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Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding
of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function,
initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore
the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model
systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial
membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of
soluble prefibrillar forms, but not monomers, of amyloid-beta (Aβ42 peptide), wild-type α-synuclein
(α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of
mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organ-
elles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phos-
pholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological
modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of
thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mito-
chondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and
black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aβ42,
α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most po-
tent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in
neurodegenerative diseases.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Neurodegenerative diseases are a diverse group of disorders
characterised by the progressive loss of select neurons in the brain.
The two most frequent of these diseases are Alzheimer's disease
(AD) and Parkinson's disease (PD). The hallmark in both pathologies
is the accumulation and aggregation of misfolded proteins [1]. In AD,
amyloid-beta (Aβ) peptides aggregate and classically have been de-
scribed to deposit as extracellular amyloid plaques; however, the
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intracellular accumulation of Aβ is being increasingly recognised
and is closely linked with neuronal loss [2,3]. The other critical pro-
tein in AD, the microtubular associated protein tau, deposits intracel-
lularly as neurofibrillary tangles [4]. In PD, progressive intraneuronal
aggregation of the protein α-synuclein (α-syn) has been proposed to
play a central role, α-syn being the major component of pathogno-
monic cytoplasmic inclusions known as “Lewy Bodies” [5,6]. Point
mutations of human α-syn (A30P, A53T) are related to familial
autosomal-dominant forms of early-onset PD [7].

The aberrant assembly of such diverse proteins into mature amy-
loid fibrils proceeds through the formation of intermediate oligomeric
assemblies. These soluble prefibrillar species, which are typically
transient and structurally heterogeneous, are now widely recognised
as the primary toxic determinants in both AD and PD [8–14]. A land-
mark study using transgenic mice has shown that α-syn variants that
specifically form oligomers were significantly more neurotoxic than
α-syn variants that form fibrils. In particular, in vivo toxicity was
strongly associated with the higher ability of oligomers to interact
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with and potentially disrupt membranes [15]. Indeed, oligomeric
complexes of Aβ orα-synmay penetrate cell membranes, stimulating
Ca2+ influx and leading to cell death [16–18]. The mechanism of lipid
bilayer disruption by aggregate species may involve insertion of dis-
tinct pore-like structures, formation of large “defects” in the mem-
brane, or a combination of both [19–24]. Moreover, the first study
has been recently published demonstrating increased phospholipid
vesicle leakage, in association with decreased cell viability, induced
by tau aggregation intermediates [25].

Membranes of organelles are potential targets of oligomeric com-
plexes; this applies particularly to mitochondria which are abundant
in synapses and neurons. Mitochondria are critical regulators of neu-
ronal survival and death, and there is strong evidence that mitochon-
drial dysfunction might represent the fundamental initiator of the
pathophysiological cascade in both AD and PD [26]. Mitochondrial
processes of great importance to brain cells include energy metabo-
lism [27,28], generation of free radicals [26,29], calcium homeostasis
[30,31] and initiation of apoptosis via release of the respiratory pro-
tein, cytochrome c (Cyto c) [32–34].

It is now clear that mitochondria are important targets of the Aβ
peptide, and that perturbation of membranes and bioenergetics may
be key triggers of neuritic damage leading to dementia. Recognised
mitochondrial targets of Aβ include the translocase import machinery,
enzymes involved in Krebs cycle, respiratory chain enzymes, the
mitochondrial permeability transition pore (mPTP), the mitochondrial
matrix protein Aβ-binding alcohol dehydrogenase (ABAD), and mito-
chondrial DNA [35–41]. There ismounting evidence in favour of a direct
relationship between mitochondria-specific Aβ accumulation, AD-
related mitochondrial dysfunction and apoptotic cell death [42]. Not
the least, one of the key enzymes involved in Aβ release, γ-secretase,
has been located inmitochondrialmembranes. This has been associated
with the generation of cleavage fragments of the amyloid precursor
protein, including Aβ peptides, locally in these organelles thus contrib-
uting to mitochondrial dysfunction [43]. The deleterious effects of Aβ
peptides on brain mitochondria have been confirmed in several studies
using transgenic mice, too [44–48]. For instance, the progressive accu-
mulation of Aβ inmitochondria of amyloid precursor protein (APP)mu-
tantmice is associatedwith decreased activity of complexes III and IV of
the respiratory chain, and reduced consumption of oxygen [46]. Impor-
tantly, it has been possible using suchmodels to attest that impairment
of mitochondrial function by Aβ often occurs at the onset of cognitive
loss, before amyloid plaque deposition [49,50].

The role of tau protein in AD-related mitochondrial dysfunction is
still unclear, mainly because attention has hitherto been focused on
the Aβ peptide. Interestingly, tau appears to impair mitochondrial
function synergistically with Aβ: for example, tau causes mainly a de-
regulation of complex I activity, whilst Aβ impairs the function of
complex IV [51]. Further, truncated tau disrupted mitochondrial func-
tion and transport when combined with Aβ in cortical neurons [52].
In vivo studies also attend to a pathogenic link between tau and mito-
chondria — a recent report identified that tau oligomers are acutely
toxic and induce loss of mitochondrial and synaptic function in
wild-type mice [53]. Nevertheless, the molecular mechanism was
not explored.

Similar to Aβ and tau, multiple observations are providing evi-
dence implicating an association between α-syn and mitochondria
in the pathogenesis of PD [54,55]. Direct localisation of wild-type
and mutant α-syn to mitochondria in dopaminergic neurons has
been reported [56,57]. In fact, the intra-mitochondrial localisation of
α-syn was more abundant in dopaminergic neurons than in other
brain regions in rat models [58]. Since human α-syn has a mitochon-
drial targeting sequence at its N-terminal domain, the protein may
gain direct entry into mitochondria via mitochondrial import chan-
nels [59]. An interaction between α-syn and mitochondria may lead
to oxidative stress by decreasing complex I activity [59,60]; indeed,
alpha-synuclein knock-out mice resisted toxicity induced by the
neurotoxin and mitochondrial complex I inhibitor 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) [61]. On the other hand, mice
overexpressing the A53T mutant exhibit mitochondrial and neuronal
degeneration [62]. Degeneration of mitochondria has been linked to
mitochondrial fragmentation as a result of a direct interaction of
α-synwithmitochondrial membranes, eventually resulting in neuronal
death [63].

