shown as dashed lines)
in interaction of the procaspase-8 and -10 with FADD or in the interaction of FADDwith the Fas is not known. (ii) Interaction of Fas (stimulated by its ligands) with cytoplasmic Daxx and
apoptosis signal-regulating kinase (ASK1) triggers apoptosis. Phosphorylated dimers of Hsp27 (at S15 and S82) interact with Daxx, preventing its interaction with ASK1 and Fas, thus
inhibiting Daxx-mediated apoptosis [277]. Activation of the kinase ASK1 leads to the activation of JNK via MKK4 and MKK7, resulting in apoptosis in response to oxidative stress, endo-
plasmic reticular stress, DNA damage, or inflammation [270]. The N-terminal domain of Hsp27 interacts with the kinase domain of ASK1, inhibiting its activity [271]. The scheme repre-
sents interactions of sHsps with factors on the apoptotic pathway shown mostly by pull-down or immunoprecipitation methods and therefore does not indicate stoichiometry or
distinguish between direct and indirect interactions.
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mitochondria has a role to play in energy metabolism as well. Recovery
of ATP concentration during reperfusion after ischemia was found to
be impaired inHspB2-knockoutmice [278]. Upon inotropic stimulation,
an HspB2-knockout mouse was found to have blunted systolic and
diastolic function, revealing massive energy wasting on acute stress
[278].

A study from our laboratory [279] has shown that αB-crystallin ex-
hibits anti-apoptotic function against TNF-α-induced apoptosis through
activation of the ubiquitous transcription factor, NF-κB, leading to in-
creased expression of anti-apoptotic protein(s), for example, Bcl-2 in
mousemyoblast cells (C2C12). This constitutes yet another mechanism
by which αB-crystallin prevents cell death (Schematically depicted in
Fig. 5). This process appears to be important in muscle homeostasis.
αB-crystallin knockout mice die prematurely with extensive muscle
wastage [277]. The level ofαB-crystallin is increased about 10-fold dur-
ing muscle differentiation and it plays an anti-apoptotic role during the
differentiation process [10,260]. αB-crystallin inhibits maturation/acti-
vation of executor caspases such as caspase-3 and -8 in response to
TNF-α treatment, preventing cellular responses to apoptosis [244].
TNF-α is an inflammatory cytokine produced by immune cells and
muscle cells during development and exercise or injury [280]. TNF-α
acts as a mitogen in skeletal muscle [280,281]. It modulates the activity
of NF-κB which regulates the expression of many genes [282]. NF-κB is
activated through a cascade of events and its activation mediates
pathways related either to cytoprotection or cell death [283], probably
depending on conditions that are not very well understood. Expression
of αB-crystallin as well as TNF-α increases in response to stress and
differentiation [10,280]. Owing to its inflammatory effects, TNF-α may
trigger cytotoxic effects upon prolonged exposure but is required during
the differentiationprocess. The elevated expressionofαB-crystallin could
be the balancing protective process. In order to understand the relation
between the elevated expression of αB-crystallin and TNF-α, a study
from our laboratory [279] investigated the effect of over-expression of
αB-crystallin in C2C12 mouse myoblasts on TNF-α-induced cell death
and modulation of NF-κB activation. The study shows that αB-crystallin
promotes NF-κB activation in a phosphorylation-dependent manner
and protects myoblasts against TNF-α induced cytotoxicity [279]. αB-
crystallin interacts with IKKβ upon treating the cells with TNF-α. Such
interaction enhances the kinase activity of IKKβ, which leads to phos-
phorylation and subsequent degradation of IκB-α, a negative regulator



Fig. 5. Schematic representation of the cytoprotective role of αB-crystallin in TNF-α-induced apoptosis through activation of NF-κB pathway [279]. TNF-α increases phosphorylation of
αB-crystallin at S59 throughp38-MAPkinase pathway.αB-crystallin or its phosphorylated formassociateswith and enhances the kinase activity of IKK complex, thereby facilitating phos-
phorylation and subsequent degradation of IκB, leading to nuclear translocation and transcriptional activation by NF-κB-p65-protein. Under the condition, elevated expression of Bcl 2, an
anti-apoptotic protein (a known target of NF-κB pathway) occurs which confers protection to cells against TNF-α-induced cytotoxicity. The scheme represents interactions of sHsps with
factors on the apoptotic pathway shownmostly by pull-down or immunoprecipitation methods and therefore does not indicate stoichiometry or distinguish between direct and indirect
interactions.
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of NF-κB, facilitating the nuclear translocation of the transcription factor.
One of the targets of suchαB-crystallin-induced activation of NF-κB is the
transcriptional up-regulation of the anti-apoptotic protein, Bcl-2; thus,
αB-crystallin protects the cells from TNF-α-induced cytotoxicity [279].
Phosphorylation ofαB-crystallin at S-59 residue is essential in the activa-
tion NF-κB [279]. Incidentally, TNF-α also activates p38-MAP kinase
[284], which is responsible for the phosphorylation of αB-crystallin at
S-59 residue [144]. A study from our laboratory has shown that S-59
phosphorylation is not required for association of αB-crystallin with the
IKK complex [279]. However, it is essential for enhancing the kinase activ-
ity of IKKβ [279]. Thus, αB-crystallin exhibits anti-apoptotic function
through its interactions with various client proteins involved at various
stages of the apoptotic pathways.

As a deviation from the general anti-apoptotic and pro-survival
properties of the sHsps discussed above, Hsp22 appears to have dual
roles. The levels of Hsp22 and its mRNA were found to be decreased in
melanoma, sarcoma and prostate cancer compared to normal cells,
whereas it is abundantly expressed in proliferative keratinocytes
[285]. Induced expression of Hsp22 by the demethylating agent, 5-
aza-2’-deoxycytidine, in cancer cells where it is down-regulated, trig-
gers apoptosis by caspase- and p38MAPK-dependent pathways [285].
However, heat-induced over-expression of Hsp22 did not result in in-
creased apoptosis in HEK293 cells [285]. It is possible that the anti-
apoptotic stimuli exerted by the over-expression of other heat shock
proteins upon heat shock may overwhelm the pro-apoptotic stimuli of
Hsp22; it is also possible that the pro-apoptotic property of the protein
is specific to the demethylating agent and/or cell type-specific.
The viral homologue of Hsp22, ICP10 PK confers neuroprotection
and prevents apoptosis in cultured hippocampal neurons by activating
the extracellular signal-regulated kinase (ERK) survival pathway,
resulting in the up-regulation of the anti-apoptotic protein, Bag-1 as
well as increased activation/stability of the transcription factor CREB
and stabilization of the anti-apoptotic protein Bcl-2 [286]. Hsp22 offers
cardioprotection from ischemic reperfusion injury and exhibits anti-
apoptotic property by activation of the Akt (also known as Protein Ki-
nase B) pathway (see review [287]). Hsp27 is also shown to play a
role in Akt/ERK pro-survival pathway. Phosphorylation of Hsp27 at
S78/82 residues was found to be essential for TRAIL-triggered Src-Akt/
ERK signaling [288]. Hsp27 regulates Akt activation by binding andme-
diating interaction between Akt and its upstream activator MK2, which
furthermediate the recruitment of p38 in the complex leading to activa-
tion ofMK2. These interactions promote activation of Akt through phos-
phorylation of S473 Akt as well as phosphorylation of Hsp27 at S82
[134–136]. Phosphorylation of Hsp27 by MK2 (also found in vitro by
Akt) leads to its dissociation from the signalling complex [134–136]. Ac-
tive Akt inhibits apoptosis in multiple ways, both upstream and down-
stream of mitochondrial perturbation [289]. It acts as a transducer of
many functions initiated by growth factor receptors that activate phos-
phatidylinositol 3-kinase (PI3-kinase), and is a critical factor in cancer
[290]. It can lead to inhibition of caspase-9 activity, phosphorylation of
pro-apoptotic Bcl-2 family members such as Bad, or regulation of tran-
scription factors such as cAMP-responsive element-binding protein
and NF-κB and members of the Forkhead family [289,290]. Activated
Akt can bind Bax and phosphorylate it at S183 [289], which inhibits its
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conformational change and incorporation into and oligomerization in
mitochondrial membrane, triggering the mitochondrial apoptotic cas-
cade [251].αA-crystallin andαB-crystallin preventUV-induced apopto-
sis by activating distinctly the AKT and RAF/MEK/ERK pathways
respectively [291]. Hsp27 protects adenocarcinoma cells from UV-
induced apoptosis by Akt and p21-dependent pathways of survival
[292]. Hsp27 prevented the G1-S phase arrest of the cell cycle upon
UV-irradiation. Silencing Hsp27 was found to enhance G1-S phase ar-
rest, leading to cell death [292].

