Graph Minors. I. Excluding a Forest

Neil Robertson and P. D. Seymour*
Department of Mathematics, Ohio State University, 231 W. 18th Ave, Columbus, Ohio 43210
Communicated by the Editors

Received May 3, 1982

The path-width of a graph is the minimum value of k such that the graph can be obtained from a sequence of graphs G_{1}, \ldots, G_{r} each of which has at most $k+1$ vertices, by identifying some vertices of G_{i} pairwise with some of $G_{i+1}(1 \leqslant i<r)$. For every forest H it is proved that there is a number k such that every graph with no minor isomorphic to H has path-width $\leqslant k$. This, together with results of other papers, yields a "good" algorithm to test for the presence of any fixed forest as a minor, and implies that if P is any property of graphs such that some forest does not have property P, then the set of minor-minimal graphs without property P is finite.

1. Introduction

Let G be a graph. (All graphs in this paper are finite, and may have loops or multiple edges unless we state otherwise.) A sequence X_{1}, \ldots, X_{r} of subsets of $V(G)$ (the vertex set of G) is a path-decomposition of G if the following conditions are satisfied.
(W1) For every edge e of G, some $X_{i}(1 \leqslant i \leqslant r)$ contains both ends of e.
(W2) For $1 \leqslant i \leqslant i^{\prime} \leqslant i^{\prime \prime} \leqslant r, X_{i} \cap X_{i^{\prime \prime}} \subseteq X_{i^{\prime}}$.
The path-width of G is the minimum value of $k \geqslant 0$ such that G has a pathdecomposition X_{1}, \ldots, X_{r} with $\left|X_{i}\right| \leqslant k+1(1 \leqslant i \leqslant r)$.
H is a minor of G if H can be obtained from G by deleting some vertices and/or edges, and/or contracting some edges. The main theorem of this paper is the following:
(1.1). For every forest H there is an integer w such that every graph with no minor isomorphic to H has path-width $\leqslant w$.

[^0]There are three attractive features of the theorem which serve as its motivation. First, the theorem is, in a sense, sharp, for it can be reformulated as follows:
(1.2). Let F be a set of graphs. Then the following are equivalent:
(i) for some integer w, every $G \in \mathscr{F}$ has path-width $\leqslant w$;
(ii) there is a forest H such that no $G \in \mathscr{F}$ has a minor isomorphic to H.

It is easy to prove the equivalence of (1.2) with (1.1) by making use of two observations: (a) if H is a minor of G, then its path-width is no greater than the path-width of G, and (b) there are trees with arbitrarily large pathwidth (e.g., the tree $\mathbf{Y}_{\mathcal{\lambda}}$ defined later has path-width $\left[\frac{1}{2}(\lambda+1)\right\rceil$, for any integer $\lambda \geqslant 1$, where $\lceil x\rceil$ is the least integer not less than x).

The second attractive feature of (1.1) is that it dovetails nicely with the main theorem of [3]; the two results together yield the following:
(1.3). Let G_{1}, G_{2}, \ldots, be a countable sequence of graphs, such that G_{1} is a forest. Then there exist $j>i \geqslant 1$ such that G_{i} is isomorphic to a minor of G_{j}.
(This implies the final result mentioned in the abstract, as may easily be seen.) Theorem (1.3) is relevant to an interesting conjecture of Wagner (unpublished), that (1.3) is true even without the hypothesis that G_{1} is a forest. See [3] for a more complete discussion.

And third (see [1]), (1.1) yields a "good" algorithm to test if an arbitrary graph G has a minor isomorphic to a fixed forest H. ("Good" here is in its technical sense of "polynomially bounded." It is not a practical algorithm; the exponent of the polynomial, although constant, is enormous.)

For the purposes of this paper we need the following three facts about path-width (the proofs are easy).
(1.4). If every connected component of G has path-width $\leqslant k$, then G has path-width $\leqslant k$.
(1.5). If $X \subseteq V(G)$ and $G \backslash X$ has path-width $\leqslant k$, then G has pathwidth $\leqslant k+|X|$.
($G \backslash X$ denotes the result of deleting X.)
(1.6). If $X_{1}, \ldots, X_{r} \subseteq V(G)$ is a path-decomposition of G, and for $1 \leqslant i \leqslant r-1,\left|X_{i} \cap X_{i+1}\right| \leqslant k$, and for $1 \leqslant i \leqslant r$,

$$
G \backslash \bigcup\left(X_{j}: 1 \leqslant j \leqslant r, j \neq i\right)
$$

has path-width $\leqslant k^{\prime}$, then G has path-width $\leqslant k^{\prime}+2 k$.