Given this background, wewanted to probe further the direct effects
of the interaction between protein aggregates andmitochondrial mem-
branes, also in relationship to a possible therapeutic treatment of AD and
PD. In particular, we have previously shown that polyphenolic com-
pounds, including black tea extract, are potent inhibitors of lipid mem-
brane destabilisation by Aβ and α-syn aggregates [64,65]. Polyphenols
are plant metabolites that are highly abundant in human diet, and sev-
eral experimental and epidemiological evidences point to beneficial ef-
fects on AD and PD risks [66–68]. We first established the membrane
permeabilising abilities of aggregate complexes of Aβ, WT α-syn, A30P
α-syn, A53T α-syn and tau-441 in liposome systems and isolated mito-
chondria. These cell-free systems allow for a better understanding of the
mechanisms in permeabilisation since they do away with many other
factors which might otherwise be involved [69]. Next, the panel of in
vitro assays was used to ascertain which of twelve small-molecule com-
pounds and black tea extract can best inhibit permeation of mitochon-
drial membranes by the aggregates. Hence, knowledge was gained on
the effectiveness of compound inhibitor activity in the presence of a mi-
tochondrial phospholipid membrane interface.

2. Materials and methods

2.1. Reagents

Chemical compounds and polyphenols obtained from Sigma-
Aldrich (Munich, Germany) include: apigenin (Api), baicalein (Baic),
black tea extract (BTE; N80% theaflavins), chrysin (Chr), 4,4′-
diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), (−)-epigallocatechin
gallate (EGCG), carbonyl cyanide 4-(trifluoromethoxy)phenylhy-
drazone (FCCP), cyclosporin A (CsA), fluorescein isothiocyanate conju-
gated to dextran (FITC-dextran 4 kDa, FITC-dextran 40 kDa, FITC-
dextran 70 kDa), genistein (Gen), morin (Mor), myricetin (Myr),
nordihydroguaiaretic acid (NDGA), purpurogallin trimethyl ether
(Purp) and rosmarinic acid (RA). N′-benzylidene-benzohydrazide
(NBB) compounds 301C09 and 293G02 were obtained from Chembridge
Corp. (San Diego, CA, USA). Bongkrecic acid (BKA) and anti-VDAC anti-
body were from Calbiochem (Darmstadt, Germany). Stock solutions of
10 mM polyphenols and NBB compounds in 100% DMSO were stored
at −20 °C. Gramicidin was purchased from Fluka Chemie AG (Buchs,
Switzerland).

2.2. Preparation of amyloid aggregates

Aβ42 and human recombinant tau-441 (2N4R) were purchased in
lyophilised form (rPeptide, UK). Wild-type (WT) or mutant (A30P,
A53T) human recombinant α-syn was expressed in Eschericia coli BL21
(DE3) cells and purified as described previously [70]. Seeding into
soluble prefibrillar aggregates was achieved based upon established
methods. Thus, 45 μM Aβ42 in sterile PBS (pH 7.4) was aggregated for
2 h at 37 °C [64,71]; 7 μM WT, A30P or A53T α-syn was incubated in
sterile PBS (pH 7.4) at 37 °C for 4 h with continuous shaking at
500 rpm [72]; 7 μM tau-441 was aggregated in the presence of 70 μM
Al3+ at 37 °C for 4 h with continuous shaking at 500 rpm [73]. Shaking
was performed in an Eppendorf Thermomixer® and microfuge tubes
were sealed with Whatman® adhesive film to prevent evaporation.
Theoligomeric nature of soluble Aβ42, synuclein and tau aggregates gen-
erated using these protocolswas confirmed by electrophoresis on 4–12%
Tris–Bis NuPAGE® gels, followed by immunoblotting or staining of pro-
teins (Suppl. Fig. S1).
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2.3. Preparation of lipid vesicles from defined lipid mixtures

For preparation of small unilamellar lipid vesicles (SUVs), egg
phosphatidylcholine (PC), egg phosphatidylethanoloamine (PE), brain
phosphatidylserine (PS), soybean phosphatidylinositol (PI), and heart
cardiolipin (CL) in chloroform (Avanti Polar Lipids, Alabaster, AL, USA)
were mixed in a glass tube at the following molar ratios: for OM-type
vesicles having membranes with a lipid mixture corresponding to the
lipid composition of outer mitochondrial membranes, PC, 53%, PE 27%,
PI 9%, PS 7%, CL 4% [74]; for IM-type vesicles having membranes with
a lipid mixture corresponding to the lipid composition of inner mito-
chondrial membranes, PC, 45%, PE 25%, PI 10%, PS 5%, CL 15% [75]; for
L-type vesicles lacking cardiolipin, PC, 53%, PE 29%, PI 12%, PS 6%; and
for C-type liposomes having membranes with a lipid mixture represen-
tative of the neuronal plasma membranes, a synthetic phospholipid
blend consisting of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE)/1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPS)/1,2-dioleoyl-
sn-glycero-3-phosphocholine (DOPC) in a molar ratio of 5:3:2 (Avanti
Polar Lipids). Lipid vesicles encapsulating Oregon Green® 488 BAPTA-1
(OGB-1; Invitrogen, Darmstadt, Germany) were prepared using a
detergent-dialysis method as described previously [65]. The diameter of
lipid vesicles was measured by the dynamic light scattering technique
using Zetasizer Nano S (Malvern, Worcestershire, UK). Vesicles had an
average diameter of 87 ± 20 nm, and hence classified as SUVs.

A similar protocol was used to prepare FITC-dextran loaded lipo-
somes, but in this case the lipid film was resuspended in 2 mg/ml
FITC-dextran (4 kDA; 40 kDA; 70 kDa) whilst the untrapped FITC-
dextran molecules were removed by 3–4 cycles of centrifugation
(22,000 g for 30 min).

