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The path-width of a graph is the minimum value of k such that the graph can be 
obtained from a sequence of graphs G,,..., G, each of which has at most k + 1 

vertices, by identifying some vertices of Gi pairwise with some of Gi+ I (1 < i < r). 
For every forest H it is proved that there is a number k such that every graph with 

no minor isomorphic to H has path-width < k. This, together with results of other 

papers, yields a “good” algorithm to test for the presence of any fixed forest as a 
minor, and implies that if P is any property of graphs such that some forest does 

not have property P, then the set of minor-minimal graphs without property P is 
finite. 

1. 1NTRoDucT10~ 

Let G be a graph. (All graphs in this paper are finite, and may have loops 
or multiple edges unless we state otherwise.) A sequence X, ,..., X, of subsets 
of V(G) (the vertex set of G) is a path-decomposition of G if the following 
conditions are satisfied. 

(WI) For every edge e of G, some Xi (1 < i < r) contains both ends 
ofe. 

(W2) For 1 <i< i’ < i” < r, Xi nX,,, cXi,. 

The path-width of G is the minimum value of k > 0 such that G has a path- 
decomposition X, ,..., X,with lXij,<k+ 1 (l<i,<r). 

H is a minor of G if H can be obtained from G by deleting some vertices 
and/or edges, and/or contracting some edges. The main theorem of this 
paper is the following: 

(1.1). For every forest H there is an integer w  such that every graph with 
no minor isomorphic to H has path-width < w. 
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There are three attractive features of the theorem which serve as its 
motivation. First, the theorem is, in a sense, sharp, for it can be reformulated 
as follows: 

(1.2). Let F be a set of graphs. Then the following are equivalent: 

(i) for some integer w, every G EF has path-width < w; 

(ii) there is a forest H such that no G E X has a minor isomorphic 
to H. 

It is easy to prove the equivalence of (1.2) with (1.1) by making use of 
two observations: (a) if H is a minor of G, then its path-width is no greater 
than the path-width of G, and (b) there are trees with arbitrarily large path- 
width (e.g., the tree Y, defined later has path-width [f(iL + l)], for any 
integer /z > 1, where [xl is the least integer not less than x). 

The second attractive feature of (1.1) is that it dovetails nicely with the 
main theorem of [3]; the two results together yield the following: 

(1.3). Let 6,. G, ,..., be a countable sequence of graphs, such that G, is a 
forest. Then there exist j > i > 1 such that Gi is isomorphic to a minor of Gj. 

(This implies the final result mentioned in the abstract, as may easily be 
seen.) Theorem (1.3) is relevant to an interesting conjecture of Wagner 
(unpublished), that (1.3) is true even without the hypothesis that G, is a 
forest. See [3] for a more complete discussion. 

And third (see [l]), (1.1) yields a “good” algorithm to test if an arbitrary 
graph G has a minor isomorphic to a fixed forest H. (“Good” here is in its 
technical sense of “polynomially bounded.” It is not a practical algorithm; 
the exponent of the polynomial, although constant, is enormous.) 

For the purposes of this paper we need the following three facts about 
path-width (the proofs are easy). 

(1.4). If every connected component of G has path-width < k, then G has 
path-width < k. 

(1.5). If Xc: V(G) and Gw has path-width < k, then G has path- 
width <k + /Xl. 

(G\X denotes the result of deleting X.) 

(1.6). rf X, ,..., X,c V(G) is a path-decomposition of G, and for 
1 <i<r- 1, /XinXi+,l<k, andfor 1 <i<r, 

G\u(Xj: 1 < j<r, j# i) 

has path-width < k’, then G has path-width < k’ + 2k. 
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Our proof of (1.1) is basically by induction on the “complexity” of the 
forest H. This is explained in detail in Section 3, and the induction argument 
is performed in Sections 4 and 5. Section 2 contains some crucial lemmas 
about “grids.” 

Our terminology is mostly standard, but a few terms need explanation. If 
X, Y are sets, X- Y denotes 

{x : x E x, x 6z Y}. 

If G is a graph, V(G) and E(G) denote its vertex-set and edge-set, respec- 
tively. A graph is simple if it has no loops or multiple edges. If XC V(G), 
G\X denotes the result of deleting from G all the vertices in X, and G 1 X 
denotes G\( V(G) - X). A graph G is a subdivision of a graph H if H can be 
obtained from G by (repeatedly) choosing a vertex of valency 2 and 
contracting an edge incident with it which is not a loop. Two subgraphs of a 
graph are disjoint if they have no common vertices, and a set of subgraphs is 
disjoint if every pair of its members are disjoint. Everypafh has at least one 
vertex, and no “repeated” vertices. It has an initial and a terminal vertex 
(which are equal for a one-vertex path) called its ends, and any other vertices 
are called internal vertices. A path avoids XZ V(G) if it has no vertex in X. 
XC V(G) separates Y, Z c V(G) if no path in G from Y to Z avoids X. 
(Thus Yn Z 5 X.) We say that X separates y, z E V(G) if it separates 

iv\- @I* 
We shall require the following lemma: 

(1.7). Let p be a vertex of a graph G, and let Y, , Y, ,..., Y, be disjoint 
subsets of V(G), where T > 1. Suppose that for 1 ( i, i’ ,< T, and for all 
y E Yi,, Yi separates y and p if and only if i < i’. For 1 < i < T, let Wi be 
the set of all vertices of G separated from p by Y,, and not separated from p 
bY Yi+l. Let W, be the set of vertices not separated from p by Y, , and let 
W, be the set of all vertices separated from p b-v Y,. Then the sets 
w,, w, ,..., W, are disjoint and partition V(G), and Yi g Wi (1 < i < T), and 
the sequence 

w, CJ y, 1 w, v y, ,..‘, w,- , v y,, w, 

is a path-decomposition of G. 

ProoJ For every vertex v E V(G), there is a unique value of i with 
0 < i < T such that 

(i) either i = 0 or Yi separates v and p, and 

(ii) either i = T or Yi + i does not separate v and p. 

For it is clear that there is at least one such value of i; and if i, i’ are two 
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values, with i < i’ say, then i < T and i’ > 0, and we have that Yi+, does not 
separate v and p, and Yi, separates v and p. Let P be a path in G from v to p 
avoiding Yi + , . Then P meets Yi,, and so Yi+ I does not separate Yj, and p, 
contrary to our hypothesis. 

It follows that for every vertex v there is a unique value of i with u E Wi, 
and so W,, WI,..., W, partition V(G). Clearly, Yi E Wi (1 < i < T). It 
remains to prove that the sequence 

w,uy,,w,uy,,...,w,~,uy,, w, 
is a path-decomposition of G. We need only show (W l), since (W2) is 
obvious. 