Our proof of (1.1) is basically by induction on the "complexity" of the forest H. This is explained in detail in Section 3, and the induction argument is performed in Sections 4 and 5. Section 2 contains some crucial lemmas about "grids."

Our terminology is mostly standard, but a few terms need explanation. If X, Y are sets, $X-Y$ denotes

$$
\{x: x \in X, x \notin Y\} .
$$

If G is a graph, $V(G)$ and $E(G)$ denote its vertex-set and edge-set, respectively. A graph is simple if it has no loops or multiple edges. If $X \subseteq V(G)$, $G \backslash X$ denotes the result of deleting from G all the vertices in X, and $G \mid X$ denotes $G \backslash(V(G)-X)$. A graph G is a subdivision of a graph H if H can be obtained from G by (repeatedly) choosing a vertex of valency 2 and contracting an edge incident with it which is not a loop. Two subgraphs of a graph are disjoint if they have no common vertices, and a set of subgraphs is disjoint if every pair of its members are disjoint. Every path has at lcast one vertex, and no "repeated" vertices. It has an initial and a terminal vertex (which are equal for a one-vertex path) called its ends, and any other vertices are called internal vertices. A path avoids $X \subseteq V(G)$ if it has no vertex in X. $X \subseteq V(G)$ separates $Y, Z \subseteq V(G)$ if no path in G from Y to Z avoids X. (Thus $Y \cap Z \subseteq X$.) We say that X separates $y, z \in V(G)$ if it separates $\{y\},\{z\}$.

We shall require the following lemma:
(1.7). Let ρ be a vertex of a graph G, and let $Y_{1}, Y_{2}, \ldots, Y_{T}$ be disjoint subsets of $V(G)$, where $T \geqslant 1$. Suppose that for $1<i, i^{\prime} \leqslant T$, and for all $y \in Y_{i^{\prime}}, Y_{i}$ separates y and ρ if and only if $i \leqslant i^{\prime}$. For $1 \leqslant i<T$, let W_{i} be the set of all vertices of G separated from ρ by Y_{i}, and not separated from ρ by Y_{i+1}. Let W_{0} be the set of vertices not separated from ρ by Y_{1}, and let W_{T} be the set of all vertices separated from ρ by Y_{T}. Then the sets $W_{0}, W_{1}, \ldots, W_{T}$ are disjoint and partition $V(G)$, and $Y_{i} \subseteq W_{i}(1 \leqslant i \leqslant T)$, and the sequence

$$
W_{0} \cup Y_{1}, W_{1} \cup Y_{2}, \ldots, W_{T-1} \cup Y_{T}, W_{T}
$$

is a path-decomposition of G.
Proof. For every vertex $v \in V(G)$, there is a unique value of i with $0 \leqslant i \leqslant T$ such that
(i) either $i=0$ or Y_{i} separates v and ρ, and
(ii) either $i=T$ or Y_{i+1} does not separate v and ρ.

For it is clear that there is at least one such value of i; and if i, i^{\prime} are two
values, with $i<i^{\prime}$ say, then $i<T$ and $i^{\prime}>0$, and we have that Y_{i+1} does not separate v and ρ, and Y_{i}, separates v and ρ. Let P be a path in G from v to ρ avoiding Y_{i+1}. Then P meets Y_{i}, and so Y_{i+1} does not separate Y_{i}, and ρ, contrary to our hypothesis.

It follows that for every vertex v there is a unique value of i with $v \in W_{i}$, and so $W_{0}, W_{1}, \ldots, W_{T}$ partition $V(G)$. Clearly, $Y_{i} \subseteq W_{i}(1 \leqslant i \leqslant T)$. It remains to prove that the sequence

$$
W_{0} \cup Y_{1}, W_{1} \cup Y_{2}, \ldots, W_{r_{-1}} \cup Y_{T}, W_{T}
$$

is a path-decomposition of G. We need only show (W1), since (W2) is obvious.