2.4. Liposome permeabilisation assays

Liposomepermeabilisation assayswere carried out as described [65]
using OGB-1 as the encapsulated fluorophore. Briefly, disruption of the
vesicle membrane results in complexing of buffer Ca2+with OGB-1 and
thus an increase influorescence (exc. 485 nm, em. 528 nm). Aggregates
(Aβ42,α-syn or tau) were added to 25–50 μM liposomes in assay buffer
(1 mM CaCl2, 100 mM KCl, 10 mM MOPS/Tris, 1 mM EDTA, pH 7.0)
and kinetic measurements taken for 60 min using FLx800-TBID
microplate reader (BioTek, Germany). The maximum fold-increase in
fluorescence of a sample was determined and normalised to the base-
line fluorescence of control liposomes. Assays with IM-type liposomes
were carried out using 0.1 mM(not 1 mM)Ca2+ in buffer to ensure sta-
bility of vesicles. Moreover, 10 μMAl3+ present in tau aggregation buff-
er does not significantly affect liposome integrity (b1.1-fold change).

Disruption of lipid vesicles by aggregates in the presence of com-
pound was calculated as a percentage of permeabilisation caused by
aggregates alone (theoretical maximum, 100%). Autofluorescence
was measured for each compound and subtracted from the sample
well values. Concentrations of small-molecule compounds and black
tea extract in the assay were derived from previous studies [64,65].

2.5. Cell culture and isolation of mitochondria

SH-SY5Y human neuroblastoma cells (obtained from ATCC) were
grown in flasks to ~90% confluency at 37 °Cwith 5% CO2 in a humidified
atmosphere using Dulbecco's modified Eagle's medium supplemented
with 10% fetal bovine serum, 100 units/ml penicillin, and 100 μg/ml
streptomycin. Mitochondria were isolated from 5 × 107 cells using the
MITOISO2 kit (Sigma-Aldrich) according to the manufacturer's recom-
mendations. The mitochondrial pellet was finally resuspended in 1×
storage buffer (50 mM HEPES, 25 mM succinate, 1.25 M sucrose,
5 mM ATP, 0.4 mM ADP, 10 mM K2HPO4, pH 7.5) at 1–1.5 mg/ml
(final mitochondrial protein concentration determined using the BCA
kit, Pierce). Mitochondria were kept on ice during the entire isolation
procedure and prepared fresh for each experiment.
The purity of themitochondrial fractionwas confirmed by immuno-
blot analysis of cytosolic and mitochondrial isolates with anti-Hsp90
(Abcam, ab3931) and anti-Cyto c (Invitrogen) primary antibodies
(Suppl. Fig. S2). Inner membrane integrity was assessed by measuring
the uptake of the fluorescent dye JC-1 intomitochondria (IsolatedMito-
chondria Staining Kit, Sigma-Aldrich) (Suppl. Fig. S3).

2.6. Immunoassay for detection of Cyto c release from isolatedmitochondria

Isolated mitochondria (12 μg) were incubated at 37 °C for 30–
60 min: alone, with 2% Triton X-100 (v/v), with fresh or pre-aggregated
amyloid aggregates, or with compounds (the latter were left for 10 min
in presence of aggregates prior to addition ofmitochondria). Final volume
was 100 μl in 1× storage buffer. Supernatant fractions were obtained by
pelleting the mitochondria (16,000 ×g, 10 min, 4 °C) and the amount of
Cyto c present in supernatant was quantitated using a colourimetric
enzyme-linked immunosorbent assay (Quantikine; R&D Systems,
Abingdon, UK) according to the manufacturer's instructions. Prelimi-
nary testing of small-molecule compounds and black tea extract with
isolated mitochondria was carried out, and only those compounds
that did not induce efflux of Cyto c at the tested concentration were
selected (Suppl. Fig. S4).

2.7. Western blot analysis

For detection of Cyto c release by immunoblotting, mitochondria
were incubated with permeabilisation agents or protein aggregates, for
30 min at 37 °C in 1× storage buffer, then pelleted at 16,000 ×g for
10 min at 4 °C. The supernatant was collected and subjected to 15% so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
transferred onto nitrocellulose membranes and then sequentially incu-
bated with 5% nonfat dried milk blocking reagent in TBS-T overnight at
4 °C, primary monoclonal antibody to Cyto c (1:4000) and finally with
anti-mouse IgG horseradish peroxidase conjugate (1:5000) for 2 h at
room temperature. Themembranes were processed for Cyto c detection
using the enhanced chemiluminescent light (ECL Plus) kit according to
specifications of the manufacturer (GE Healthcare, Munich).

InWestern blot analysis to visualiseα-syn aggregate species treated
with polyphenolic compounds, each compound was incubated 10 min
at room temperature with 0.7 μg α-syn oligomers. Samples were run
on 15% SDS-PAGEgels and subsequently transferred onto nitrocellulose.
After blocking overnight at 4 °C with 5%milk, membranes were probed
for 2 h at room temperature with anti-synuclein antibody 15G7
(1:7000). Immunoreactivity was detected with peroxidase-conjugated
anti-rat IgG (1:10,000; Sigma-Aldrich, Munich, Germany). For signal
detection, ECL Plus was used.

2.8. Statistical analysis

Mean ± SEM are shown in all graphs, with n as the number of ex-
periments. Statistical analyses were performed using GraphPad™
Prism 5 and one-way ANOVA was used for statistical testing. When
ANOVA was significant (p b 0.05) Bonferroni's multiple comparison
test was carried out to determine differences between experiments.
Ranking of compounds in the various assays were correlated by the
non-parametric Spearman rank correlation coefficient.