Thus, sHsps participate in various signaling pathways of apoptosis/
survival at different stages. It is to be noted that most of the studies per-
formed in this context have specific objective of looking at a particular
sHsp with regard to specific apoptotic stimuli and specific signaling
pathways. It also appears that various apoptotic stimuli such as chemi-
cal (e.g., anti-cancer drugs) inducer, oxidative stress, cytokines (inflam-
mation), heat shock andUV radiation also elicit overlapping and parallel
signaling cascades andmany such stimuli also lead tomediation of ROS.
It is known that heat shock can lead to oxidative stress; oxidative stress
and inflammation can lead to local increase in temperature. It is there-
fore, reasonable to envisage that many of the sHsps described above
such as αB-crystallin, Hsp27, Hsp22 and Hsp20, which are stress-
inducible as well as ubiquitously present, have a concerted participa-
tion/role in various apoptotic or survival pathways at different stages
to elicit robust stress tolerance and cell survival.

1.15. sHsps and autophagy

Autophagy is important in promoting cell survival in several stress
conditions such as protein aggregate formation, nutrient and growth
factor deprivation, ER stress and pathogen infection [293,294]. Defective
autophagy is associatedwith neurodegeneration, lysosomal storage dis-
eases, muscular dystrophies, cancers and Crohn’s disease [293]. Hsp22
forms a complex with Bag3, a stimulator of macroautophagy, in cells
[295]. Over-expressing Bag3 or Hsp22 stimulated the formation LC3-II,
a key molecule involved in macroautophagy [295]. Over-expression of
Hsp22 has been shown to prevent the aggregation of the mutated
huntingtin, Htt43Q, a pathogenic form responsible for Huntington’s dis-
ease [296]. The Hsp22-Bag3 complex (along with Hsp70) is important
for the degradation of aggregates of poly Q repeat protein, Htt43Q by
macroautophagy [295]. Bag3-binding to Hsp22 is mediated by two con-
served IPV motifs located between the W- and the P-rich domains of
Bag3, and deletion of these motifs suppresses the activity of Hsp22 in
degradation of Htt43Q [297].

Up-regulation of Hsp22 and BAG3 specifically in astrocytes in the ce-
rebral areas affected by neuronal damage and degeneration have been
observed in the post-mortem brain tissue from patients of Alzheimer's
disease, Parkinson's disease, Huntington's disease and spinocerebellar
ataxia type 3 (SCA3), suggesting that their up-regulation enhances the
ability of astrocytes to clear aggregated proteins released from neurons
and cellular debris [298]. The mutants of human Hsp22 associated with
peripheral neuropathy [K141E and K141N] were found to be signifi-
cantly less efficient than wild-type Hsp22 in decreasing the aggregation
of mutated ataxin 3 and P182L-Hsp27, indicating that impairment or
loss of function of Hsp22 might accelerate the progression of protein
folding/conformational diseases [299]. The possible significance of
Hsp22-Bag3 complex in autophagy is that Hsp22 may recognize the
misfolded/aggregated proteins and Bag3, at least in part through its P-
rich domain, recruit and activate the macroautophagy machinery in
close proximity to the Hsp22-bound substrates [300].

Bag3, through its conserved IPV motif, interacts with Hsp20 [297]
and αB-crystallin [301] as well. Whether such interaction with these
sHsps also promotes autophagy is still to be established. Interestingly,
Bag3 also interacts with the cardiomyopathy causing R120GαB-
crystallin and its overexpression suppresses the aggregation and toxic-
ity of R120GαB-crystallin [301]. HspB7 is also shown to be a very potent
suppressor of the aggregation and toxicity of polyQ proteins, and the
mechanism of its action probably involves stimulation of autophagy
[182].

1.16. Role of sHsps in protein degradation

There are various lines of evidence as discussed below showing the
involvement of sHsps such as Hsp27 and αB-crystallin in proteasomal
degradation of proteins primarily promoting poly-ubiquitylation. The
role of these sHsps seems to be of an adaptor, binding both the unfolded
substrate and being part of complexes involving poly-ubiquitylation.
Hsp27 also binds to poly-ubiquitin and proteasome facilitating the deg-
radation. Ubiquitylation of proteins occurs via a multistep enzymatic re-
action inwhich the polypeptide ubiquitin is covalently attached to the ε-
amino group of a lysine side chain of the substrates. Polyubiquitylation of
proteins targets them for proteolytic degradation by 26S proteasome
[see review 302].

Alexander disease is a fatal neurodegenerative disorder caused by
heterozygous mutations of the intermediate filament protein, glial fi-
brillary acidic protein (GFAP) involving the formation of aggregates of
the mutant protein with associated components of αB-crystallin,
Hsp27, ubiquitin and proteasome [303]. Up-regulation of these sHsps
occurs in mice carrying GFAP mutations. The drug ceftriaxone could
halt progression and ameliorate some of the symptoms of an adult
form of Alexander disease. It is shown to reduce the intracytoplasmic
aggregates of mutant GFAP in a cellular model of Alexander disease.
The underlying mechanisms involve up-regulation of Hsp27 and αB-
crystallin, polyubiquitination and degradation and autophagy [303].
The oligomeric form of a mutant GFAP (R239C) inhibits proteasomes.
αB-crystallin could reverse this inhibition and promote proteasomal
degradation of the mutant protein [304].

αB-crystallin has an important role in degradation of cyclin D1. SCF
E3 ubiquitin ligase, which is primarily responsible for cyclin D1 degra-
dation, consists of the F-box protein, Fbx4, andαB-crystallin as the sub-
strate adaptors [305,306]. D-type (1, 2 and 3) cyclins bind cyclin-
dependent kinases 4 or 6 (cdk4/6) which catalyze the phosphorylation
of Rb proteins and promote G1/S phase transition; cyclin D1 is frequent-
ly overexpressed in human cancer [306]. Inhibition of ubiquitin-
dependent proteolysis of cyclin D1 is believed to be a primary mecha-
nism of cyclin D1 overexpression in human tumors [306]. Thus, as the
FBX4-αB-crystallin complex is involved in the substrate recognition of
SCF E3 ligase, which may have a role in tumor suppression [306]. S19
and S45 of αB-crystallin are preferentially phosphorylated during the
mitotic phase of the cell cycle [239]. The interaction of αB-crystallin
with FBX4 was found to be increased by mimicking phosphorylation
of αB-crystallin at both S19 and S45 (S19D/S45D) [239].