Let e be an edge of G, with ends u, v say. Let $u \in W_{i}, v \in W_{j}$, where $i \leqslant j$ say. If $i=j$, then ρ has both ends in some set in the sequence, as required; we assume therefore that $i<j$. Thus Y_{i+1} separates v and ρ. It does not separate u and ρ, since $u \in W_{i}$, and yet u, v are adjacent. It follows that $v \in Y_{i+1}$, and so e has both ends in $W_{i} \cup Y_{i+1}$, as required.

2. Grids

If $\theta \geqslant 2$, the θ-grid is the simple graph with vertices $v_{i j}(1 \leqslant i, j \leqslant \theta)$ in which $v_{i j}$ and $v_{i^{\prime} j^{\prime}}$ are adjacent if $\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|=1$. F_{θ} denotes the set of all graphs with no minor isomorphic to the θ-grid. For the remainder of the paper, $\theta \geqslant 6$ will be fixed and, for convenience, even. In this section we prove some connectivity results about the graphs in F_{θ}.
(2.1). If P_{1}, \ldots, P_{m} are disjoint paths of a graph $G \in \mathscr{F}_{\theta}$, and B_{1}, \ldots, B_{n} are also disjoint paths, and each P_{i} has exactly one vertex in common with each B_{j}, and each P_{i} meets B_{1}, \ldots, B_{n} in that order, then either $m<\theta$ or $n<\frac{1}{2} \theta \cdot \theta$!.

Proof. We assume that $m \geqslant \theta$. Since there are only $\frac{1}{2}(\theta$!) different orderings of $P_{1}, \ldots, P_{\theta}$ up to reversal, it follows that there exists $J \subseteq\{1, \ldots, n\}$ with $|J| \geqslant n / \frac{1}{2}(\theta!)$ such that for $j, j^{\prime} \in J, B_{j}$ and B_{j}, meet $P_{1}, \ldots, P_{\theta}$ in the same order or the reverse. If $n \geqslant \frac{1}{2} \theta \cdot \theta$!, then $|J| \geqslant \theta$ and so G has a minor isomorphic to the θ-grid, which is impossible. Thus $n<\frac{1}{2} \theta \cdot \theta$!.
(2.2). If P_{1}, \ldots, P_{m} are disjoint paths of $G \in \mathscr{F}_{\theta}$, and B_{1}, \ldots, B_{n} are disjoint stars, and each P_{i} has exactly one vertex in common with each B_{j}, and no P_{i} contains the centre of any star B_{j}, and each P_{i} meets B_{1}, \ldots, B_{n} in that order, then either $m<\theta$ or $n<\theta(\theta-1)$.
(A star is a tree in which one vertex, called the centre, is adjacent to all others.)

Proof. We may assume, by deletion, that every vertex and edge of G is either in some P_{i} or in some B_{j}; and by contraction, that every vertex is in some B_{j}. For $1 \leqslant j \leqslant n$ let $v(j)$ be the centre of the star B_{j}, and let the common vertex of P_{i} and B_{j} be $v(i, j)(1 \leqslant i \leqslant m)$. We assume, for a contradiction, that $m \geqslant \theta$ and $n \geqslant \theta(\theta-1)$. For $1 \leqslant k \leqslant \theta$, let Q_{k} be the subgraph of G induced by

$$
\begin{aligned}
& \bigcup_{l \leqslant l \leqslant \theta-1}\{v(l,(k-1)(\theta-1)+l) \\
& \quad v((k-1)(\theta-1)+l), v(l+1,(k-1)(\theta-1)+l)\}
\end{aligned}
$$

We see that for $1 \leqslant k \leqslant \theta, Q_{k}$ is a path, meeting $P_{1}, \ldots, P_{\theta}$ in that order, and each P_{i} meets $Q_{1}, \ldots, Q_{\theta}$ in that order. But then G has a minor isomorphic to the θ-grid, a contradiction.
(2.3). If P_{1}, \ldots, P_{m} are disjoint paths of $G \in \mathscr{F}_{\theta}$, and B_{1}, \ldots, B_{n} are disjoint connected subgraphs of G, and each P_{i} meets each B_{j}, and for $1 \leqslant j<j^{\prime} \leqslant n$ all vertices of B_{j} on P_{i} occur before all vertices of $B_{j^{\prime}}$, then either $m<\frac{1}{2} \theta^{2}$ or $n<\theta^{2 \theta-2}$.