3. Results

3.1. Permeabilisation by amyloid aggregates of vesicles that mimic
mitochondrial membranes

A unilamellar liposome model was first used to investigate
whether recombinant Aβ42 and α-syn oligomers can permeabilise
mitochondrial-like phospholipid membranes. Lipid vesicles were
formed fromdefined lipidmixtures similar to the observed composition
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of outer mitochondrial membranes (OM-type) and loaded with the
calcium-binding fluorophore OGB-1. Membrane disruption increases
fluorescence as a result of Ca2+ ions in the buffer complexing with
OGB-1. Over a time period of 60 min, 2-h aggregated Aβ42 induced a
robust increase in OM-type liposome permeabilisation over baseline
fluorescence (0.5 μM: 1.79-fold; 1 μM: 2.28-fold). In comparison,
0.5 μM Aβ42 monomeric (fresh) peptide had no observed effect on the
OM-type liposomes (Fig. 1A). Wild-type α-syn behaved similarly:
synuclein aggregates showed a dose-dependent effect on membrane
leakage from 0.5 to 1 μM (0.5 μM: 1.3-fold; 0.75 μM: 1.82-fold; 1 μM:
2.32-fold) whilst non-aggregated (fresh) α-syn did not significantly
differ from liposome control (Fig. 1B). An even more remarkable
permeabilisation of OM-type vesicles was observed using mutant
α-syn (Fig. 1C, D). For instance, 0.25 μMA30P or A53Tα-syn aggregates
were equally damaging to OM-type liposomes as 1 μM WT (N2-fold
permeabilisation). Permeabilisation by A30P and A53T at the lowest
tested concentration of 0.125 μM was approximately half compared
to 0.25 μM, thereby exhibiting dose-dependence. Our data therefore sug-
gest that mitochondrial membranes are indeed targeted by aggregate
complexes of amyloidogenic peptides, with familial PD mutations in the
α-syn gene evoking the strongest disturbance of membrane integrity.

In order to characterise better the mechanism of membrane
destabilisation, a size-dependent fluorescence leakage assay was per-
formed by preparing OM-type liposomes containing FITC-dextrans
of three different molecular sizes (4 kDa, 40 kDa, and 70 kDa) and
exposing them to Aβ42 and WT α-syn oligomeric aggregates. In the
case of Aβ aggregates, leakage of the differentially-sized markers oc-
curred as follows: 79% ± 2 (4 kDa), 72% ± 4 (40 kDa), and 65% ± 2
(70 kDa). Permeabilisation by α-syn aggregates was observed as
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Fig. 1. Permeabilisation of lipid vesicles having a composition similar to the outermitochondrialm
aggregated Aβ42, (B) 1 μM fresh and 0.5–1 μM aggregated WT α-syn, and (C, D) 0.5 μM fresh an
nomeric peptide or protein. Results are expressed as themaximal fold increase over baseline fluo
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follows: 65% ± 3 (4 kDa), 61% ± 1 (40 kDa), and 63% ± 2 (70 kDa).
Thus, there was essentially no major change in the leakage of larger-
sized dextrans with respect to the smaller dextran molecules.
3.2. Preferential targeting of IMM-like vesicles by Aβ42, α-syn and tau
assemblies

The liposomal model allows comparison of aggregate toxicity be-
tween vesicles having different phospholipid compositions. In view of
the significant permeabilisation observed using OM-type liposomes,
another three types of OGB-1 filled lipid vesicles were tested for
permeabilisation, namely IM-type, L-type and C-type liposomes. IM-
type liposomes are specifically characteristic for the inner mitochondri-
al membrane and therefore contain a higher proportion (15%) of the
mitochondrial-specific phospholipid, CL. L-type liposomes maintain
the same phospholipid composition as OM-type vesicles except for CL.
Finally, ‘C-type’ liposomes were prepared using a synthetic phospholip-
id blend which models biological plasmalemma membranes. Thus, we
were able to compare mitochondrial-like with cellular-like membranes
vis-a-vis susceptibility to attack by aggregate samples, as well as to
address the question regarding the specific role of CL.

Starting with Aβ42, a significantly higher degree of permeabilisation
of IM- and OM-type liposomes was observed when compared to L- and
C-type liposomes: IM-type (2.01-fold) N OM-type (1.79-fold) N C-type
(1.5-fold) N L-type (1.29-fold) (Fig. 2A). In other words, an increase in
CL content correlated with enhanced Aβ42 membrane destabilisation.
Inner membrane-like liposomes were also the most damaged type of
vesicle upon exposure to WT α-syn aggregates (2.34-fold); other
WT -syn
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vesicles representing outer mitochondrial and cellular membranes
were significantly less efficiently permeabilised (b1.5-fold) by WT
α-syn (Fig. 2B). Both α-syn A30P and A53T aggregates, however, in-
duced a marked 2.5 to 3-fold increase in permeabilisation across all
lipid compositions (Fig. 2C & D). This further suggests that familial PD
mutants are associated with more severe membrane perturbations
than WT α-syn. We also extended the liposome permeabilisation
assay to the othermajor misfolded protein implicated in AD, the neuro-
nal microtubule-associated protein tau. Soluble tau aggregates were
generated in vitro from recombinant monomeric tau and incubated
with the four types of liposomes. Strikingly, the permeabilisation effects
of tau aggregates mirrored those of Aβ42, with IM-type and OM-type
vesicles being significantly more damaged than either L-type or
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Fig. 2. Differential permeabilisation of synthetic lipid vesicles mimicking mitochondrial an
mitochondrial inner membrane (IM-type), mitochondrial outer membrane (OM-type), ca
treated with pre-aggregated (A) 0.5 μM Aβ42, (B) 0.5 μM WT α-syn, (C) 0.5 μM A30P α-sy
When compared to L-type and C-type membranes, the phospholipid composition of IM-t
α-syn and tau proteins, as well as by the channel-forming ionophore gramicidin. Perme
control (incubated with buffer only). The phospholipid compositions of IM-, OM-, L-, and
SEM (n = 3); **p b 0.01; ***p b 0.001; ns, not significant.
C-type vesicles (IM-type, 2.15-fold; L-type, 1.35-fold; C-type, 1.29-fold
increase in permeabilisation; Fig. 2E). Summing up, CL-rich IM-type li-
posomes appeared to be the only vesicles that were strongly
permeabilised (N2-fold) irrespective of the nature of amyloid aggregate
to which they had been exposed (Aβ42, WT or mutant α-syn, tau-441).
A similar pattern of differential permeabilisation of IM-vesicles was
seen when the well-known pore-forming antibiotic gramicidin was in-
cubated with liposomes. Here again, the integrity of IM-type lipid vesi-
cles was disrupted most (2.24-fold) in comparison with the other
vesicle types (circa 1.5-fold) (Fig. 2F).