In addition to its well characterized role in transcriptional regulation,
SUMO (small ubiquitin-like modifier) modification plays a role in
ubiquitin-mediated protein degradation in both nuclear and cytoplasmic
compartments [77, see reviews 307,308]. Hsp27 promotes the
SUMOylation and degradation of the mutant F508del cystic fibrosis
transmembrane conductance regulator (CFTR) through interaction
with the SUMO E2 enzyme, Ubc9 [77]. Under certain stress conditions,
Hsp27 promotes ubiquitylation and proteasomal degradation of
p27Kip1, an inhibitor of cyclin-dependent kinase (Cdk), which favours
cell cycle progression [309]. It appears that the outcome of the role of
αB-crystallin in cyclinD1 degradation and the role of Hsp27 in degrada-
tion of the Cdk inhibitor are mutually opposite; while the former sup-
presses cell cycle progression, the latter promotes it.

Hsp27 over-expression in various cell types enhances the degrada-
tion of ubiquitinated proteins by the 26S proteasome in response to
treatment of etoposide or tumor necrosis factor α (TNF-α) by binding
to polyubiquitin chains and to the 26S proteasome in vitro and in vivo
[310]. Hsp27 enhances proteasomal degradation of phosphorylated I-
κBα, the inhibitor of the transcription factor, NFκB leading to its activa-
tion and thereby elicits anti-apoptotic effects [310]. Hsp22 has been
shown to co-localize with proteasome and over-expression of Hsp22
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in cardiomyocytes leads to increased proteasome activity and cell
growth [311]. Themechanism of howHsp22 expression and interaction
leads to increased proteasome activity is not known. Thus, these sHsps
play a role in regulation of cellular process by facilitating degradation
of key regulatory factors. sHsps-mediated proteasomal degradation of
partially unfolded, aggregation-prone proteins underlies one of the
mechanisms of clearing unwanted and refolding-incompetent proteins.

1.17. Circulating sHsps: role in immune system

Elevated levels of Hsp27 and αB-crystallin have been found in the
serum and cerebrospinal fluid of patients of multiple sclerosis [312,
313]. Plasma level of Hsp27 was significantly higher in patients with
acute coronary syndrome than in the normal reference subjects [314].
However, plasma levels of Hsp27were found to be decreased in athero-
sclerotic patients compared with healthy subjects [315]. Estrogen in-
duces release of Hsp27 in to serum and is atheroprotective [316].
Hsp27 binds scavenger receptor-A, reduces cholesterol uptake in mac-
rophages, and attenuates mediators of vascular inflammation [316]. A
temporal increase in the level of Hsp27 in serumhas been found follow-
ing acute ischemic stroke [317]. Enhanced level of Hsp27 in serum has
been found in the cases of hepatocellular carcinoma [318] and pancreat-
ic cancer [319]. High Hsp27 levels in serumwere found to be associated
with better nerve function and fewer neuropathic signs in normal glu-
cose tolerance, impaired glucose tolerance and type 2 diabetes [320].
The levels of Hsp27 and its antibody in serum appear to relate to the
presence of cardiovascular complications in patients with glucose intol-
erance [321].

The reason for the elevated levels of sHsps in serum could be either
tissue damage or by secretion. The lack of an obvious signal sequence in
sHsps rules out their secretion by the conventional pathway for their
presence in the extracellular space. In fact, inhibitors of the convention-
al Endoplasmic reticulum-Golgi secretory pathway such as brefeldin A
or tunicamycin do not affect secretion of αB-crystallin [322].
Exosome-mediated secretion seems to be one of the ways by which
sHsps are found in the circulation. Presence of Hsp27 has been demon-
strated in exosomes and its levels increase upon heat stress [323]. αB-
crystallin [322,324] has been shown to be secreted through exosomes.
Disruption of lipid raft (important for exosome secretion) by cyclodex-
trin leads to inhibition of the release of αB-crystallin, supporting the
exosome-mediated secretion of the sHsp [324]. Circulating Hsp20
(HspB6) was elevated in a transgenic mouse model in which there
was cardiac-specific over-expression, compared with wild-type mice;
moreover, culture medium harvested from Hsp20-over-expressing
cardiomyocytes contained an increased amount of Hsp20, indicating se-
cretion of Hsp20 from cardiomyocytes [325]. Hsp20 was shown to be
secreted through exosomes [325].

The roles of circulating sHsps in health and disease are not complete-
ly understood. Their roles may include stress signalling, angiogenesis,
cell migration and immune modulation/regulation. sHsps appear to
play an immune-regulatory role by stimulating macrophages to sup-
press inflammation. Therefore sHsps can be considered as therapeutic
agents for inflammatory disorders [326]. However, in the case of αB-
crystallin, adaptive immune responses against the protein itself may
subvert the protective nature of the innate immune response it triggers,
and this appears to be unique for humans [326]. Local concentrations of
αB-crystallin may determine the balance between protective innate
responses and destructive adaptive responses that is responsible for
the development of multiple sclerosis lesions [326]. αB-crystallin is
the most abundant protein present in multiple sclerosis lesions and
elevated levels of αB-crystallin are found in the plasma of patients
with multiple sclerosis (MS) and mice with experimental autoimmune
encephalomyelitis (EAE) as compared with plasma from controls
[327–329]. αB-crystallin has been shown to be the major target of
CD4+ T-cell immunity to the myelin sheath from multiple sclerosis
brain and this seems to be specific for human [327].
αB-crystallin knock-out mice with EAE exhibited greater degrees of
paralysis, more widespread inflammation, and increased infiltration of
activated CD4+ lymphocytes and macrophages and greater levels of
glial apoptosis than the correspondingwild type animals [330]. Interest-
ingly, exogenous (intravenous) administration of αB-crystallin to these
αB-crystallin knock-out animals strikingly decreased these symptoms
[330].

Exogenous administration ofαB-crystallin in animalmodels of stroke
[331], ischemia-reperfusion injury in the eye [332] and the heart [333]
and CNS injury [334] has been shown to exhibit therapeutic benefits. In-
flammation is the common event in all these autoimmune, stroke and
acute ischemic conditions, indicating a role for αB-crystallin during in-
flammation. α-Crystallin (comprising both αA- and αB-crystallin sub-
units) pretreatment effectively diminished systemic inflammation-
induced expression of glial fibrillary acidic protein (GFAP) and NFκB in
the neocortex, reversed elevated intracellular levels of calcium, acetyl-
choline esterase activity and depletion of glucose in amousemodel of sil-
ver nitrate-induced inflammation [335]. Administration of αB-crystallin
to mice challenged with LPS rapidly and efficiently reduced the plasma
concentration of an inflammatory cytokine IL-6, showing an anti-
inflammatory role of αB-crystallin [336]. Splenocytes from exogenous
αB-crystallin-treated (intraperitonial) mice after ischemic stroke when
stimulated secrete more of anti-inflammatory cytokine (IL-10) and less-
er pro-inflammatory cytokines (IL-2, IL-17, IFN-γ, IL-12p40, and IL-6)
than the respective controls [331]. Such anti-inflammatory/
immunomodulatory role of αB-crystallin could underlie one of the
mechanisms for the observed protective/therapeutic outcome upon ad-
ministration of αB-crystallin even 12 h after experimental stroke in
micewhich reduced both stroke volume and inflammatory cytokines as-
sociated with stroke pathology [331]. αB-crystallin appears to be better
than even the tissue plasminogen activator, administration of which is
the only available treatment for stroke currently and it has to be admin-
istered within 4.5 hr of the onset of symptoms due to stroke [331].