Let e be an edge of G, with ends u, v say. Let u E Wi, v E Wj, where i < j 
say. If i = j, then p has both ends in some set in the sequence, as required; 
we assume therefore that i < j. Thus Yi+, separates v and p. It does not 
separate u and p, since u E Wi, and yet u, v are adjacent. It follows that 

v E yi+l, and so e has both ends in Wi U Yi+ , , as required. 

2. GRIDS 

If 0 > 2, the O-grid is the simple graph with vertices vij (1 ,< i, j < 0) in 
whichvijand vicj, areadjacent ifii-i’(+Ij-j’I= l.rOdenotesthesetof 
all graphs with no minor isomorphic to the O-grid. For the remainder of the 
paper, B > 6 will be fixed and, for convenience, even. In this section we prove 
some connectivity results about the graphs in &. 

(2.1). IfP ,,..‘, P, are disjoint paths of a graph G E &, and B,,..., B, are 
also disjoint paths, and each Pi has exactly one vertex in common with each 
Bj, and each Pi meets B ,,..., B, in that order, then either m < 0 or 
n < $3 . O!. 

Proof: We assume that m > 8. Since there are only +(6!) different 
orderings of P, ,..., P, up to reversal, it follows that there. exists JE (l,..., n} 
with JJl > n/i(S!) such that for j, j’ E J, Bj and Bj, meet P ,,..., P, in the 
same order or the reverse. If n > 46’ . 8!, then \JI > 19 and so G has a minor 
isomorphic to the O-grid, which is impossible. Thus y1 < 40 s 19!. 

(2.2). IfP ,,..., P, are disjoint paths of G E FO, and B, ,..., B, are disjoint 
stars, and each Pi has exactly one vertex in common with each Bj, and no Pi 
contains the centre of any star Bj, and each Pi meets B,,..., B, in that order, 
then either m < 0 or n < O(% - 1). 

(A star is a tree in which one vertex, called the centre, is adjacent to all 
others.) 
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Proof. We may assume, by deletion, that every vertex and edge of G is 
either in some Pi or in some Bj ; and by contraction, that every vertex is in 
some Bj. For 1 < j < n let v(j) be the centre of the star Bj, and let the 
common vertex of Pi and Bj be v(i, j) (1 < i < m). We assume, for a 
contradiction, that m > 8 and n > I!?(~ - 1). For 1 ,< k < 8, let Qk be the 
subgraph of G induced by 

0 iv(L(k- l)(Q- l>+Q, 
IS/<B-I 

u((k- l)(B- l)+&v(l+ l,(k- l)(B- 1)+1)}. 

We see that for I < k < 0, Qk is a path, meeting P, ,..., P, in that order, and 
each Pi meets Q, ,..., Q, in that order. But then G has a minor isomorphic to 
the O-grid, a contradiction. 

(2.3). IfP ,,..., P, are disjoint paths of G E Fe, and B, ,..., B, are disjoint 
connected subgraphs of G, and each Pi meets each Bj, and for 1 < j < j’ < n 
all vertices of Bj on Pi occur before all vertices of B,i,, then either m < $7’ or 
n < e2e--2. 

‘ProoJ: If possible, choose a counterexample with IE(G)l + m minimum. 
Then evidently we have m = i02. 

If some Pi has more than one vertex in common with some B,i, we may 
contract the edges of Pi between the two vertices of Bj and produce a smaller 
counterexample, a contradiction. Thus each Pi meets each Bj in exactly one 
vertex, and in particular no edge is both in some Pi and in some Bj. Each Bi 
is a tree, for if some Bj is not, we may delete an edge from it and produce a 
smaller counterexample. Every vertex v of each Bj is on some Pi ; for if not, 
we may contract some edge of B, incident with ZJ and produce a smaller 
counterexample. It follows that each Bj has exactly 40’ vertices. 

It is elementary that for 1 Q j< n, Bj has a subgraph Qj which is either a 
path with 8 vertices or a tree with 8 end-vertices. 

For 1 <j< n, let Ijs { 1 ,..., iB2] be (i: P, meets Qj in some vertex which, 
if Q,/ is not a path, is an end-vertex of Qj}. Then 11,l = 6’ for all j, and so there 
exists JE {l,..., n) with 

such that lj = Ij, for j, j’ E J. 
Let J,EJ be (j6J:Qj is a path} and let J,=J-J,. By (2.1), 

IJ, 1 < ;e . 81, and by (2.2) lJ,l < e(e - 1). Thus 

1~1 < +e . e! + e(e- 1) 
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and so 

n< 
;e= c i e (Se * 8! + qe - 1)) 

a 20-2 

since 0 > 6, a contradiction, as required. 

(2.4). If P, ,..., P, are disjoint paths of G E Ye, and B, ,..., I?, are disjoint 
connected subgraphs of G, and each B,i meets at least $02 of P, ,..., P,, and 
for 1 < i < m and for 1 < j < j’ < n, all vertices of Bi on Pi occur before all 
vertices of B,,, then n < 620-2(+$). 

Proof For 1 <j< n, choose Ijz {l,..., m} with Iti = +02 such that Pi 
meets Bj for each i E Ij. Now there exists JC (l,..., n) with IJl > n( !z2)- ‘, 
such that for j, j’ E J, Ij = Ij, = I say. Then \I\= $9’. Now each path Pi 
(i E I) meets each Bj (j E J) in order, and so by (2.3), / JI -C e2@-‘. The result 
follows. 

(2.5). If A,, A, G V(G), and there is a unique set {P, ,..., P,} of m disjoint 
paths in G from A, to A,, and every vertex of G is in one of these paths, then 
there is an integer-valued function p defined on V(G), such that 

(i) zfv’ is after v on Pi, then ,a(~‘) > p(v) (1 < i < m); 

(ii) for any integer t, Z, separates (v:p(v) < t) from {v: p(v) > t), 
where Z, = (v: for some i, v is the first vertex on Pi with p(v) > t}. 

Proof Step 1. There is no sequence ul, v,, u2, vz ,..., ur, v, of distinct 
vertices of G, where r >, 1, and for 1 < j < r vj-, , uj are adjacent, joined by 
an edge not in any of P, ,..., P, (setting vO = v,.), and u,, u2 ,..., u, are all on 
different Pi’s, and for 1 < j < r, vi occurs after ui on one of P, ,..., P,. 

For if there is such a sequence, let us renumber P, ,..., P, for simplicity so 
that ui lies on Pi (1 < i < r). For 1 < i < r, let ei be an edge of G joining vi-, 
and ui. Let Qi, R,, Si be the subpaths of Pi from A to ui, from ui to ni, and 
from vi to B, respectively. Then R, has at least one edge, since ui # zli. 
Setting S, = S,, we have Qi and Sip 1 are disjoint (1 < i < r) and so Qi, ei, 
and Si-l form a path Pi say from A, to A,. Then Pi ,..., Pi, P,, , ,..., P, are 
disjoint paths of G from A I to A 2 ; and this set is different from P, ,..., P,, 
since none of P I ,..., P, uses the edge e, . This contradicts our hypothesis that 
P , ,..., P, are unique. 