Proof. If possible, choose a counterexample with $|E(G)|+m$ minimum. Then evidently we have $m=\frac{1}{2} \theta^{2}$.

If some P_{i} has more than one vertex in common with some B_{j}, we may contract the edges of P_{i} between the two vertices of B_{j} and produce a smaller counterexample, a contradiction. Thus each P_{i} meets each B_{j} in exactly one vertex, and in particular no edge is both in some P_{i} and in some B_{j}. Each B_{j} is a tree, for if some B_{j} is not, we may delete an edge from it and produce a smaller counterexample. Every vertex v of each B_{j} is on some P_{i}; for if not, we may contract some edge of B_{j} incident with v and produce a smaller counterexample. It follows that each B_{j} has exactly $\frac{1}{2} \theta^{2}$ vertices.

It is elementary that for $1 \leqslant j \leqslant n, B_{j}$ has a subgraph Q_{j} which is either a path with θ vertices or a tree with θ end-vertices.

For $1 \leqslant j \leqslant n$, let $I_{j} \subseteq\left\{1, \ldots, \frac{1}{2} \theta^{2}\right\}$ be $\left\{i: P_{i}\right.$ meets Q_{j} in some vertex which, if Q_{j} is not a path, is an end-vertex of $\left.Q_{j}\right\}$. Then $\left|I_{j}\right|=\theta$ for all j, and so there exists $J \subseteq\{1, \ldots, n\}$ with

$$
|J| \geqslant n\left(\binom{\frac{1}{2} \theta^{2}}{\theta}\right.
$$

such that $I_{j}=I_{j}$, for $j, j^{\prime} \in J$.
Let $J_{1} \subseteq J$ be $\left\{j \in J: Q_{j}\right.$ is a path $\}$ and let $J_{2}=J-J_{1}$. By (2.1), $\left|J_{1}\right|<\frac{1}{2} \theta \cdot \theta$!, and by (2.2) $\left|J_{2}\right|<\theta(\theta-1)$. Thus

$$
|J|<\frac{1}{2} \theta \cdot \theta!+\theta(\theta-1)
$$

and so

$$
\begin{aligned}
n & <\binom{\frac{1}{2} \theta^{2}}{\theta}\left(\frac{1}{2} \theta \cdot \theta!+\theta(\theta-1)\right) \\
& \leqslant \theta^{2 \theta-2}
\end{aligned}
$$

since $\theta \geqslant 6$, a contradiction, as required.
(2.4). If P_{1}, \ldots, P_{m} are disjoint paths of $G \in \mathcal{F}_{\theta}$, and B_{1}, \ldots, B_{n} are disjoint connected subgraphs of G, and each B_{j} meets at least $\frac{1}{2} \theta^{2}$ of P_{1}, \ldots, P_{m}, and for $1 \leqslant i \leqslant m$ and for $1 \leqslant j<j^{\prime} \leqslant n$, all vertices of B_{j} on P_{i} occur before all vertices of $B_{j^{\prime}}$, then $n<\theta^{2 \theta-2}\left(\begin{array}{c}\frac{1}{2} \theta^{2}\end{array}\right)$.

Proof. For $1 \leqslant j \leqslant n$, choose $I_{j} \subseteq\{1, \ldots, m\}$ with $\left|I_{j}\right|=\frac{1}{2} \theta^{2}$ such that P_{i} meets B_{j} for each $i \in I_{j}$. Now there exists $J \subset\{1, \ldots, n\}$ with $|J| \geqslant n\left(\underset{1}{m} 0^{2}\right)^{-1}$, such that for $j, j^{\prime} \in J, I_{j}=I_{j^{\prime}}=I$ say. Then $|I|=\frac{1}{2} \theta^{2}$. Now each path P_{i} ($i \in I$) meets each $B_{j}(j \in J)$ in order, and so by (2.3), $|J|<\theta^{2 \theta-2}$. The result follows.
(2.5). If $A_{1}, A_{2} \subseteq V(G)$, and there is a unique set $\left\{P_{1}, \ldots, P_{m}\right\}$ of m disjoint paths in G from A_{1} to A_{2}, and every vertex of G is in one of these paths, then there is an integer-valued function μ defined on $V(G)$, such that
(i) if v^{\prime} is after v on P_{i}, then $\mu\left(v^{\prime}\right)>\mu(v)(1 \leqslant i \leqslant m)$;
(ii) for any integer t, Z_{t} separates $\{v: \mu(v)<t\}$ from $\{v: \mu(v) \geqslant t\}$, where $Z_{t}=\left\{v\right.$: for some i, v is the first vertex on P_{i} with $\left.\mu(v) \geqslant t\right\}$.