Administration of recombinant human αB-crystallin to mice after
contusion injury in spinal cord results in improved loco motor skills,
amelioration of secondary tissue damage [334]. The recombinant pro-
tein modulates inflammatory response in the injured spinal cord lead-
ing to increased infiltration of granulocytes and decreased recruitment
of inflammatory macrophages [334]. Moreover, the beneficial improve-
ments were also observed upon exogenous administration of αB-
crystallin even 6 h after spinal cord injury [334].

It appears that αB-crystallin not only limits the secretion of
pro-inflammatory cytokines and increases secretion of the anti-
inflammatory cytokines, but also can bind to pro-inflammatory
molecules, probably to sequester them and inhibit their inflammatory
function. Temperature-dependent conformational changes and in-
creased chaperone ability of the protein also appears to be important
in its anti-inflammatory role. Immuno precipitation and mass spectral
analysis showed a common set of approximately 70 ligands for αB-
crystallin from plasma from patients with multiple sclerosis, rheuma-
toid arthritis, and amyloidosis and mice with EAE [336]. More than
half of these targets constitute acute phase proteins or members of
the complement or coagulation cascades [336]. Interestingly, of the 70
proteins whose concentration was enhanced in the αB-crystallin im-
munoprecipitate, 67 were temperature-sensitive (enrichment in the
precipitate and the increase in their binding with temperatures at 23,
37, or 42 °C); the acute phase, complement, and coagulation proteins
were highly represented in this set suggesting that specific interactions
between the chaperone and the targets could predominate in the ele-
vated temperatures at sites of inflammation [336]. Thus, αB-crystallin
exhibits anti-inflammatory effects by temperature-dependent binding
of pro-inflammatory proteins in plasma, which can in turn influence
both the innate and the adaptive immune responses [336].

Similarly, Hsp27 also plays an anti-inflammatory role. Exogenous
addition of Hsp27 to a monocyte culture induces IL-10 via activation
of p38 signaling independent of TNF-α activation, indicating an anti-
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inflammatory role for Hsp27 [337]. However, treating macrophages
with Hsp27 leads to the degradation of an inhibitor of NF-κB, IκBα, nucle-
ar translocation of the NF-κB p65 subunit and increased NF-κB transcrip-
tional activity, resulting in increased expression of the pro-inflammatory
factors, IL-1β, and TNF-α as well as the anti-inflammatory factors IL-10
and GM-CSF [338]. Exogenous treatment of monocytes with Hsp27
inhibited the differentiation of monocytes to the potent antigen present-
ing, matured dendritic cells [339], indicating that extracellular and/or ex-
ogenous Hsp27 could have immuno-suppressive role as well.

As mentioned earlier, specific T-cell-mediated immune response
raised by αB-crystallin overwhelms the beneficial anti-inflammatory
response it triggers in the specific cases of multiple sclerosis [327].
Though exogenous treatment with αB-crystallin can have therapeutic
potential as demonstrated in animal model [330], it can still sustain or
even promote the T-cell-mediated adaptive immune response. It
would be interesting to address whether the anti-inflammatory effect
brought out by administration of Hsp27, instead, would have a better
outcome in symptomatic relief and frequency of attack in animal
models. It would also be important to address the relative anti-
inflammatory potency among these sHsps for developing sHsps as ther-
apeutic molecules for inflammatory diseases.

Besides the involvement of intracellular sHsps, their presence in
extracellular circulation (e.g.,αB-crystallin, Hsp27 andHsp20) also pro-
motes angiogenesis. Treating endothelial cells with recombinant Hsp27
leads to internalization of Hsp27 to endosomes through toll like recep-
tor TLR3 and induces NF-κB activation, secretion of VEGF, increased cell
migration and angiogenesis [340]. Circulating Hsp20 was increased in a
transgenic mousemodel with cardiac-specific overexpression of Hsp20,
and capillary density was significantly enhanced in hearts over-
expressing Hsp20, compared to that in wild type mouse [325].Treating
human umbilical vascular endothelial cells with Hsp20 promotes cell
proliferation,migration and tube formation via activation of VEGFR2, in-
dicating that Hsp20 serves as a novel cardiokine in regulatingmyocardi-
al angiogenesis [325].Thus, the circulating sHsps also play important
physiological and pathophysiological functions. The overall effect ap-
pears to be beneficial in nature and such beneficial effects could be aug-
mented by exogenous administration.

1.18. Circulating sHsps: role in anti-platelet aggregation

sHsps, particularly, αB-crystallin, Hsp27 and Hsp20 are present in
high concentrations in vascular smooth muscle cells [see review 225].
The level of Hsp20 in circulation is high in patientswith vascular disease
and in cardiomyopathic hamsters [341,342]. Hsp20 inhibits platelet ag-
gregation in vitro and ex vivo [341,343]. On the other hand, Hsp27 does
not inhibit platelet aggregation [343]. Hsp20 inhibits thrombin-induced
calcium influx, which is correlated with the suppression of thrombin-
induced platelet aggregation by Hsp20 [341]. Hsp20 binds to platelets
and reduces thrombin-induced phosphoinositide hydrolysis by phos-
pholipase C, indicating that extracellular Hsp20 can cause intracellular
signaling events [342]. Recombinant cell-permeable Hsp20 (TAT-
HSP20) has been shown to inhibit vascular smooth muscle contraction
(vasospasam) and platelet aggregation (thrombosis) in a rabbit model
[344].

The concentration of αB-crystallin in plasma of cardiomyopathic
hamster increases approximately 14-fold compared to normal animal
[345]. αB-crystallin binds to platelets, inhibits thrombin-induced calci-
um influx and exhibits anti-platelet aggregation [345]. Interestingly, a
peptide (9WIRRPFFPF17) derived fromαB-crystallin inhibits platelet ag-
gregation induced by thrombin, TRAP (agonist of protease activated
receptor-1) and botrocetin, ristocetin (stimulator of the platelet glyco-
protein Ib/V/IX-von Willebrand factor axis), but not collagen and ADP
(protease-activated receptor-4 agonist) [346]. The peptide was also
found to exhibit significant antithrombotic effect without marked
bleeding in vivo [346]. Extracellular treatmentwithαB-crystallin affects
the intracellular signal transduction event during platelet activation.
Treating platelets with αB-crystallin attenuates the adenosine diphos-
phate (ADP)-induced phosphorylation of p44/p42 mitogen-activated
protein kinase (MAPK) and p38 MAPK, and hence ADP-stimulated
phosphorylation of Hsp27 and secretion of platelet granules (which
contains platelet-derived growth factor (PDGF)-AB, serotonin and solu-
ble CD40 ligand (sCD40L) [347].

Atherosclerosis causes platelet adhesion, activation, and aggregation
at sites of vascular endothelial disruption,which are critical events in ar-
terial thrombus formation. Anti-platelet therapy is widely used for pre-
vention of ischemic cardiac complications in patients with acute
coronary syndrome [348]. Oral anti-platelet agents including ticagrelor,
prasugrel, or clopidogrel in combinationwith aspirin are usedwith their
own advantages and complications [348]. Activation and aggregation of
platelets not only impact coronary thrombus but aremajor contributors
tomicrocirculatory dysfunction and vascular inflammation in acute cor-
onary syndromes. Therefore, efforts to inhibit platelet activation and ag-
gregation, including anti-platelet therapy, are paramount to the
management of acute coronary syndromes [349]. It is intriguing and im-
portant to get further understanding on the effect of sHsps in both plate-
let activation and aggregation and to evaluate the relative efficiencies of
sHsps and their peptides among themselves and as compared to con-
ventional drugs used for anti-platelet therapy. It would be also be inter-
esting to investigate whether these sHsps and their peptides either
alone or in combination with conventional drugs further improve the
treatment outcome of anti-platelet therapy.