Step 2. There is no sequence ul, v, ,..., u,, v, of vertices of G, where 
r> 1, such thatfor 1 <i<r, vi-[, ui are adjacent, joined by an edge not in 
any of P, ,..., P, (setting vO = vr), and for 1 < i < r, vi occurs after ui on one 
of P, )..,) P,. 
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If possible, choose such a sequence with r minimum. If u,, uz,.‘., U, are all 
on distinct paths from P, ,..., P, , we contradict the result of step 1. Thus we 
may assume that for some j#j’ with 1 <j, j’ < r, uj and uj, are both on P, 
say, and by symmetry we may assume that either uj = u,~, or uj occurs before 
uj, on P,. Consider the sequence 

Uj'+ 13 vjt; 13..*) Uj-13 Uj-1, Uj3 VjJ 

reading the subscripts modulo r if j < j’. The sequence has 2(j - j’) terms if 
j > j’, and 2r - 2(j’ - j) terms if j < j’. In either case it has fewer than 2r 
terms, and hence contradicts the minimality of r. 

Step 3. For u, v E V(G), we say u < v if there is a sequence 
zlO, v0 ,..., ur, v, with r > 0, such that u = uO, v, = v, and for 1 < i < r, vi-,, 
ui are adjacent, joined by an edge not in any of P, )..., P,, and for 
1 < i < r - 1, vi occurs after ui on one of P, ,...: P,, and v,, occurs after u, on 
one of P, ) ,.., P,, and either v, = u, or v, occurs after u, on one of P, ,..., P,. 
Then (V(G), <) is a strict partial ordering. 

We must check that if u < v < w, then u < w; and that v k v. First, if 
u < v < w, let 

u = Llo, vg )...) Ll,, v, = v, 

v = u;, v; )...) u;, v; = w, 

be the corresponding sequences. Then the sequence 

u = ll(), 210 )...) u,, v;, u; )..., u;, vi = w  

demonstrates that u < w. Second, if v < v, then there is a sequence 

v = zlO’ vo,...: ur, v, = v; 

we have r > I, since u,, # vO, and so the sequence u,, vi, u2, vz ,..., u,-, , 
V r- 12 u,., vO contradicts the result of step 2. Hence < is a strict partial 
ordering. 

Step 4. For each v E V(G), let p(v) be an integer, chosen so that for v, 
v’ E V(G), if v < v’, then ,u(v) < ,u(v’). (This is possible since < is a strict 
partial ordering of V(G).) Then ,u satisfies our requirements. 

Certainly if v’ occurs on some Pi after v, then v < U’ and so P(V) < ,u(v’); 
hence condition (i) of (2.5) is satisfied. For any integer t, let Z, = {v E V(G): 
for some i (1 < i < m), v is the first vertex of Pi with P(V) > t}. Let X, = 
{V E V(G): ,u(v) < t}, and Y, = V(G) - (X, U 2,). We must show that Z, 
separates X, and Y,. 

But X, U Y, U Z, = V(G), and so it is sufficient to prove no edge has one 
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end in X, and the other in Y,. Suppose then that u E X, and v E Y, are 
adjacent. Let u be a vertex of P, say. Since ,u(v) > t, there is a first vertex U’ 
say of P, with I > t. We have U’ E Z, and so u $ u’, and U’ occurs on P, 
before ZJ. But u and v are adjacent, and are joined by an edge not in any of 
P I ,..., P, ; and so the sequence 

u’, v, 24, 2.4 

demostrates that U’ < U. Yet I > t > p(u), a contradiction. This completes 
the proof of (2.5). 

(2.6). Suppose that G E X0, and A,, A, c V(G), and m > 0 is an integer, 
and the following conditions are satisfied: 

to A (i) th 
ere is a unique set {PI,..., P,} of m disjoint paths in G from A, 

2; 

(ii) every vertex of G is in one of P, ,..., P, ; 

(iii) B, ,..., B, are disjoint connected subgraphs of G, and each Bj 
meets at least $e2 of P, ,..., P,. 

Then n c 2m02e-2($z). 

Proof. Define s = [n/2mj. Choose an integer-valued function p on V(G) 
as in (2.5). Define a sequence of integers kI,..., k, as follows: 

k, = min(k: for some j (1 < j < n), u(v) < k for all v E V(Bj)), 

k, = min(k: for some j (1 < j < n), k,- 1 <p(v) < k for all v E V(Bj)) 

(2 < I < s). 

We must show that this is well defined. Let us suppose inductively that k,, is 
well defined for 1 < I’ < 1, where 1 < 1 <s, and we shall show that k, is well 
defined. If 1= 1 this is clear, and we assume 1 > 1. For each integer t, let 
Z, = {v E V(G): for some i, v is the first vertex of Pi with p(v) > t). For 
1 < 1’ < I, let 

J,, = (j: 1 < j < n, and for some v E V(Bj), u(v) < k,,}. 

Then clearly for 1’ > 2, we have J,,- i c J,, ; we claim that 

To prove that it is sufficient to show that for every j E J,, -J,,- i, Bj meets 
(Z,,,-, U Zkr,), because jZ, / < m for every integer t, and B, ,..., B, are 
disjoint. Suppose then that j E J,, --J,,- i. There exists u E V(Bj) such that 
p(u) < k,,. If there exists u’ E V(Bj) such that I > k,,, then Bj uses a 
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vertex from Zk,,, because Zk,,, separates {u:,u(v) < k,,} and {v:~(v) >k,,}. 
We may assume therefore that k,,- 1 <p(v) < k,, for every vertex v of Bj. By 
the minimality of k,,, there is a vertex u of Bj with p(v) > k,, - 1; and SO 

p(v) = k,, - 1. But then v E Zkl,-l, and again our claim is true. Thus for 
2 < I’ ( 1 we have jJ,, -J/,-i I< 2m. A similar argument shows that 
IJ, / < 2m. It follows that 

and hence that JI-, # {l,..., n’,, since I < s = [n/2ml. Thus k, is well defined. 
Hence by induction, kl,..., k, are well defined. 

Choose j, with 1 < j, < II so that p(v) < k, for every vertex v of Bj, ; and 
for 2 < I< s, choose j, with 1 < j, < n so that k,_ 1 <,a(~) < k, for every 
vertex zi of Bj,. Put C, = Bj, (1 & I,< s). Then C, ,..., C, are disjoint connected 
subgraphs of G, and each meets at least i02 of P, ,..., P,: and moreover, for 
1 < 1 < 1’ < s, all vertices of C, on Pi occur before all vertices of C,,. By 
(2.4), s < 82e-z(&), and so n < 2m02e-2(&), as required. 