Proof. Step 1. There is no sequence $u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{r}, v_{r}$ of distinct vertices of G, where $r \geqslant 1$, and for $1 \leqslant j \leqslant r v_{j-1}, u_{j}$ are adjacent, joined by an edge not in any of P_{1}, \ldots, P_{m} (setting $v_{0}-v_{r}$), and $u_{1}, u_{2}, \ldots, u_{r}$ are all on different P_{i} 's, and for $1 \leqslant j \leqslant r, v_{j}$ occurs after u_{j} on one of P_{1}, \ldots, P_{m}.

For if there is such a sequence, let us renumber P_{1}, \ldots, P_{m} for simplicity so that u_{i} lies on $P_{i}(1 \leqslant i \leqslant r)$. For $1 \leqslant i \leqslant r$, let e_{i} be an edge of G joining v_{i-1} and u_{i}. Let Q_{i}, R_{i}, S_{i} be the subpaths of P_{i} from A to u_{i}, from u_{i} to v_{i}, and from v_{i} to B, respectively. Then R_{i} has at least one edge, since $u_{i} \neq v_{i}$. Setting $S_{0}=S_{r}$, we have Q_{i} and S_{i-1} are disjoint $(1 \leqslant i \leqslant r)$ and so Q_{i}, e_{i}, and S_{i-1} form a path P_{i}^{\prime} say from A_{1} to A_{2}. Then $P_{1}^{\prime}, \ldots, P_{r}^{\prime}, P_{r+1}, \ldots, P_{m}$ are disjoint paths of G from A_{1} to A_{2}; and this set is different from P_{1}, \ldots, P_{m}, since none of P_{1}, \ldots, P_{m} uses the edge e_{1}. This contradicts our hypothesis that P_{1}, \ldots, P_{m} are unique.

Step 2. There is no sequence $u_{1}, v_{1}, \ldots, u_{r}, v_{r}$ of vertices of G, where $r \geqslant 1$, such that for $1 \leqslant i \leqslant r, v_{i-1}, u_{i}$ are adjacent, joined by an edge not in any of P_{1}, \ldots, P_{m} (setting $v_{0}=v_{r}$), and for $1 \leqslant i \leqslant r, v_{i}$ occurs after u_{i} on one of P_{1}, \ldots, P_{m}.

If possible, choose such a sequence with r minimum. If $u_{1}, u_{2}, \ldots, u_{r}$ are all on distinct paths from P_{1}, \ldots, P_{m}, we contradict the result of step 1 . Thus we may assume that for some $j \neq j^{\prime}$ with $1 \leqslant j, j^{\prime} \leqslant r, u_{j}$ and $u_{j^{\prime}}$ are both on P_{1} say, and by symmetry we may assume that either $u_{j}=u_{j}$, or u_{j} occurs before u_{j}, on P_{1}. Consider the sequence

$$
u_{j^{\prime}+1}, v_{j^{\prime}+1}, \ldots, u_{j-1}, v_{j-1}, u_{j}, v_{j^{\prime}}
$$

reading the subscripts modulo r if $j<j^{\prime}$. The sequence has $2\left(j-j^{\prime}\right)$ terms if $j>j^{\prime}$, and $2 r-2\left(j^{\prime}-j\right)$ terms if $j<j^{\prime}$. In either case it has fewer than $2 r$ terms, and hence contradicts the minimality of r.