1.19. sHsps in fertilization and development

The sHspODF1/HspB10 is essential formale fertility inmice. HspB10
is not only required for the correct arrangement of mitochondrial
sheath and outer dense fibers of sperms, but is also needed for the
rigid junction of the spermhead and tail [350]. The expression ofmurine
Hsp25 mRNAwas increased in the testis with onset of spermatogenesis
and progression to adulthood [351]. The abundance of Hsp25 mRNA
was also found to vary in the seminiferous tubules that were at different
stages of spermatogenesis [351]. Patients with polycystic ovary syn-
drome (PCOS) are typically characterized by increased numbers of oo-
cytes which are often of poor quality, leading to lower fertilization,
cleavage and implantation rates, and a higher miscarriage rate [352].
Hsp27 has been found to be down-regulated in ovarian tissue derived
fromwomenwith PCOS [353]. Over-expression of Hsp27 in oocytes de-
rived from PCOS patients leads to inhibition of oocyte maturation, but
improves embryonic developmental potential by down-regulating
oocyte-secreted factors, BMP15 and GDF9, and the apoptotic-related
regulators, Caspase 3, 8 and9 [353]. Downregulation ofHsp25 improved
the maturation of mouse oocytes but increased early stage of apoptosis
through the activation of extrinsic, caspase 8-mediated pathway [354].
Though the exact mechanism of these observations still needs to be ex-
plored, it appears that Hsp27/Hsp25 critically regulates oocyte matura-
tion and its developmental potential through regulation of apoptosis as
one of the mechanisms. Perinatal and developmental expression pat-
tern of sHsps in several tissues such as lens, brain, heart, liver, kidney,
lung, skeletal muscle, stomach, and colon in piglets showed that each
tissue had a unique sHsp expression pattern that varied during develop-
ment [355]. The precise reasons for this distinct temporal and tissue-
dependent expression pattern in each tissue are not well understood,
but are suggestive of roles of each of these sHsps in the different devel-
opmental stages.

1.20. sHsps and differentiation

The levels of Hsp27 and αB-crystallin, have been shown to increase
3-fold and 10-fold respectively during the differentiation of mouse
myoblasts to myotubes though the levels of Hsp70 did not change sig-
nificantly [10]. A study from our laboratory has shown that Hsp27 and
αB-crystallin localize to the cytoplasm of myoblasts under normal
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conditions, but translocate to the nucleus under conditions of stress, co-
localizing with the laminA/C nuclear speckles [237]. On the other hand,
both Hsp27 and αB-crystallin localize only to the cytoplasm in
myotubes under normal as well as heat stress conditions, indicating a
stage-specific role of these sHsps during differentiation [237]. One of
the mechanisms by which sHsps regulate/aid differentiation process is
to prevent the differentiation-induced apoptosis. Differentiation re-
quires activation of some of the caspases; at the same time, the activa-
tion process needs to be controlled or regulated to avoid apoptosis, for
which the sHsps are probably recruited. αB-crystallin prevents apopto-
sis induced by TNF-α (one of the myogenic regulators) by activating
NFκ B [279]. Expression of Hsp22 increased during neuronal differenti-
ation, particularly in the later stages, and silencing Hsp22was shown to
affect neuronal differentiation [356]. Hsp22 increases cell survival by
enhancing phosphorylation of Akt, thereby promoting neuronal differ-
entiation [356]. Interestingly, even the truncated form of Hsp22 com-
prising its ACD was sufficient to promote cell survival and neuronal
differentiation [356].

In addition to this “apoptotic check” mechanism, sHsps can also
modulate the activities of myogenic factors, thereby regulating the dif-
ferentiation processes. Analysis of the promoter region of αB-crystallin
indicated the presence of potential binding sites for muscle regulatory
factors MyoD1, myogenin, Myf-5, and MRF4 in the muscle-preferred
enhancer region (-426 to -257) [357]. A study from our laboratory has
shown that αB-crystallin modulates MyoD activity by its combined ef-
fect on degradation and synthesis of MyoD, thereby delaying muscle
differentiation [358].

Hsp27 is up-regulated during the Ca2+-induced differentiation of
keratinocytes [359]. The level of Hsp25 (the mouse ortholog of Hsp27)
increases with the distance of keratinocytes from the basal layer, in par-
allel with the extent of keratinization during epidermis differentiation.
Hsp25 is involved in two steps of PAM212 keratinocyte differentiation –

(i) A transient hyperphosphorylation of Hsp25, shortly after the induc-
tion of differentiation seems to be essential for the expression of differ-
entiation markers and (ii) Hsp25 is later organized into characteristic
aggregates involved in the dynamics of keratin filament networks
[360].Whether sHsps have a regulatory role in differentiation processes
in general including stem cell differentiation and themechanistic details
of the roles of individual sHsps in a given differentiation process need
further investigations.

1.21. sHsps in health and disease

The functions of sHsps (e.g,αB-crystallin, Hsp27, Hsp22 and Hsp20)
have both beneficial and deleterious outcomes. The sHsps have benefi-
cial outcomes in neuroprotection, function of heart and its protection
against ischemia, and in myogenesis and muscle homeostasis. On the
other hand, their function has deleterious outcomes in cancer and the
development of drug resistance [361].

Hsp27 has powerful neuroprotective effects and over-expression of
Hsp27 in transgenic animals confers neuroprotection aswell as protects
against cardiac ischemia [see reviews 362,363]. Hsp27 shows constitu-
tive expression in some areas of the mammalian retina and is up-
regulated in response to ischemia and oxidative stress, traumatic
nerve injury, elevated intraocular pressure and glaucoma [see review
225]. Over-expression of Hsp27 confers long-lasting neuroprotection
against ischemic brain injury via inhibition of ASK1 kinase signalling
[271]. Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular dis-
order, characterized by progressive motor neuron degeneration and
muscle paralysis. Over-expression of Hsp27 in a mouse model of ALS
(G93ASOD1) showed delayed decline in motor strength, an improve-
ment in the number of functional motor units and increased survival
of spinal motor neurons [365]. Several mechanisms account for the
cytoprotective actions of Hsp27, including its role as a molecular chap-
erone, a stabilizer of the cytoskeleton, and a regulator of apoptosis
[362,364].
Huntington's disease (HD) is an inherited neurodegenerative disor-
der caused by an expansion of glutamine repeats in the huntingtin (htt)
protein due to abnormal protein folding and the accumulation ofmutat-
ed htt. Hsp104 and Hsp27 rescue striatal dysfunction in primary neuro-
nal cultures and HD rat models [366]. Formation of fibrillar aggregates
of proteins containing polyglutamine (polyQ) expansion leads to neuro-
nal cell death in nine diseases, including HD and spinocerebellar ataxias
(SCAs) [367]. Proteins such as ataxin-1 (in SCA1), ataxin-3 (in SCA3),
and huntingtin (in HD) form fibrils by a multidomainmisfoldingmech-
anism involving aggregation of not only the polyQ regions but other
aggregation-prone regions as well [368,369]. For example, aggregation
of ataxin-3 involves the first stage of aggregation of the globular N-
terminal Josephin domain followed by the self-association of expanded
polyQ segments [368]. αB-crystallin suppressed SCA3 toxicity in a Dro-
sophila model [370]. Suppression was more pronounced when αB-
crystallin was co-expressed with full-length ataxin-3 than when co-
expressed with a C-terminal fragment not containing the Josephin do-
main [370]. αB-crystallin did not prevent the fibril formation of a
polyQ protein (SpAcQ52) that forms fibrillar aggregates by a mecha-
nism involving only the polyQ region [367]. However, αB-crystallin
inhibited the initial Josephin domain-dependent stage of aggregation
of ataxin-3 harboring a pathological length polyQ tract [at3(Q64)] and
a truncated variant comprising only the Josephin domain [367]. Inter-
estingly, Hsp22, but not other sHsps such as Hsp27 and αB-crystallin,
prevents Htt43Q protein aggregation and perinuclear accumulation of
inclusions of the SDS-insoluble aggregates in the cells, suggesting that
Hsp22 functions as amolecular chaperone, maintainingHtt43Q in a sol-
uble state competent for rapid degradation [296]. Properties other than
chaperone activity of sHsps could also offer neuronal protection, as sHsp
over-expression decreases neuronal toxicity in HD by suppression of
ROS [371] and stimulation of autophagy [372].