The accelerated loss of membrane integrity by IM-type liposomes
is particularly evident from the kinetics of vesicle permeabilisation
(Fig. 3). Aβ42 and tau aggregates demonstrate a similar kinetic profile
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with respect to IM-lipid vesicle damage, with a relatively constant
permeabilisation rate of 0.15-fold increase in fluorescence every
10 min, starting from 10 min after addition of the protein (Fig. 3A, C).
WT α-syn has a more distinctive profile of permeabilisation, which
only commences 30 min after incubation with the aggregates, and
then proceeds at a fast rate of around 0.55-fold increase in fluorescence
every 10 min (Fig. 3B). Permeabilisation ofmitochondrial-like lipid ves-
icles lacking CL (L-type) or plasmamembrane-like vesicles (C-type) oc-
curs at rates not exceeding 0.06-fold increase every 10 min, excluding a
rapid initial increase by the tau aggregates. Furthermore, even after
60 min, leakage from the CL-containing membranes was still occurring
rapidly whilst that from other types of liposomal membranes had
stabilised (Fig. 3).

Taken together, these data support the concept that soluble as-
semblies derived from diverse amyloidogenic proteins preferentially
target the defined phospholipid composition of the inner mitochon-
drial membrane, and in particular cardiolipin.
3.3. Aggregates induced Cyto c release from isolated mitochondria

Next we investigated the effects of amyloid aggregates on isolated
mitochondria — and hence on biological, rather than synthetic, mito-
chondrial membranes. Cyto c is a protein normally present in the
intermembrane mitochondrial space, with loosely and tightly bound
pools attached to the CL-rich IMM [76]. Liberation of Cyto c into the cy-
tosol, along with that of other pro-apoptotic proteins (e.g. apoptosis-
inducing factor, Omi and Smac/Diablo) occurs as a result of mitochon-
drial membrane permeabilisation and is a critical event in cell death
[33]. Respiringmitochondria isolated from SH-SY5Y cells were exposed
to soluble aggregate complexes, samples were centrifuged and Cyto c
efflux determined using a quantitative immunoassay technique. Cyto c
release (CCR) induced by Triton X-100 was taken as reference and set
to 100%. Comparing CCR induced by 2 μM(inmoles of monomeric pep-
tide) of the various aggregate complexes, themost damaging weremu-
tant A30P (74%) and A53T (67%) α-syn aggregates, followed by tau
(62%) and WT α-syn (52%). In the case of Aβ42, 10 μM aggregates
were needed to induce 68% CCR (Fig. 4). Notably, when mitochondria
were incubated with amyloid-β, α-syn or tau in the monomeric form,
CCR was minimal. Data obtained in the immunoassay experiments
was qualitatively confirmed by detection of CCR using immunoblot
analysis. Efflux of Cyto c from mitochondria occurred upon exposure
to all aggregate types and is comparable to that induced by 2% Triton
X-100 (Suppl. Fig. S5).

Collectively, these results corroborate those obtained by the lipo-
some assays and suggest a direct role for soluble prefibrillar aggre-
gates in mitochondrial permeabilisation.
3.4. Aggregate-induced CCR is independent of themitochondrial permeability
transition pore

One proposed mechanism of CCR assumes the formation of the
mitochondrial permeability transition (mPT) pore,which results in sub-
sequent swelling of mitochondria and physical breakage of the mito-
chondrial membrane barrier [77]. The mPT pore is a supramolecular
complex thought to be composed of the voltage-dependent anion chan-
nel (VDAC) in the outermembrane, adenylate translocator (ANT) in the
inner membrane and cyclophilin D in the mitochondrial matrix [78].
Wewanted to determinewhether Cyto c redistribution frommitochon-
dria upon exposure to soluble prefibrillar aggregates involves opening
of themPT pore. To explore this mechanistically, we treated isolated re-
spiring mitochondria with inhibitors of the various components of the
mPT pore complex: BKA, an inhibitor of ANT; CsA, which targets
cyclophilin D; DIDS, a VDAC inhibitor; and anti-VDAC antibodies to
block VDAC activity and hence Cyto c release. As can be seen in Fig. 5,
neither the pharmacological blockers of mPT nor the VDAC antibodies
provided any protection against CCR triggered by Aβ42 and WT α-syn
aggregates. Moreover, FCCP, a proton ionophore that causes rapid and
complete dissipation of the mitochondrial membrane potential, in-
creased CCR additionally by 40–50% (Fig. 5). Taken together, these re-
sults suggest that aggregate-induced CCR occurs without formation of
the mPT channel, and hence support a model in which Aβ42 and
α-syn interact directly withmitochondrial membranes in the induction
of membrane permeabilisation.

3.5. Select compounds protect against targeting ofmitochondrial membranes
by aggregates

In previous studies we have shown that polyphenolic compounds
can potently interfere with damage to phospholipid membranes in-
duced by amyloid aggregates. Hence,wewanted to evaluate the efficacy
of ten selected polyphenols (Api, Baic, Chr, EGCG, Gen,Mor, Myr, NDGA,
Purp, RA) together with BTE and two NBB compounds (301C09,
293G02) on maintaining the integrity of mitochondrial membranes.
However, the following compounds were found to evoke a significant
disturbance of mitochondrial integrity by themselves and were thus
eliminated from further testing: Api, Gen, Myr, 301C09, Purp, and Chr
(Suppl. Fig. S4). An exception was made for NDGA in view of its previ-
ously demonstrated high efficacy in protecting neuronal-like mem-
branes against damage by amyloid-β and α-syn oligomers [64,65].