(2.7). Suppose that there are m disjoint paths in G E FO from A, to A,, 
where A,, A, G V(G); and that B1,..., B, are disjoint connected subgraphs of 
G, and for 1 < j < n, V(Bj) separates A, and A,. Then either m < if32 or 
n < 19’~. 

ProoJ If possible, choose a counterexample with / V(G)/ + IE(G)I + m 
minimum. Then evidently we have m = if?‘. 

Let {P, ,..., P,} be a set of m disjoint paths in G from A, to A,. If some Pi 
and some Bj have an edge in common, we can contract that edge and 
produce a smaller counterexample. Thus no edge belongs to both some Pi 
and some Bj. Moreover, every edge belongs either to some Pi or to some B,i, 
for otherwise we could delete it. 

It follows that 

E(P,) u ... u E(P,) = E(G) - (E(B,) u .a. U E(B,)). 

If {Pi )...) P;} is another set of m disjoint paths from A i to A 2, we have, by 
the same argument, 

E(P;) u ..a u E(P;) = E(G) - (E(B,) u . . . u E(B,)) 

and hence 

E(P{) u . *. uE(P;)=E(P,)u... UE(P,). 

It follows that {Pi ,..., Ph} = {P, ,..., P,}, and so the set {PI ,..., P,} is unique. 
We claim that every vertex v of G is in some Pi. For if not, and v is an 

582b/35/1-4 
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isolated vertex, we can delete u, and if u is not an isolated vertex, we can 
contract some edge incident with u0 in either case we produce a smaller 
counterexample, which is impossible. 

For 1 <j< n, each Pi meets Bj, by our hypothesis. By (2.6), 

a contradiction, as required. 

(2.8). Let A,, A,, XC V(G), where G E x0, and let B ,,..., B, be disjoint 
subgraphs of G, each with at most d components. Suppose that the following 
conditions are satisfied: 

(i) 1X1,< rn, for some integer r > 0; 

(ii) for 1 < j < n, XU V(B,) separates A, and A,; 

(iii) there are m disjoint paths in G from A, to A,, each avoiding X. 

Let s = d + r(6’ - 1). Then either m < $Y$~ or n < 2S6’i2(02 + 2~8~‘). 

Proof. If possible, choose a counterexample with / V(G)/ + IE(G)I + m 
minimum. Then evidently we have m = $st?. 

Let P i ,..., P, be disjoint paths of G from A 1 to A,, avoiding X. If some 
edge of G in both in some Pi and in some Bj, we may contract it, and if 
some edge is neither in some Pi nor in some Bj, we may delete it, in either 
case producing a smaller counterexample. It follows that 

E(P,)U *.. U E(P,) = E(G) - (E(B,) U ... UE(B,)), 

and so {P, ,..., P,,,] is the unique set of m disjoint paths of G from A, to A, 
avoiding X. 

Every vertex v  of V(G) -X is in one of P,,..., P,; for if not, and v  is 
isolated, we can delete it, and if v is not isolated, we can contract some edge 
incident with it, in either case producing a smaller counterexample. 

Let J, c_ { l,..., n } be defined by j E J, of and only if some component of 
Bj\X meets at least 4e2 of the paths P, ,..., P,. By setting A; = A, -X, 
A; = A, -X, and applying (2.6) to G\cY, we deduce that lJ, j < 2m 19”-~2~. 

Now let J, s {l,..., n } be defined by j E J, if and only if 1 X n V(Bj)I > 2r. 
Since B i,..., B, are disjoint, we have 

If r = 0, then X = 0 and so J, = 0 by definition. If r > 0: then n > 2 /J,I. 
Thus in either case IJ,( < jn, and so there exists J, C_ {l,..., n} with 

lJ,I > $2 - 2m 028~22m 
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such that for every j E .Z3, IXn V(B,)( ,< 2r and every component of Bj\X 
meets fewer than $8’ different P,‘s. 

Let j E J3. Let Xn V(ZIj) = Yj, and let N(Y,) be the set of those vertices 
which are adjacent in G to at least one element of Yi. A component of Bj\X 
which inciudes no element of N(Yj) is a component of B,i, and hence Bj\X 
has at most d such components. Each of these components meets fewer than 
40” paths Pi. Hence at least m - $ do2 2 ir6’2(6’2 - 1) paths Pi meet at least 
one component of Bj\fu which includes an element of N(Yj). Since / Yji < 2r, 
there exists “j E Yj such that at least $!?2(82 - 1) paths Pi meet a component 
of Bj\X which includes a vertex adjacent to vj. Let {Dj ,..., Dj”“‘} be a 
minimal set of components of Bj’$ such that each D; includes a vertex 
adjacent to vj and at least $6*(6* - 1) paths Pi meet Df U ... U D”(j). Then 
a(j) > $’ since each component of Bj\X meets fewer than id2 paths Pi. By 
the minimality of {D;,..., Dg”‘} there exist PiCll,..., PiCmti)) such that PiCu) 
meets Dj” but meets no Df (t # u), for u = I,..., o(j). Then i( 1) ,..., i(a(j)) are 
distinct: define Z(j) = { i( l),..., i(if?*)}. 

Then Z(j) E (l,..., m}, for all j E J3, and so there exists J4 c J, with iJ4 j > 
2-” jJ,[, such that for j, j’ E J,, Z(j) =Z(j’) =Z say. Renumber, for 
simplicity, so that Z= { 1, 2 ,..., is’}, and for j E: J4, Pi meets 0: but does not 
meet any 0:’ for distinct i, i’ E I. For each i E I, let Qi be the subgraph of G 
consisting of the vertices and edges in the graphs Pi and Dj(j E J4). Then 

Q , >..., Qcp,2 are all connected, and are disjoint, and do not intersect X. 
Moreover, if 1 < i < 40’ and j E J4, ~1,~ is adjacent to a vertex of Q;. It 
follows that G has a minor isomorphic to the complete bipartite graph 

K,JJ 1,8’/2. 

But K #V2.02/2 has a minor isomorphic to the O-grid, and G E Xg; thus 
/J, / < $8*. Hence 1 J, / < 2”49*, and so 

that is. 

n < 2”(t?2 + 4me2Q-*). 

The result follows. 