Antiapoptotic and cytoprotective properties of some sHsps are used
by cancer cells to their advantage. Hsp27 and αB-crystallin have been
considered as oncoproteins [373]. Their function also bears deleterious
consequences in angiogenesis and cancer cell metastasis. αB-crystallin
expression is associated with distant metastases formation in head
and neck squamous cell carcinoma patients [374]. αB-crystallin was
found to be specifically induced during tubularmorphogenesis of endo-
thelial cells and knockdown ofαB-crystallin expression led to attenuat-
ed tubular morphogenesis [375]. αB-crystallin and VEGF-A (essential
factor in angiogenesis) are colocalized in the endoplasmic reticulum in
RPE cells under chemical hypoxia [376]. αB-crystallin binds to VEGF-A
in cultured retinal pigment epithelial (RPE) cells. αB-crystallin(−/−)
RPE showed low VEGF-A secretion compared with wild-type cells, indi-
cating that αB-crystallin mediates folding and secretion of VEGF [376].
Extracellular addition of Hsp27 leads to internalization of Hsp27 to
endosomes through toll like receptor TLR3 and induces NF-κB activa-
tion, secretion of VEGF, increased cell migration and angiogenesis
[340]. Down-regulation of Hsp27 leads to reduced endothelial cell
proliferation and decreased secretion of VEGF-A, VEGF-C, and basic fi-
broblast growth factor; conversely, over-expression of Hsp27 in non-
angiogenic cells leads to aggressive tumor growth in vivo, indicating
involvement of Hsp27 in tumor angiogenesis [377]. High level expres-
sion of Hsp27 correlates with the aggressiveness of several primary
tumors and bone-metastasis potential of breast cancer cells [378].Treat-
ment of human umbilical vein endothelial cells with recombinant
human Hsp20 (HspB6) promotes proliferation, migration and tube for-
mation involving interaction between Hsp20 and VEGFR2 [325]. Hsp27
inhibits maturation of dendritic cells, and therefore seems to be
immune-suppressive [339]. Dendritic cells are potent antigen present-
ing cells that activate B and T lymphocytes as well as natural killer
cells [379]. ThereforeHsp27-induced inhibition of dendritic cellmatura-
tion can facilitate the evasion of immune response by cancer cells.
Thus, targeting some of these sHsps either to decrease their expression
or to inhibit their function would be a promising strategy for cancer
therapy.
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Another case of adverse outcome due to the high expression of
sHsps is the demonstrated involvement of αB-crystallin in idiopathic
pulmonary fibrosis [380]. Idiopathic pulmonary fibrosis (IPF) is a devas-
tating disease characterized by the proliferation of myofibroblasts and
the accumulation of extracellular-matrix in the lungs, mediated by
the pro-fibrotic cytokine, TGF-β1 [381]. αB-crystallin is highly
expressed in fibrotic lung tissue from IPF patients aswell as from rodent
models of pulmonary fibrosis [380]. Moreover, αB-crystallin-deficient
mice are protected from fibrosis induced by bleomycin or transient
adenoviral-mediated over-expression of TGF-β1 or of the pro-
inflammatory cytokine IL-1β (which also increases TGF-β1) [380]. αB-
crystallin increases the nuclear localization of Smad4, enhancing the
TGF-β1/Smad pathway and the consequent activation of TGF-β1 down-
stream genes in primary epithelial cells and fibroblasts in vitro. αB-
crystallin over-expression inhibits mono-ubiquitination of Smad4
(probably by disrupting Smad4 interaction with E3-ubiquitin ligase,
TIF1γ) which disfavors otherwise mono-ubuquitination-favoured nu-
clear export of Smad4, thus increasing nuclear localization and activity
of Smad4 complex [380]. Thus, considering both beneficial and adverse
outcomes of sHsps expression, conditional and targeted functional
modulation of the activities of sHsps is the most important and the
most challenging aspect that needs to be addressed for disease
managment.

1.22. “Dynamic partitioning hypothesis” for promiscuous interactions and
pleotropic functions of sHsps

As many as 72 and 78 different targets have been known for Hsp27
and αB-crystallin respectively [see review 143]. Interestingly, only
about 10% of these targets, mostly either cytoskeletal elements or
aggregation-prone or amyloidogenic proteins/peptides (inferred from
ref. 143), are common to both Hsp27 and αB-crystallin, exhibit both
shared and exclusive functions. Studies probing the mechanistic details
using various model proteins/peptides yielded several putative
substrate-binding regions (sites) spanning almost the entire length of
proteins depending on the substrates used [61,103,120,121,382–385].
Proteomic investigations indicated as high as ~300 unfolding targets
(under heat stress) of HeLa cell lysate for αB-crystallin [72]. Hsp27
was found to be widely distributed from ~20 kDa to ~900 kDa fractions
of the cell-extract upon gel-filtration chromatography [141, see reviews
143,218], suggesting that it exists in such diverse multimeric popula-
tions or its species are associated with diverse sets of proteins and
hence elutes in different fractions with widely distributed molecular
masses. The diverse substrate-interacting regions observed for mam-
malian sHsps also seem to be applicable to plant sHsps. Model sub-
strates do not bind a discrete surface but make contacts throughout
the pea PsHsp 18.1 [386]. Probing dynamics of complexes formed be-
tween the oligomeric pea-sHSP18.1 and the client luciferase by mass
spectrometry strategies reveals over 300 different stoichiometries of in-
teraction [387].

Thus, the interacting partners of sHsps are too many, as well as
involved in diverse cellular processes, to invoke highly specific, well-
defined interactions for sHsps with their clients to form specific
complexes. Thus, the interactions of sHsps with their targets seem to
be pseudo specific (or broadly specific) in nature. Nevertheless, these in-
teractions of sHsps have important physiological and pathophysiological
consequences. Therefore, understanding the mechanism(s) involved in
the promiscuous substrate interactions and pleotropic functions of
sHsps is important.

We propose a dynamic partitioning hypothesis for the observed pro-
miscuous interaction of sHspswith clients, taking into consideration the
emerging importance of the dynamic assembly, structural plasticity and
flexibility of the N- and C-terminal regions of sHsps (e.g.,αB-crystallin).
We have earlier shown that the chaperone activity of αA- and αB-
crystallin towards citrate synthase involves: (i) a relativelyweak and re-
versible interaction with early unfolding intermediates that prevents
partitioning of these intermediates to late-unfolding intermediates
leading to reactivation, and (ii) an irreversible, stable interaction with
the aggregation-prone late unfolding intermediate, keeping the com-
plex in solution [25]. Two modes of interactions involving low and
high affinities and different stoichiometries determined by the dynamic
population of folding intermediates have been proposed for themecha-
nisms of chaperone activities of sHsps such as αA-, αB-crystallin and
Hsp27 with model substrates by another laboratory [33–36]. The ob-
served intrinsic plasticity of conformation and dynamic nature of N-
and C-termini of some sHsps [72,106,112] and subunit exchange pro-
cess potentially leading to polydispersity [see review 158] indicate a
versatile mode of interactive-potential of sHsps. This versatility can fur-
ther be modulated by phosphorylation and hetero-oligomer formation
between sHsps.