Thus, Baic, EGCG, Mor, NDGA, RA, BTE and 293G02 were exten-
sively tested using the liposome permeabilisation assay and the
mitochondrial CCR assay, in the presence of Aβ42 andWT α-syn aggre-
gates. In each case, compounds were allowed to interact with pre-
formed aggregate complexes for 10 min prior to incubation with
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liposomes ormitochondria. In this manner, compounds could potential-
ly antagonisemembrane perturbation by disruption of aggregate assem-
blies and/or by interferingwith their membrane interaction. Indeed, the
above-mentioned 8 compoundswere almost all significantly effective in
protecting synthetic and biological mitochondrial membranes from
Aβ42 and α-syn insult (p b 0.001, Fig. 6). Permeabilisation of OM-type
lipid vesicles and mitochondrial CCR induced by Aβ42 aggregates
were decreased by at least 50% in the presence of compounds. The
top protective compounds against Aβ42 insult in both the liposome
permeabilisation and the mitochondrial CCR assays were Baic, BTE,
Mor and RA (Fig. 6A, B). The latter three compounds (BTE, Mor and
RA) additionally proved to be highly effective against α-syn oligomers,
by inhibiting permeabilisation of mito-like vesicles as well as efflux of
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to 8.7% (±4.3%, n = 2), by A53T α-syn aggregates to 17.3% (±1.7%,
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Statistical analysis by non-parametric Spearman's rho correlations
(Table 1) revealed a striking correlation between rank order of com-
pounds inhibiting mitochondrial membrane damage induced by Aβ42

and WT α-syn aggregates (95% CI, r = 0.857, p = 0.012 for CCR; 95%
CI, r = 0.750, p = 0.033 for OM-vesicles). Significant correlations were
additionally found when comparing the two Aβ42 (95% CI, r = 0.786,
p = 0.024) and the two α-syn assays (95% CI, r = 0.714, p = 0.044)
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Fig. 6. Inhibitory effects of small-molecule compounds and black tea extract on the loss of mitochondrial membrane integrity induced by Aβ42 and α-syn aggregates. 50 μM poly-
phenols, 10 μMNBB compound 293G02 and 3 μg/ml BTE were incubated with 1 μMAβ42 (A) or 0.1 μMα-syn (C) aggregates for 10 min. Subsequently, OM-vesicles were added and
disruption of liposomal membranes monitored over 60 min. Values are calculated as a percentage of maximal liposome permeabilisation by Aβ or α-syn (100%; y-axis). For exper-
iments using isolated mitochondria, 10 μM polyphenols, 5 μM NDGA, 10 μM 293G02 and 0.5 μg/ml BTE were incubated with 10 μM Aβ42 (B) or 2 μM α-syn (D) aggregates for
10 min before adding respiring mitochondria. CCR was determined as a percentage of that induced by Aβ or α-syn alone (100%; y-axis). Values represent means ± SEM
(n ≥ 3) and were compared statistically using one-way ANOVA followed by Bonferroni's post-hoc test; ***p b 0.001; ns, not significant, when compared to Aβ or α-syn alone.
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by mechanisms independent of the nature of the peptide. To gain more
insight, we selected the top 3 compounds (BTE, Mor and RA) and looked
at their effects on pre-formed oligomers of WT α-syn. Immunoblots
were performed after incubating oligomers for 10 min with each of the
3 polyphenolic compounds (Fig. 7). Interestingly, the immunoblots illus-
trate varied effects of the polyphenols: BTE decreased low-molecular-
weight oligomers whilst accelerating the formation of nontoxic fibrillar
species; Mor decreased low-molecular-weight oligomers only; RA had
no effect on the distribution of α-syn aggregate species.

In conclusion, the best compounds overallwere black tea extract (high
content of theaflavins), the small-molecule phenolic acid rosmarinic acid,
and the flavonoids morin and baicalein. These compounds enhanced the
resilience of themitochondrialmembrane barrier against perturbation in-
duced by Aβ42 and WT α-syn aggregates in all assays, albeit by different
mechanisms.

4. Discussion

The progressive intraneuronal accumulation of amyloidogenic pro-
teins and peptides like Aβ42 [3], α-syn [5] and tau [53], exposes mem-
branes of organelles including mitochondria to potential damage by
the amyloid aggregates. Herein, we employed two simplified model
systems to explore the generic molecular mechanisms operating upon
interaction of amyloid aggregates with mitochondrial membranes.
These in vitromodels allowed us to avoid the complexity of the cellular
milieu and consist of: (i) a liposomalmodel, an artificialmembrane sys-
tem in which defined liposomes were formed that mimic lipid compo-
sitions of outer and inner mitochondrial membranes; and (ii) an
isolated mitochondria model, consisting of whole organelles isolated
from SH-SY5Y human neuroblastoma cells.

Previous studies have reported Cyto c release upon the in vitro incuba-
tion of isolated mitochondria with high (20 μM or more) concentrations
of Aβ42 [79–81], and wild-type or mutant forms of α-syn [60,82]. In
the present study, we compared monomeric and aggregated species
of five different amyloidogenic polypeptides and applied them in phys-
iological ranges compatible with those typically observed in the brain
(1 μM or less). We first show that external application of soluble oligo-
meric forms of Aβ42, tau, WT and mutant (A30P, A53T) forms of α-syn,
efficiently permeabilised liposomes mimicking mitochondrial mem-
branes by more than two-fold. Permeabilisation by Aβ and WT α-syn
aggregates did not show any size selection, allowing FITC-dextran mol-
ecules (4–70 kDa) to pass through the membrane. This may argue
against a pore-forming mechanism, although one cannot exclude the
formation of pores that gradually coalesce leading to complete destruc-
tion of the membrane of a small unilamellar vesicle. Indeed, the kinetic
profile of IM-type lipid vesicle permeabilisation suggests a pore-like
mechanism, with a steady increase in vesicle leakage over time rather
than an abrupt detergent-like membrane rupture. Lastly, we also dem-
onstrate an affinity for the IMM by the channel-forming antimicrobial
peptide, gramicidin. Gramicidin has been shown to bind CL-rich do-
mains on the inner membrane of Gram-negative bacteria, causing leak-
age of cell contents into the periplasmic space [83]. Mitochondria have
an endosymbiotic origin and retain many of the vestiges of their bacte-
rial ancestry, including a double membrane.

Apart from liposome permeabilisation, low concentrations of soluble
amyloid aggregates also induced efflux of Cyto c from isolated mito-
chondria, detected primarily by immunoassay and confirmed qualita-
tively by immunoblot. In fact, the maximal CCR effect of the aggregate
complexes was comparable to that of Triton X-100 detergent, which
solubilises membranes (60–80% of Trx-100).