(2.9 j. Zf B, ?..., B, are disjoint connected subgraphs of a graph G E .Fe3 
and V’ s V(G) and r > 0 is an ilzteger, then one of the following is true: 

(i) there exists JS {I,..., n ) with [ J1 = r such that for each j E J there 
is a path Pj in G from Bj to V’, and the paths Pj (j E J) are disjoint, and 
each has no internal vertex in V’ u UjEJ V(B,i); 
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(ii) there exist XE V(G) and Jc {I,..., n] with 1x1 + \JI < 2”@, such 
that X separates V’ from every Bj (j E {l,..., n} -J). 

l+ooJ We assume (i) is false. Define v = 2re1’2(62 + 2rQ2ec ‘). Let 
X0 = J, = 0. We define inductively a sequence X,, X, ,..., X, of subsets of 
V(G) and a sequence J,,J, ,..., J, of subsets of (l,..., n}, as follows: Suppose 
that X0 ,..., Xi-, , J, ,..., Ji-r are defined. PutJ’= {I ,..., n} - (J,U ..- UJi-,). 
Now no J cJ’ satisfies (i), and so (by a form of Menger’s theorem) there 
exist Xi E V(G) and Ji EJ’ with jXil + IJil < Y, such that every path in G 
from any B, (j E J’) to V’ uses either some vertex of Xi or some vertex of 
UjeJi V(Bj). This completes our inductive definition of Xi, Ji. 

Put X’=X,U*.. UX,, J==J,U.** UJ,. For l<i<v, let Bl be the 
union of the graphs Bj (j E JJ. Then B: has at most r components. Put 

A,=U(V(Bj):jE{I,...,n]-J) 

and A, = V’. Now for 1 < i < v, X’ U V(Bi) separates A, and A, ; for every 
path from A, to A, uses either a vertex of Xi or a vertex of B; , by definition 
of Xi, Ji. Moreover, for 1 < i< IJ, IXi/ + lJi\ < r, and SO IX’/ < YV. By (2.8), 
the maximum number of disjoint paths in G from A, to A,) avoiding X’, is 
less than +r6’ (to apply (2.8), we set d = r). By Menger’s theorem, there 
exists X” E V(G) with 

j X” 1 < $rt14 

such that X’ U X” separates A, and A,. Put X = X’ U X”; then X separates 
V’ from every Bj (j E {l,..., n) -J); and 

I4 + I4 < IX”1 + IX’/ + IJI 

G Ix”1 + F (IxiI + IJill 
I<I<U 

< +734 + rv 

< 2’@ 

(after some arithmetic) and so (ii) is true. 

Incidentally, the following extension of (2.7) will appear in [4]. 

(2.10). There is an integer 8’ > 0 such that if A,,...,Agz are disjoint 
connected subgraphs of a graph G E FO, and B f ,..., B,, are also disjoint 
connected subgraphs of GI then some Ai is disjoint from some Bi. 
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3. THE MAIN THEOREM 

In order to prove our main theorem (l.l), it is only necessary to prove a 
special case, as we shall now see. Let Y, be the complete bipartite graph 
K ,,3. For Iz. > 2, we define Y, inductively by taking a copy of YAP,, and to 
each vertex of valency 1 in this graph making adjacent two new vertices. 
(See Fig. 1.) 

In order to prove (l.l), it is only necessary to prove the following: 

(3.1). For A > 1, odd, there is a number w(A) such that every graph with 
no minor isomorphic to Y,I has path-with < w(A). 

(The “odd” condition is introduced for future technical convenience.) 

Proof of (1.1) (assuming (3.1)). For any forest H there is an odd value 
of A such that Y, has a minor isomorphic to H (e.g., any odd A > 1 V(H)1 will 
do, although this is usually extravagent). If G is a graph with no minor 
isomorphic to H, then it certainly has no minor isomorphic to Y,, and so, 
by (3.1), it has path-width ,< w(A). Thus (1.1) is true. 

We now introduce a second class of graphs. H, is the graph with just one 
vertex and no edges, and H, is K,,, . For A > 2, we define H, inductively by 
taking a copy of H,-, , and to each vertex of valency 1 in this graph making 
adjacent two new vertices. (See Fig. 2.) 

(3.2). For an-v even 1 > 0, the (2’A3t”‘2 - I)-grid has a minor isomorphic 
to H,. 

The proof by induction is left to the reader. We hope that a “proof by 
diagram” is convincing. Figure 3 shows a subdivision of H, drawn as a 
subgraph of a 15-grid. 

(3.3). For any A > 1, Y, is isomorphic to a minor of H,, , . 

The proof is clear. 

FIGURE I 
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0 

“0 “I Hz H3 

FIGURE 2 

(3.4). For aq odd A > 1, the (2’A+33”2 - l)-grid has a minor isomorphic 
to Y,. 

This follows from (3.2) and (3.3). 

(3.5). For odd A > 1, let 8= max(6, 2’,3t3”2). For any graph G, if G has 
no minor isomorphic to Y,, then G E fO. 

This follows from (3.4). 
Thus to study the graphs with no minor isomorphic to Y,, we can confine 

ourselves to ye, and hence we can apply the results of Section 2. 
A rooted graph is a graph with one vertex distinguished, called the root. 

We denote the root of G by p(G). 
If G,, G, are rooted graphs we say that G, has a rooted minor isomorphic 

to G, if for each vertex u of G, there is a subset Y(v) of the vertices of G,, 
satisfying conditions (M 1 k(M4): 

(Ml) For distinct v, v’ E V(G,), Y(v) f’ Y(v’) = 0. 

(M2) For each v E V(G,), G, / Y(v) is connected. 

(M3) There is an iizjection f: E(G,) -+ E(G,) such that for every edge 

FIGURE 3 
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e of G, , if e has ends v, v’ say, then f(e) has one end in Y(v) and the other 
in Y(v’). 

WI P(G,) E Y@(G,)). 

We now introduced two further classes of trees. If y > 1, 6 > 1 are 
integers, the rooted tree P(y, S) is defined as follows: Take 6 disjoint copies 
of H,-,. Each of these copies has a unique vertex of even valency; let these 
be u ,,..., ug, say. Take a path of 6 new vertices v ,,..,, vg say, and for 
1 < i < 6, add an edge joining ui and vi* The resultant graph is rooted at zi,, 
and is P(y, 8). We also define P(0, S) to be the path of 6 vertices, rooted at 
one end, for 6 > 1. 

Second, if y > 1, 6 > 2 are integers, we define a rooted tree Q(y, S) as 
follows: Take a copy of P(v - 1,6 - l), with root U, say, and a disjoint copy 
of Hy-l. Let v2 be the (unique) vertex of the second graph with even valency. 
Take a new vertex v, and two new edges, joining v to v,, v2, respectively. 
The resultant graph is Q(y, S), and it is rooted at v. (See Fig. 4.) 

NOW let d > 1 be odd. Define 0 = max(6, 2’At3”2), a = 2@, and /? = 2@. 
For integers x, i > 0, define A(x) inductively, by 

f,(x) = x> h(x) = .f- ,@“)(i > 0). 