Fig. 6 schematically depicts the dynamic partitioning hypothesis.We
envisage that the dynamic ensembles of sHsp species partition them-
selveswith yet another dynamic process involving substrates,mediated
by two types of interactions: (i) reversible interactionswith various tar-
gets setting up an equilibrium (Type 1 interactions) and (ii) relatively
stronger and less reversible interactions (Type 2 interactions). The de-
gree of Type I interactions depends on the nature of the equilibriumspe-
cies populated among native or native-like species to early unfolding
intermediates of the target proteins. Some pseudo-specific regions on
the targets become temporally accessible to sHsps (the accessibility
may be determined by conditional phosphorylation, stress conditions
or loss or gain of interaction with other partners of the given target).
sHsps form dynamic fractional populations of reversible complexes
with their targets (with sufficient residence time of the complex to be
able to be detected by various biophysical and cell biological tech-
niques). Stimuli (stress or external agents) lead to temporal variation
in both the number and the accessibility of pseudo-specific sites of tar-
gets which would affect the partitioning of sHsps towards those partic-
ular targets. In addition, binding-induced stabilization or steric
constraints upon their interaction with sHsps would also determine
the apparent, gross selectivity towards target proteins exhibited by indi-
vidual sHsps. Knocking in or knocking out of sHsps, would, thus, lead to
alteration of this dynamic equilibrium and perceptible phenotypes (or
detectable outcome).

Type I interactions between sHsps and their targets help maintain
the cellular homeostasis under permissible and early stress conditions,
which would give the cellular system kinetic advantage to cope up
with perturbations and help elicit further protective mechanisms.
Some examples of type I interactions are as follows. Interactions of
αB-crystallin or Hsp27 tend to partition Bax in its inactive form. Interac-
tion of some sHspswith cytochrome cwould lead to temporal depletion
of cytochrome c, retarding the down-stream processes of apoptosis. A
small fraction of the population of the cytoskeleton is bound by some
sHsps. Under stimuli which elicit a particular process, for example,
apoptosis-inducing conditions, sHsps partition more to the complexes
with proapoptotic factors (Bax, cytochrome c etc.). Similarly a fraction
of sHsps species may also simultaneously be engaged with a fraction
of anti-apoptotic factors or pro-survival machinery. Type 1 interactions
with some clients which are in equilibrium with early unfolding inter-
mediate states would also prevent further partitioning of these states
to the relatively more unfolded aggregation-prone intermediate states
of the protein as proposed earlier [25]. In some cases, type 1 interactions
of sHsps might increase the activity of the targets. For example, phos-
phorylatedαB-crystallin interactswith IKKβ and increases its kinase ac-
tivity, subsequently leading to NFκB activation [279]. Phosphorylated
Hsp27 interacts with Glucose 6 Phosphate Dehydrogenase, increasing
its activity [388]. HspB2 interacts with DMPK, increasing its kinase
activity [389].

Though we are far from a comprehensive understanding on the
pseudo-specific regions of targets recognized by sHsps, at least the
“IXI/V”-like motif on targets may be attributed to be one of the
pseudo-specific regions. For example, the IPVmotif of Bag3 can interact
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with the β4-β8 groove of ACD of αB-crystallin/Hsp20 [297,301].
Thus, self versus client IXI/Vmotif can compete for the same interacting
site. This interaction with target is also likely to be dynamic in nature as
the self-IXI/V motif CTE interaction with subunits of αB-crystallin is
shown to be dynamic and is temperature-dependent [127,128]. More
types of such putative sHsp-interacting regions on clients may make
dynamic, pseudospecific contacts with sHsps, mediating type 1
interactions.

(ii) The Type II interactions of sHsps with aggregation-prone
unfolding intermediates of the target proteins (under severe stress)
are relatively stronger and less reversible. Temperature-dependent per-
turbations of sHsps at the tertiary structure with increased exposure of
hydrophobic surfaces (for example eye lensα-crystallin [21]), flexibility
of N- and C- terminal regions [36,74,106,112] and the increased dynam-
ic exchange-mediated alteration of quaternary structure [158] would
enable the sHsps to accommodate themselves on the exposed hydro-
phobic contour of the target protein to form relativelymore stable com-
plexes. Like octopus arms, the flexible NTD, can warp around/mask the
hydrophobic surface and stabilize the complex of some target proteins.
The NTD may also interact and stabilize target proteins which are an-
chored to the ACD (β3, β8 and β9 regions appear to be common for
many target proteins [61]). Thus, depending on the accessible surface
contour of the target protein, the interacting/docking residues/regions
of the sHsps would differ, explaining the various experimentally ob-
served interacting sites spanning the NTD and the core ACD of sHsps
[61,103,120,121,382–385]. Such relatively more stable complex formed
under conditions of stress could either be refolded or be targeted for
degradation as discussed in earlier sections.

Though the “Dynamic partitioning hypothesis” is built on several ex-
perimental results as discussed earlier, a comprehensive investigation
of distinct aswell as common intra- and extra-cellular targets (“interac-
tome”) of sHsps would be important for further supporting the hypoth-
esis. Moreover, identification of potential regions of the target
recognized by sHsps, under experimental conditions, which preserve
native or native-like species of proteome as well as under stress condi-
tions (eg., heat or oxidative) which create pool of partially unfolded/de-
natured targets, would also be important.

A simplified analogy can be drawn between the sHsps and their cli-
ent proteins and a doctor and his clients. The “Doctor” (sHsps) carries
out general check-ups (type I interactions) and takes care of the well-
being (cellular homeostasis) of his “clients” (substrate proteins) to pre-
vent them from being “patients” (aggregation-prone states). The
“Doctor” admits (type II interaction) the “patients” depending on the
nature of the” illness” (degree and nature of unfolding) and treats
alone or together with other “Specialists” (ATP-dependent chaperones)
to send them back “Home” (native state), failing which, he sends them
to the “Mortuary” (degradation). When the “Doctors” become “Pa-
tients” (pointmutations of sHsps), the number ofworking “Doctors”de-
creases (recessive phenotype) as well as the “Doctor patients” take
away (dominant negative phenotype) “Doctors for patients” for their
own treatment and the system suffers (myopathies, neuropathies).
What mediates (pseudo-specific regions) the apparent common and
distinct clients’ interactions with the “Doctors” is a puzzle to work on.
In times of crises such as “epidemics” (stroke, ischemia or other acute
diseases, neurodegeneration etc.,), the “in-house doctors” (endogenous
sHsps) are insufficient, but the additional “guest doctors” (administra-
tion of recombinant sHsps) of the rescue team can carry out a potent
rescue operation. By the very nature of goodness, the “Doctors” also
treat and save “Bad people for the society” (cancer and pathogenic an-
giogenesis). How to make the “Doctors” discriminatory (targeted and
conditional inhibition of sHsps) is a serious “administrative problem”

to solve.