Since none of the monomeric peptides were significantly damaging
tomitochondrialmembranes, permeabilisationmost likely represents a
specific, toxic gain-of-function of the aggregate species. Comparing the
membrane-disruptive effects of the various proteins, it is notable that



Table 1
Correlations between the inhibitory effects of the tested compounds on (a) lipid vesicle permeabilisation and (b) mitochondrial CCR, induced by pre-formed aggregates of Aβ42 and
WT α-syn. Correlations were determined from the ranking of compounds based upon the results shown in Fig. 6.a

Inhibition of vesicle
permeabilisation by Aβ42

Inhibition of vesicle
permeabilisation by α-syn

Inhibition of mitochondrial
CCR by Aβ42

Inhibition of mitochondrial
CCR by α-syn

Inhibition of vesicle permeabilisation by Aβ42 r = 1 r = 0.75 (p = 0.033) r = 0.786 (p = 0.024) –

Inhibition of vesicle permeabilisation by α-syn r = 0.75 (p = 0.033) r = 1 – r = 0.714 (p = 0.044)
Inhibition of mitochondrial CCR by Aβ42 r = 0.786 (p = 0.024) – r = 1 r = 0.857 (p = 0.012)
Inhibition of mitochondrial CCR by α-syn – r = 0.714 (p = 0.044) r = 0.857 (p = 0.012) r = 1

a The Spearman rank-order correlation coefficient, rho, ranges from −1 to +1; r = −1.0, perfect inverse correlation; r = 0, the two variables do not vary together at all; r =
+1.0, perfect correlation.
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mutant A30P and A53T were much more damaging to mitochondrial
membranes than theirwild-type counterpart. This effectwas consistent
on both biological and synthetic membranes. Hence, the accelerated
neurotoxicity of familial PDmutants [84]may bemechanistically linked
with a higher potential for mitochondrial interaction and disruption.
Previous biophysical studies report similar lipid binding profiles for
WT and A53Tα-syn, but decreased lipid affinity for the A30Pmutation;
however, such studieswere not conducted onmitochondrial-likemem-
branes [85,86]. Another interesting aspect from our studies is the high
toxicity of tau aggregates onmitochondrialmembranes. For instance, li-
posome permeabilisation by 0.1 μM tau is equivalent to 1 μM Aβ42

(circa 2-fold), whilst the extent of CCR from isolated mitochondria in-
duced by 2 μM tau is similar to 10 μM Aβ42 (circa 1.6-fold). These
results indicate that tau may be the more potent mitochondrial mem-
brane destabiliser of the two peptides.

The general observation that results obtained with isolated mito-
chondria mirror those obtained with artificial membrane systems
(i.e. lipid vesicles), strengthens the hypothesis that amyloid species
are able to directly perforate mitochondrial membranes. To substanti-
ate further, we treatedmitochondria with known pharmacological in-
hibitors of CCR from mitochondria, namely blockers of the inner-
membrane mPT pore (CsA, BKA) or of the outer-membrane VDAC
(DIDS, anti-VDAC antibody). However, none of these agents could mit-
igate aggregate-induced CCR, suggesting that indeed the mechanism
most likely involves direct OMM and/or IMM destabilisation via an
interaction of aggregate species with membrane phospholipids. That
CCR by aggregates does not occur as a consequence of depolarisation
Fig. 7. Western blots of recombinant wild-type α-syn incubated with polyphenolic
compounds. 0.7 μg aggregated WT α-syn (Lane 1) was incubated for 10 min with
100 μM RA (Lane 2), 100 μM RA (Lane 3) and 6 μg/ml BTE (Lane 4). After, the samples
were separated using SDS-PAGE and probed with anti-synuclein (15G7) monoclonal
antibody.
of the IMM is also indicated by the fact that pre-incubation ofmitochon-
dria with FCCP, which induces a complete collapse of themitochondrial
membrane potential, further enhances CCR. Albeit beyond the scope of
the current study, it should be emphasised that, in the cellular context,
release of Cyto c from the intermembranemitochondrial space is highly
regulated by actions of members of the Bcl-2 family. Pro-apototicmem-
bers such as Bax, Bad and Bid, induce loss of OMM integrity with subse-
quence CCR, whereas anti-apoptotic members such as Bcl-2 and Bcl-XL

protect the integrity of the mitochondrion and prevent release of
death-inducing factors [87]. Hence, amyloid aggregates could potential-
ly induce CCR by altering the levels of these key regulatorymolecules. In
fact, apoptosis in hippocampal neurons incubated with soluble Aβ olig-
omers was associated with increased levels of Bid, Bax and Cyto c and
lower levels of the anti-apoptotic Bcl-2 protein [88]. In PD, disruption
of 14-3-3 signalling function by α-syn results in the release of pro-
apoptotic factors such as Bax [89]. It would therefore be important to
address such aspects in future work.

An additional key finding of this study is the preference shown
by the aggregated forms of Aβ42, WT α-syn and tau amyloids for
compromising the integrity of membranes with a high content of CL, a
unique anionic phospholipid specific to mitochondria.

In fact, membranes with 15% CL content (similar to innermitochon-
drial membranes) sustained the highest degree of permeabilisation; on
average, at least twice that sustained by liposomes lacking CL. Excep-
tionally, mutant A30P and A53T α-syn aggregates were not sensitive
to CL content and strongly permeabilised all types of lipid vesicles. Re-
garding oligomeric α-syn, the targeted disruption of lipid vesicles hav-
ing negatively charged membranes, including those containing CL, has
been previously cited [90].More recently, Zigoneanu et al. [91] also con-
cluded that CL is essential for the interaction between WT and A30P
α-syn with large unilamellar vesicles whose composition is similar to
that of the inner mitochondrial membrane. Finally, affinity of α-syn to
CL has been postulated to drive mitochondrial fission by α-syn oligo-
mers, but not monomers [63].

The affinity of CL to amyloid aggregates likely provides a platform
for rapid and enhanced membrane destabilisation, as demonstrated
by the fact that CL-containing vesicles showed a more sustained
increase in permeabilisation. In summary, it is highly plausible
that mitochondria-specific CL is a novel leitmotif in the targeting of
the inner mitochondrial membrane by aggregation-prone peptides.
Cardiolipin would increase protein accumulation at the inner mem-
brane, hence acting as an effective catalyst for generation of an amy-
loid peptide's most toxic form in situ. In relation to this, it was
reported that CL was the phospholipid found to most strongly stimu-
late Aβ aggregation (CL N PI N PS N PC = PE) [92].