For integers y, 6 with y > 0, and 6 > 2, define p(y, 6) =fdS); and if y > 1, 
define q(y, 8) = f,- 1 @ + 26). 

(3.6). With the above definitions, the following inequalities hold: 

(i) p(0, S) > 6 - 2 for all 6 > 2; 

(ii) q(y, S) > 0’ + p(y - I,2 + 46*’ + 26)for 1 < y, 2 < 6; 

(iii> p(Y, 4 > 4(y, 4)for 1 < Y, 2 < 6; 
(iv) p(y, S) > cP.*~ + max(p(y, 6 - l), q(y, ~cz~‘*~+ 6)) for 1 G y < A, 

3 <6. 

ProoJ: This is routine, and is left to the reader. 

The aim of the next two sections is to prove the following: 

P (3,5) 

FIGURE 4 
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(3.7). (i) rf G E Fe, and is rooted and connected, and has no rooted 
minor isomorphic to P(y, 6), then G has path-width at most p(y, S), for 
O<y<A,6>2. 

(ii) If G E X0, and is rooted and connected, and has no rooted minor 
isomorphic to Q(y, 6), then G has path-width at most q(y, S), for 1 < y < A, 
62 2. 

Proof of (3.1) (assuming (3.7)). Let G be a graph with no minor 
isomorphic to Y,, where i, > 1 and is odd. 

Let C be any component of G, and let C be assigned a root, arbitrarily. 
Now C has no rooted minor isomorphic to P(;l, 3), because P(k, 3) has a 
minor isomorphic to Y,. Moreover, C E X0, by (3.5). Hence, by (3.7)(i), C 
has path-width Q p(/z, 3), and so by (1.4), G has path-width < p(A,3). 

Thus, to prove our main theorem, it suffices to prove (3.7). 
The proof of (3.7) is divided into three parts, as follows: In Part 1 we 

prove that (3.7)(i) is true when y = 0. In Part 2 we show that for y with 
1 < y <A, if (3.7)(i) is true for y - 1 and all 6 > 2, then (3.7)(ii) is true for y 
and all 6 > 2. Finally, in Part 3 we show that for any y with 1 < y < A., if 
(3.7)(ii) is true for y and all 6 > 2, then so is (3.7)(i). These three parts 
combined yield that (3.7) is true. 

Part 1 (y = 0). P(0, 8) is a J-vertex path, rooted at one end. We show, by 
induction on 6, that for 6 > 2 every connected rooted graph with no rooted 
minor isomorphic to P(O,6) has path-width Q 6 - 2. If 6 = 2 this is clear. 
We suppose then that 6 > 2. Let Gi,..., G, be the components of G\@(G)}. 
For 1 < i < r, let vi be a vertex of Gi adjacent to p(G) in G. We define 
p(GJ = ui (1 < i < r). Then certainly for 1 < i < r, Gi has no rooted minor 
isomorphic to P(0, 6 - l), and so by induction has path-width < 6 - 3. 
Hence, by (1.4), G\(p(G)} has path-width < 6 - 3, and so by (1.5), G has 
path-width < 6 - 2. This completes the inductive argument that for 6 > 2 
every rooted connected graph with no rooted minor isomorphic to P(0, 8) 
has path-width < 6 - 2. But by (3.6)(i), ~(0, S) > 6 - 2, and so (3.7)(i) is 
true if y = 0. This completes the argument for Part 1. 

4. PART 2: THE REDUCTION OF Q(y,6) 

We now assume that 1 < y < 1, and that for 6 > 2, every rooted connected 
graph in & with no rooted minor isomorphic to P(y - 1, S) has path- 
width < p(y - 1,6). We shall prove that for all 6 > 2, every rooted connected 
graph in X0 with no rooted minor isomorphic to Q(y, 8) has path- 
width < q(y, 6). 

Suppose then that G E X0, and is rooted and connected, and has no 
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rooted minor isomorphic to Q(y, 6). Define v = 828, and p = 2 -t 4v + 26. If 
G has no rooted minor isomorphic to P(y - 1, p), then by hypothesis it has 
path-width ,< p(y - 1, ,u) < q(y, 6), by (3.6)(ii). We assume then that G has a 
rooted minor isomorphic to P(y - 1,~). Choose N maximum such that G has 
a rooted minor isomorphic to P(y - 1, N), and then N > ,u. Choose an integer 
T maximum so that 2vT,< N - 26. Then T > 2, since p > 4v + 26. Put 
rz - 1 = VT, and then 

by the maximality of T. 
Now G has a rooted minor isomorphic to P(y - 1, N); and so, since all 

vertices of this graph have valency <3, G has a subgraph II’ which is 
isomorphic to a subdivision of P(y- 1, N), with a vertex u say 
corresponding to the root of P(y - 1, N), and G has a path from u to p(G), 
with no vertex except II in common with H’. Let H be the subgraph of G 
consisting of the vertices and edges in H’ together with those in the path. 

Now P(y - 1, N) is formed by taking a path of N vertices vi ,..., VA, say, 
and if y > 2, taking N disjoint copies of HyV2, and joining them to U; ,..., vi8 
appropriately; and then letting v; be the root. Let v1 ,..., v, be the vertices of 
H’ which correspond to vi,..., VA. For 1 < j<N- 1, let Rj be the set of 
vertices of H which may be joined to vN by a path of H which avoids vjY and 
put R,= V(W), R,=a. For 1 <j<n, let S’j=R2j-2-R2j; and put 

S, = Rznm2. Then S,,.,., S, are disjoint, and have union V(H). For 
1 < j < n, let Bj be H 1 Sj. Then each Bj is a connected subgraph of G, and 
B , ,..., B, are disjoint. 

(4.1). For 1 < j < n, Sj separates U ,sjJsj Sjl from Ujsj,<,, S,i, in G. 

For suppose not; then there is a path of G from Sj, to Sjz say, where 
1 <j, < j < j, < YI, with no interior vertices in H. Thus there is a path P of 
G from Sj, to S,, avoiding S, U ... U Sj,_, US,,, , . But then G has a 
rooted minor isomorphic to Q(y, S), as can be seen by deleting all vertices 
and edges of G except those in H and P, deleting all the vertices of 

sj,+* u “’ U S,-1 except those in P, and contracting all edges in B, ,..., B,, 
and P (note that B, has a minor isomorphic to P(y - 1,26) since 
N-2n+2>26). 

(4.2). For v < j < n, there exists Xj & V(G) with IX,1 < i02, separating 

Ul<jt<j-u+l sj# and Uj<j'<n sj,. 
Suppose not. Then by Menger’s theorem there are 46” disjoint paths of G 

from U l<j’&j-“+I sjf to Uj$j,<n Sjr, and yet these two sets are separated 
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by each of Sj-l,+r, Sj-r,+Z’..., Sj, by (4.1). Then we have a contradiction 
from (2.7). 