1.23. General perspective

As highlighted in this review,major information on pleiotropic func-
tions of sHsps and their promiscuous interactionswith several targets is
with respect to the well studied sHsps, αB-crystallin and Hsp27, and to
some extent with respect to Hsp20 and Hsp22. A major question that
arises in this respect is: what are the common and distinct targets of
these sHsps? Is it possible to dissect out information on individual and
collective contributions of the NTD, the ACD and the CTE of a given
sHsp towards its different targets? The sHsps mentioned above seem
to have broad tissue distribution (Class 1 sHsps). The role of other
sHsps that have restricted tissue distribution (Class 2 sHsps) in cellular
function(s) is rather less understood. Some of the questions which need
further investigations for a complete understanding on the subject of
human/mammalian sHsps in health and disease conditions are as fol-
lows: What are the structural and functional differences between ubiq-
uitous and tissue-restricted sHsps? What is the functional significance
ofmuscle tissue having asmany as six sHsps? It appears that the expres-
sion of different sHsps is temporally regulated during myogenic differ-
entiation, and yet they are all present significantly in the differentiated
muscle tissues [213]. Why their expressions are temporally regulated?
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What is the biological significance of this temporal regulation? Answers
to these questions would allow developing strategies for functional
targeting of individual or a set of sHsps.

Expression levels of αA- and αB-crystallin are altered during the
phases of cell cycle of lens epithelial cells and knock down or knock in
of these crystallins affects cell cycle progression [390,391]. As discussed
earlier (sHsps in protein degradation section), αB-crystallin and Hsp27
also influence cell cycle by involving in degradation of some of the
factors such as cyclin D1 and p27Kip1, an inhibitor of cyclin-
dependent kinase respectively. Considering the involvement of sHsps,
especially Hsp27 and αB-crystallin in cancer, further understanding
on themechanistic aspects and significance of sHsps in cell cycle process
is important.

As mentioned earlier, sHsps exhibit inter-sHsp interactions in vitro
through subunit exchange process. Though hetero-species of sHsps
have been isolated from cells/tissues [213], there is no clear in vivodem-
onstration as yet that these species are formed by subunit exchange
process (between two pre-existing oligomers of sHsps). Crowding envi-
ronment and heterogeneous visocity variations due to semi-ordering of
molecules in a cellular environment can potentially affect subunit ex-
change processes. It is not clearwhether formation of hetero-sHsp com-
plexes is due to random stochastic events (because of their inherent
potential to interact among themselves), or for purposes under the in-
fluence of certain stimuli. What is the significance of such hetero-sHsp
complex formation? Is it possible to provide a structural basis for appar-
ent selectivity among sHsps to form hetero-sHsp complexes? How does
hetero-sHsp complex formation affect the dynamics and oligomeric size
of the resultant complex?Whether hetero-sHsp complexes exhibit dual
functions of the individual sHsps or acquire new functional surfaces
would be an interesting aspect for future studies. It is not yet clear
whether hetero-oligomeric formation between sHsps is spontaneous
(as observed in vitro) or determined by as yet unknown
condition(s) in vivo.

Though there have been indications that phosphorylation of αB-
crystallin andHsp27 affects oligomeric size, subunit exchange and prob-
ably plays a role in client-discrimination, further understandingwith re-
spect to other sHsps and their influence on hetero-sHsp interactions is
important. As the point mutation in αB-crystallin, R120G, leads to
hyper-phosphorylation [223,392], a detailed investigation of the role
of this hyperphosphorylation in disease is required. Further investiga-
tion is needed to find out whether the phenomenon of hyper-
phosphorylation is common to other mutations in sHsps. Whether
modulation of phosphorylation would serve as a possible therapeutic
intervention in mutation-linked myopathies and neuropathies is a pos-
sible direction for future investigations. Interaction ofmetal ions such as
Cu2+ withαB-crystallin and Hsp27 is an emerging aspect. Is this a gen-
eral property of sHsps? What are the metal ion(s)-mediated structural
and functional aspects/changes of sHsps need to be addressed.

Some of the sHsps such as Hsp27, αB-crystallin and Hsp20 have
been found in circulation and have been shown to be secreted through
exosomes [322–325]. As discussed in one of the sections, αB-crystallin
has been shown to have anti-inflammatory property by immune cell
modulation or by binding to pro-inflammatory molecules, and external
administration of the protein seems to have therapeutic potential. Do
Hsp27 and Hsp20 also exhibit similar anti-inflammatory role and pro-
vide protection/therapeutic benefits upon external administration? If
so how do these proteins compare in their potentials? It is possible to
amplify the protective role of sHsps by external administration of re-
combinant sHsps/or their peptides for therapeutic benefits. Can we en-
gineer sHsps possessing highly potent molecular chaperone activity as
well as potent anti-inflammatory and anti-thrombotic activity to devel-
op as a general drug or adjuvant drug for various ailments such as
neurodegenerative diseases, heart-related diseases, stroke and autoim-
mune diseases like multiple sclerosis?

sHsps are also likely to play an important role in stem cell biology.
There seems to be specific signature of expression of Hsps including
some sHsps in embryonic, mesenchymal and neural stem cells and the
levels of specific sHsps are altered during their differentiation [see re-
view 393]. However, the significance of the temporal expression of
sHsps in stem cells is not understood. As stem cells are increasingly
being used for therapeutic purposes, exploring role of sHsps in main-
taining stemness and in theprocess of differentiationwill have potential
applications.

Up- or down-regulation of small heat shock proteins could have
beneficial outcomes under different conditions. The up-regulation of
sHsps has been shown to provide beneficial effects in cardiac ischemia
and in neurodegenerative disorders such as amyotrphic lateral sclerosis.
On the other hand, down-regulation of sHsps could provide a beneficial
outcome in cancer and age-related macular degeneration. Small mole-
cules that can either up-regulate or down-regulate the heat shock re-
sponse in general are known. Small molecules such as arimoclomol
and bimoclomol are known to up-regulate the heat shock response,
whereas certain small molecules such as quercetin have been shown
to down-regulate the heat shock response in general [see review
[394]. Quercetin inhibits heat shock factor-1 (HSF-1) expression and
the binding of HSF-1 to the heat shock element [395]. Thus, temporal
administration or targeted delivery of quercetin to cancer cells might
show promising augmentation to chemotherapy. Besides the general
heat shock response inhibitors, developing specific functional inhibitors
of the sHsps (particularly Hsp27 andαB-crystallin)would be important.
Peptide aptamers have been developed that specifically interact with
Hsp27, and their expression in cell culture perturbed the dimerization
and oligomerization of Hsp27, negatively regulated the anti-apoptotic
and cytoprotective activities of Hsp27 and strongly reduced tumor de-
velopment in a xenograft mouse model through cell cycle arrest [396].
These peptide aptamers interact with small oligomers of Hsp27, affect
phosphorylation of Hsp27 and redistribution of larger oligomers with
decreased S78 phosphorylation [94]. A recent study has used the crystal
structure of the ACD of αB-crystallin as a basis for molecular docking to
design a molecule, NCI-41356, that can block interaction between αB-
crystallin and VEGF-165. Intraperitoneal injection of this molecule in
an in vivo human breast cancer xenograft model resulted in inhibition
of tumor growth and development of vasculature [397]. Molecules
that selectively bind the NTD and the ACD of sHsps can be developed
to inhibit interactions with set of their clients. Considering the potent
anti-apoptotic and angiogenic properties of αB-crystallin and Hsp27,
their over-expression especially in the metastatic tumor cells, and its
correlationwith drug-resistance to chemotherapy, developing a dual in-
hibition strategy either by common inhibitor(s) or respective inhibitors
as an adjuvant therapymight give promising outcome of chemotherapy
even at the advanced stages of tumors. More work towards developing
specific smallmolecule inhibitors of sHspswhich can easily be delivered
is required. Since sHsps have pleotropic functions, general inhibition of
their function may have side-effects. Therefore, targeted delivery sys-
tems of their putative inhibitors need to be parallelly developed for
sHsp-based therapy for human diseases such as cancer and age-
related macular degeneration (which involve pathological angiogene-
sis). Thus, conditional and targeted modulation of the pleiotropic func-
tions of sHsps would emerge as a future direction of this area.
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