The significance of such a scenario lies in the fact that CL orches-
trates the launching of mitochondrial apoptosis, with detachment of
Cyto c from CL and its mobilisation into the cytosol representing
key events in the apoptotic process [93]. Interestingly, it has been
shown using similar artificial membrane systems to ours, that mito-
chondrial membrane targeting and permeabilisation by Bcl-2 family
proteins also requires CL [74,94]. An intriguing possibility is therefore
that amyloid aggregates seem to be mimicking the action of endoge-
nous pro-apoptotic factors, such as tBid and Bax, on mitochondrial
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membranes. The capacity of amyloid aggregates to specifically target
and directly disrupt mitochondrial membranes is also strikingly
reminiscent of the action of virulent toxins from bacterial pathogens;
examples include PorB porin of Neisseria gonorrhoeae [75,95], toxin B
from Clostridium difficile [96] and VacA toxin from Helicobacter pylori
[97]. Hence, the idea that the molecular mechanisms by which
misfolded protein aggregate complexes cause disease are shared by
those of bacterial pore-forming toxins [98], can now also be extended
to the involvement of mitochondrial membranes.

Finally, we decided to screen low-molecular-weight molecules
(Baic, EGCG, Mor, NDGA, RA, 239G02 and black tea extract) for their
ability to block, or attenuate, perturbation of mitochondrial membranes
by amyloid peptides. The tight correlation (r = 0.714–0.857) between
the ranking of the compounds in the liposome and CCR assays is re-
markable. The implication is that compounds are acting on common
structural elements in aggregate complexes, on the mitochondrial
lipid membranes themselves, or both. The most effective compound
overall is BTE, which accelerated the formation of nontoxic fibrillar spe-
cies, at the expense of low-molecular-weight oligomers. Theaflavins,
the main polyphenolic constituents present in black tea, in fact direct
the formation of Aβ and α-syn into nontoxic assemblies [99]. We
have also reported BTE as a highly effective compound in protecting
against membrane permeabilisation by Aβ42 and α-syn oligomers
in our previous studies [64,65,100]. Besides, several epidemiological
studies support the notion of a protective effect of tea drinking on the
development of dementia or PD [101–103].

Rosmarinic acid was found to be the most potent of the small-
molecule compounds, efficiently inhibiting permeabilisation of lipo-
somes and also blocking CCR from isolated mitochondria. RA is a poly-
phenol naturally present in several herbs in the Lamiaceae family;
dietary sources include rosemary, oregano, sage and thyme. RA can in-
teract with the polar headgroups of lipids and insert spontaneously in
the membrane, without causing any alteration of membrane struc-
ture [104]. Its mechanism of activity could also involve binding to
the aggregate complexes, although we did not find any direct effect of
RA on the size of WT α-syn oligomers by immunoblotting. This is
conformant with our previous studies using confocal single-molecule
fluorescence spectroscopy, in which RA was only found to be a weak
disaggregator of α-syn oligomers [100]. Nonetheless, it is still possible
that RA interferes directly with the interaction between existing amy-
loid aggregates and membranes. Interestingly, pre-treatment of dopa-
minergic cells with RA protected against mitochondrial insult by
1-methyl-4-phenylpyridinium (MPP+) and restored complex I activity
of the mitochondrial respiratory chain [50]. Taken together with our
findings, such evidence suggests that RA can be regarded as a potential
mito-protective agent in AD and PD.

As in our previous permeabilisation studies, Mor and Baic were
also highly effective compounds [64,65]. Both are flavonoids having
a common 5,7-dihydroxy-4-oxo-moiety; this structural characteristic
has been reported to significantly enhance the affinity for lipid bilay-
ers [105]. Morin is also a strong disaggregator of toxic Aβ [106] and
α-syn [100] oligomers, in agreement with this study in which a de-
crease in low-molecular-weight oligomers was observed in Western
blots. Baicalein and 293G02 dissolved α-syn oligomers bound to
lipid vesicles, without rupturing the latter [107]. In comparison to
Baic and Mor, EGCG was a much less effective inhibitor of mitochon-
drial membrane permeabilisation, ranking 5th–7th in both the lipo-
some and organelle assays. In fact, although EGCG can disassemble
preformed Aβ andα-syn amyloid fibrils [108], it is much less effective
in the presence of lipid membranes [109].

A recognised obstacle to the therapeutic use of polyphenols is
their poor bioavailability and inefficient delivery to the brain follow-
ing oral administration [66]. Nevertheless, promising results have re-
cently been obtained using improved delivery methods in which
polyphenol-conjugated nanoliposomes, or nanolipidic particles, are
administered. Oral bioavailability of EGCG in rats, for instance, was
doubled [110] whilst a robust increase of resveratrol concentration
in brain tissue of rats was achieved in vivo [111]. This provides impor-
tant preliminary evidence that such delivery methods would allow
translation of in vitro research on polyphenols into useful application
for targeted drug delivery in clinical trials.

5. Conclusion

Our findings point to a common mechanism through which mito-
chondrial dysfunction in neurodegenerative diseases is induced by
misfolded amyloid aggregates. Such a mechanism would involve
destabilisation of mitochondrial membranes via a direct interaction
of intracellular aggregate species with membrane phospholipids,
without the requirement of any other protein. Rather, the specific
targeting to mitochondria is mediated by an intrinsic affinity of aggre-
gate complexes for cardiolipin, an acidic phospholipid unique to
mitochondrial membranes and an important integrator of apoptosis.
Mitochondria are abundant in synapses, hence damage by the amyloid
aggregates would initiate apoptotic biochemical cascades locally in
synapses and dendrites, resulting in the early synaptic degeneration
characteristic of AD and PD [112]. We also identify black tea extract,
rosmarinic acid, morin and baicalein as potential drug candidates
for enhancing the resilience of the mitochondrial membrane barrier
against insult by amyloid aggregates.
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