For v < j < /I, choose Xi as in (4.2) minimal. 
For 1 < j < IZ, let Zj denote the set of all vertices of G which can be joined 

to a vertex of Sj by a path of G which avoids (S, U . . . U S,) - Sj. Then 
clearly Zj n (S, U ... US,)=Sj and Z,U... UZ,= V(G). By (4.1), 
zjnzj,#O only if /j-j’/< I. 

(4.3). For v~j~~l,XjiSj~.+,UZj~I,+zU..~ UZjp,USj. 

For if u E Xj, then by the minimality of Xj there is a path P from 

Ul<j,<j-u+l Sjl to U.i<j’<n SjI w rc h’ h avoids Xj - (v} and uses v, and which 
has no interior vertices in 

u sjcu u s,i#. 
I<.i'<j-1' 1 , T  .iCi'<n 

Since Sjpc.+2U ... USj-r separates U1sj,~j-u+, Sj, and Uj<j,Gn Sj, (by 
(4.1)), P has an interior vertex u in Sjeu+ z U . . . U Sj- r . Choose u such 
that the subpath P’ of P from v to u has minimum length. Then no vertices 
of P’ except v, u are in S,U... US,. If v@S,U... US,, then 
UEZj-“+,u ... uzj-,, becauseofP’.IfvES,U-.. US,,then 

by (4. l), since no interior vertices of P’ are in Sjbl,+, or Si. Thus in either 
case, 

as claimed. 

(4.4). For v<i<n, l,<j<n, ifseSj, then 

(i) Xi separates s and p(G) $ j > 1, and 

(ii) Xi does not separate s and p(G) if j < i - v. 

Statement (i) follows from the definition of Xi, since p(G) E S,. To show 
(ii), we observe that from (4.3), the path of H from s to p(G) does not meet 
Xi ifj<i-v. 

Let Y, = X,,i for 1 < i < T. From (4.3), Y, ,..., Y, are disjoint. 

(4.5). For 1 < i, i’ < T and for every y E Y,,, Y, separates y and p(G) ij 
and only if i < i’. 
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If i = i’ the result is true, and so we assume that i # i’. Define 

and 

By (4.3), y E 2 and there is a path of G from y to some s E S within Z. 
Now Zj n Zj, # 0 only if ij - j’ / < 1, and so this path avoids 

since i # i’. Hence by (4.3) it avoids Yi. Thus Yi separates ji and p(G) if and 
only if it separates s and p(G). The result follows from (4.4). 

For 1 < i ,< T - 1, let Wi be the set of all vertices u of G such that Yi 
separates v and p(G), and Yi+ i does not separate v and p(G). Let W, be the 
set of vertices not separated from p(G) by Y,, and let W, be the set of 
vertices separated from p(G) by YT. Then the sequence 

WOUY,, W,UY*, W,UY, )...) W,_,UY,, w, 

is a path-decomposition of G by (4.5) and (1.7), and the intersection of any 
consecutive pair of terms of this sequence has cardinality <is’. In order to 
complete step 2, it suffices to show that G 1 W,,,.., G / W, each have path- 
width Q(y - 1, cl), by (1.6) and (3.6)(ii). By (1.4), it suffices to show that 
for 0 < i < T, every component of G 1 Wi has path-width Q(y - 1, P). 

Thus, take 0 < i < T, and let C be a component of G / Wi. Assign a root 
to C, arbitrarily. By our initial hypothesis it is sufficient to show that C has 
no rooted minor isomorphic to P(y - 1,~). Suppose for a contradiction, that 
it does; then C has a subgraph D which is isomorphic to a subdivision of 

P(Y - LPU). 
Let 

A= U Sj,B= 0 sj. 
u(i+l)<j<n l<j<o(i-1) 

(4.6). A, B and Wi are disjoint. 

For every vertex of A is separated from p(G) by Yi (if i > 0) and by Yi+ i 
(if i < T), from (4.4). Every vertex of Wi is separated from p(G) by Yi (if 
i > 0) but not by Yi+ 1 (if i ( T), by the definition of Wi. Every vertex of B is 
separated from p(G) neither by Yi (if i > 0) nor by Yi+ , (if i < T), from 
(4.4). The result follows. 
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(4.7). There is a path in G from V(D) to V(H) avoiding A U B. 

This follows from (4.5) and the definition of WI when i= 0. When 
1 < i < T there is a path P within Wi from D to Yi, by definition of Wi. P 
certainly avoids A U B, by (4.6). Let y be a vertex of Yi on P. By (4.3) there 
is a path P’ from y to Suieutl U ..- U SDi which avoids A U B. The union 
of P and P’ yields a path satisfying (4.7). 

If i > 2, let wi be the vertex of SviPU which is adjacent in H to a vertex of 

sui--u+l’ If i = 0 or 1, let wi be p(G). 

(4.8). There is a path P, in Gfiom D to w,, avoiding A U B - (w,}. 

This is clear from (4.7). Let P, be a minimal such path, so that it uses 
only one vertex of D, d, say. Let P, be the path of H from wi to p(G). 

Now D is a subdivision of P(y - 1,4V + 26 f 2). But 
P(y - 1,4v + 26 + 2) consists of a (4v + 26 + 2).vertex path with vertices 
p(l),..., p(4v t 26 t 2) say, in order, and (if y > 1) 4v + 26 + 2 copies of 
H y-2, H(l),..., H(4v + 26 + 2) say, in order, and an edge from p(j) to H(j) 
(1 <j < 4v + 26 + 2). By the first end of D we mean the subgraph of D 
corresponding to H(l), H(2) and the path of D joining them. By the second 
end we mean the subgraph corresponding to H(4v + 28 t l), H(4v + 26 t 2) 
and the path joining them. 

(4.9). d, is in one of the ends of D. 

Otherwise, since 4~ + 26 + 2 > 26, G has a rooted minor isomorphic to 
Q(y, S), as can be seen by deleting all vertices and edges of G not in D, P,, 
or P,, and contracting all edges in P, and P,. 

Without loss of generality we may assume that d, is in the first end of D. 

(4.10). if T. 

If i = T, then G has a rooted minor isomorphic to P(y - 1, 2v(T - 1) t 
4~ + 26) by (4.8) and (4.9), as can be seen by deleting all vertices and edges 
of G except those of H within B and those of P, and D, and by contracting 
the edges in P, and those in the first end of D. But 

2v(T-1)+4v+26>N 

by the maximality of T, contrary to the maximality of N. 
Let w, be the vertex of Svitv adjacent in H to a vertex of Suit”-,. 

(4.11). There is a path P, from D to w, avoiding A U B - (wz}. 

This follows from (4.7) and (4.10). 
Choose a minimal path P, satisfying (4.11) so that P, only contains one 
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vertex of D, d, say. Let P, be the path of H from w2 to S,, with no internal 
vertex in S,. 

(4.12). d, is in the second end of D. 

If not, then the second end of D is disjoint from P,, P,, A and B. But then 
G has a rooted minor isomorphic to Q(y, S), as can be seen by deleting all 
vertices and edges of G not in D, P, , P, , P,, P, , and S, and contracting the 
edges of P,, P,, P,, P,, and those of D not incident with vertices of the 
second end. 

(4.13). P, and P, are disjoint. 

If not, then the union of P, and P, contains a path Pi from d, to w2 
avoiding A and B. Pi then satisfies the defining conditions for P,, and so 
from (4.12) we deduce d, is in the second end of D, which is impossible 
because the ends of D are disjoint (since 4~ + 26 + 2 > 4). 

(4.14). Conclusion. 

From (4.12) and (4.13) we deduce that G has a rooted minor isomorphic 
to P(y - l), (N - 4~) + (4~ + 26 + 2 - 4)) = P(y - 1, N + 26 - 2), as can be 
seen by deleting all vertices of G except those in A, B, D, P, and P,, and 
contracting the edges in P,, P, and the ends of D. This contradicts the 
maximality of N, and completes the argument for Part 2. 

5. PART 3: THE REDUCTION OF P(y, 6) WHEN y> 1 

We now assume that 1 < y < /2, and that for all 6 > 2, every rooted 
connected graph in FO with no rooted minor isomorphic to Q(y, S) has path- 
width <q(y, 6). We shall show, by induction on 6 > 2, that every rooted 
connected graph in ;TB with no rooted minor isomorphic to P(y, 8) has path- 
width <p(y: 8). 

Suppose then that G E ;” is a rooted connected graph with no rooted 
minor isomorphic to P(y, 8). If G has no rooted minor isomorphic to Q(y, 4), 
then by hypothesis, its path-width is <q(y, 4) < p(y, 8) by (3.6)(iii). Thus we 
may assume that G has a rooted minor isomorphic to Q(y, 4). 

Now P(y, 2) is isomorphic to a rooted minor of Q(y, 4), and so G has a 
rooted minor isomorphic to P(y, 2). It follows that 6 > 2. By induction on 6, 
we have that every rooted connected graph in FO with no rooted minor 
isomorphic to P(y, 6 - 1) has path-width $&(y, 6 - 1). 

Let H be H,, rooted at its vertex of valency 2. Now H is isomorphic to a 
rooted minor of Q(y, 4) and so G has a rooted minor isomorphic to H. 
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Choose an integer N> 0, maximum such that there exist 
x,, x, ,*a*, X,C V(G), disjoint, with the following properties: 

(Xl) P(G) E X,, and G /X0 rooted at p(G) has a rooted minor 
isomorphic to H; 

(X2) for 1 < i < N, G / Xi has a minor isomorphic to I’-, . 

Now all vertices of Y y- i have valency <3, and so for 1 < i <N, G /Xi has 
a subgraph Bi which is isomorphic to a subdivision of Y,- 1. Moreover, 
G 1 X0 has a subgraph B, which consists of a subgraph H’ isomorphic to a 
subdivision of H, together with a path from p(G) to the vertex of H’ 
corresponding to the root of H, such that the path has only this vertex in 
common with H’. 

Clearly we may assume that Xi = V(Bi) (0 < i < N). Suppose that there 
exists JC {l,..., N} with IJI = 6 . 2y5 and disjoint paths Pj(j E J) of G, such 
that 

(i) for each j E J, Pj has one end in Xj and the other in X, ; 

(ii) for each j E J, Pj has no interior vertex in X, U ()jlEJ Xj,. 

Now B, has only 2y vertices distinct from p(G) of valency 1, and B, is a tree; 
and so there are paths Qi ,..., Qzy of B,, each from p(G) to some vertex of 
valency 1 distinct from p(G), such that every vertex of B, is used by at least 
one of Q, ,..., Q2,. It follows that there exists J’ s J with lJ’( = 6 (=2-yIJI) 
such that for some i (1 < i < 2y), all the paths Pj (j E J’) have their terminal 
vertices on Qi. But then G has a rooted minor isomorphic to P(y, s), as can 
be seen by deleting all vertices except those in Qi and Pj and B, (j E J’), and 
for each j E J’ contracting all edges of Pj except one. Thus there there is no 
such J. 

By (2.9) (setting V’ =X0, r=6. 27, and n = N) we deduce that there 
exists XE V(G) and JC (l,..., NJ with 1x1 + 1Jl <a, where s;Z = a’.*’ (and 
a = 2@, as before), such that X separates X0 from Xj for every 
j E {l,..., NJ -J. To complete the argument for Part 3, it suflices to show 
that every component of G/X has path-width <max(p(y, 6 - l), 
q(y, 3fl + 6)), by (3.6)(iv), (1.4), and (1.5). Thus, let C be a component of 
G\X. There are two cases. 

(5.1). rf X, does not contain any vertex of C, then C has path-width 
GJ(Y,~- 1). 

Let P be a minimal path in G from V(C) to X,. Then P has at least one 
edge, and no interior vertex in V(C) U X,. Let D be the vertex of C on P. 
Root C at v. Suppose that C has a rooted minor isomorphic to P(y, 6 - 1). 
Then G has a rooted minor isomorphic to P(y, a), as can be seen by 
contracting all edges of P except one and contracting one “half’ of B,, 
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suitably chosen. This is a contradiction, and so C has no such rooted minor. 
By induction, (5.1) is true. 

(5.2). If X0 contains a vertex of C, then C has path-width at most 
q(y, 30 + 6). 

In this case C contains no vertices of lJ(Xi: j E {l,..., NJ -J) since X 
separates X,, and this set. Let P be a minimal path of B, from V(C) to p(G). 
Let u be the vertex of C on P. Root C at u. Suppose that C has a rooted 
minor isomorphic to Q(y, 38 + 6). Then there exist XL,..., Xb + i E V(C), 
disjoint, such that C / Xk, rooted at v, has a rooted minor isomorphic to H, 
and for 1 < i < G + 1, C / Xi has a minor isomorphic to Y ye,. But then the 
sets 

x; u V(P), x; )..., XL + 1 and X,(j E { I,..., N) - .I) 

satisfy (Xl) and (X2), and there are R + 1 + N - lJ1 > N of them. This 
contradicts the maximality of N, and hence proves (5.2). This completes the 
argument for Part 3, and so proves (3.7). 
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