Step 3. For $u, v \in V(G)$, we say $u<v$ if there is a sequence $u_{0}, v_{0}, \ldots, u_{r}, v_{r}$ with $r \geqslant 0$, such that $u=u_{0}, v_{r}=v$, and for $1 \leqslant i \leqslant r, v_{i-1}$, u_{i} are adjacent, joined by an edge not in any of P_{1}, \ldots, P_{m}, and for $1 \leqslant i \leqslant r-1, v_{i}$ occurs after u_{i} on one of P_{1}, \ldots, P_{m}, and v_{0} occurs after u_{0} on one of P_{1}, \ldots, P_{m}, and either $v_{r}=u_{r}$ or v_{r} occurs after u_{r} on one of P_{1}, \ldots, P_{m}. Then $(V(G),<)$ is a strict partial ordering.

We must check that if $u<v<w$, then $u<w$; and that $v<v$. First, if $u<v<w$, let

$$
\begin{aligned}
& u=u_{0}, v_{0}, \ldots, u_{r}, v_{r}=v \\
& v=u_{0}^{\prime}, v_{0}^{\prime}, \ldots, u_{s}^{\prime}, v_{s}^{\prime}=w
\end{aligned}
$$

be the corresponding sequences. Then the sequence

$$
u=u_{0}, v_{0}, \ldots, u_{r}, v_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{s}^{\prime}, v_{s}^{\prime}=w
$$

demonstrates that $u<w$. Second, if $v<v$, then there is a sequence

$$
v=u_{0}, v_{0}, \ldots, u_{r}, v_{r}=v
$$

we have $r \geqslant 1$, since $u_{0} \neq v_{0}$, and so the sequence $u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{r-1}$, v_{r-1}, u_{r}, v_{0} contradicts the result of step 2 . Hence $<$ is a strict partial ordering.

Step 4. For each $v \in V(G)$, let $\mu(v)$ be an integer, chosen so that for v, $v^{\prime} \in V(G)$, if $v<v^{\prime}$, then $\mu(v)<\mu\left(v^{\prime}\right)$. (This is possible since $<$ is a strict partial ordering of $V(G)$.) Then μ satisfies our requirements.

Certainly if v^{\prime} occurs on some P_{i} after v, then $v<v^{\prime}$ and so $\mu(v)<\mu\left(v^{\prime}\right)$; hence condition (i) of (2.5) is satisfied. For any integer t, let $Z_{t}=\{v \in V(G)$: for some $i(1 \leqslant i \leqslant m), v$ is the first vertex of P_{i} with $\left.\mu(v) \geqslant t\right\}$. Let $X_{t}=$ $\{v \in V(G): \mu(v)<t\}$, and $Y_{t}=V(G)-\left(X_{t} \cup Z_{t}\right)$. We must show that Z_{t} separates X_{t} and Y_{t}.

But $X_{t} \cup Y_{t} \cup Z_{t}=V(G)$, and so it is sufficient to prove no edge has one
end in X_{t} and the other in Y_{t}. Suppose then that $u \in X_{t}$ and $v \in Y_{t}$ are adjacent. Let v be a vertex of P_{1} say. Since $\mu(v) \geqslant t$, there is a first vertex u^{\prime} say of P_{1} with $\mu\left(u^{\prime}\right) \geqslant t$. We have $u^{\prime} \in Z_{t}$ and so $v \neq u^{\prime}$, and u^{\prime} occurs on P_{1} before v. But u and v are adjacent, and are joined by an edge not in any of P_{1}, \ldots, P_{m}; and so the sequence

$$
u^{\prime}, v, u, u
$$

demostrates that $u^{\prime}<u$. Yet $\mu\left(u^{\prime}\right) \geqslant t>\mu(u)$, a contradiction. This completes the proof of (2.5).
(2.6). Suppose that $G \in \mathscr{F}_{\theta}$, and $A_{1}, A_{2} \subseteq V(G)$, and $m>0$ is an integer, and the following conditions are satisfied:
(i) there is a unique set $\left\{P_{1}, \ldots, P_{m}\right\}$ of m disjoint paths in G from A_{1} to A_{2};
(ii) every vertex of G is in one of P_{1}, \ldots, P_{m};
(iii) B_{1}, \ldots, B_{n} are disjoint connected subgraphs of G, and each B_{j} meets at least $\frac{1}{2} \theta^{2}$ of P_{1}, \ldots, P_{m}.
Then $n<2 m \theta^{20-2}\left(\begin{array}{c}\frac{1}{2} \theta^{2}\end{array}\right)$.
Proof. Define $s=\lceil n / 2 m\rceil$. Choose an integer-valued function μ on $V(G)$ as in (2.5). Define a sequence of integers k_{1}, \ldots, k_{s} as follows:

$$
\begin{aligned}
& k_{1}=\min \left(k: \text { for some } j(1 \leqslant j \leqslant n), \mu(v)<k \text { for all } v \in V\left(B_{j}\right)\right), \\
& k_{l}=\min \left(k: \text { for some } j(1 \leqslant j \leqslant n), k_{l-1} \leqslant \mu(v)<k \text { for all } v \in V\left(B_{j}\right)\right)
\end{aligned}
$$

$$
(2 \leqslant l \leqslant s) .
$$

We must show that this is well defined. Let us suppose inductively that k_{l} is well defined for $1 \leqslant l^{\prime}<l$, where $1 \leqslant l \leqslant s$, and we shall show that k_{l} is well defined. If $l=1$ this is clear, and we assume $l>1$. For each integer t, let $Z_{t}=\left\{v \in V(G)\right.$: for some i, v is the first vertex of P_{i} with $\left.\mu(v) \geqslant t\right\}$. For $1 \leqslant l^{\prime}<l$, let

$$
J_{l^{\prime}}=\left\{j: 1 \leqslant j \leqslant n, \text { and for some } v \in V\left(B_{j}\right), \mu(v)<k_{l^{\prime}}\right\} .
$$

Then clearly for $l^{\prime} \geqslant 2$, we have $I_{l^{\prime}-1} \subset J_{l^{\prime}}$; we claim that

$$
\left|J_{l^{\prime}}-J_{l^{\prime}-1}\right| \leqslant 2 m .
$$

To prove that it is sufficient to show that for every $j \in J_{l^{\prime}}-J_{l^{\prime}-1}, B_{j}$ meets $\left(Z_{k_{l^{\prime}-1}} \cup Z_{k_{l}}\right)$, because $\left|Z_{t}\right| \leqslant m$ for every integer t, and B_{1}, \ldots, B_{n} are disjoint. Suppose then that $j \in J_{l^{\prime}}-J_{l^{\prime}-1}$. There exists $u \in V\left(B_{j}\right)$ such that $\mu(u)<k_{l^{\prime}}$. If there exists $u^{\prime} \in V\left(B_{j}\right)$ such that $\mu\left(u^{\prime}\right) \geqslant k_{l^{\prime}}$, then B_{j} uses a
vertex from $Z_{k_{l}}$, because $Z_{k_{l^{\prime}}}$, separates $\left\{v: \mu(v)<k_{l^{\prime}}\right\}$ and $\left\{v: \mu(v) \geqslant k_{l}\right\}$. We may assume therefore that $k_{l^{\prime}-1} \leqslant \mu(v)<k_{l}$, for every vertex v of B_{j}. By the minimality of $k_{l^{\prime}}$, there is a vertex v of B_{j} with $\mu(v) \geqslant k_{l^{\prime}}-1$; and so $\mu(v)=k_{l}-1$. But then $v \in Z_{k^{\prime},-1}$, and again our claim is true. Thus for $2 \leqslant l^{\prime}<l$ we have $\left|J_{l^{\prime}}-J_{l^{\prime}-1}\right| \leqslant 2 m$. A similar argument shows that $\left|J_{1}\right| \leqslant 2 m$. It follows that

$$
\left|J_{l-1}\right| \leqslant 2(l-1) m
$$

and hence that $J_{l-1} \neq\{1, \ldots, n\}$, since $l \leqslant s=\lceil n / 2 m\rceil$. Thus k_{l} is well defined. Hence by induction, k_{1}, \ldots, k_{s} are well defined.

Choose j_{1} with $l \leqslant j_{1} \leqslant n$ so that $\mu(v)<k_{1}$ for every vertex v of $B_{j_{1}}$; and for $2 \leqslant l \leqslant s$, choose j_{l} with $1 \leqslant j_{l} \leqslant n$ so that $k_{l-1} \leqslant \mu(v)<k_{l}$ for every vertex v of $B_{j_{l}}$. Put $C_{l}=B_{j_{l}}(1 \leqslant l \leqslant s)$. Then C_{1}, \ldots, C_{s} are disjoint connected subgraphs of G, and each meets at least $\frac{1}{2} \theta^{2}$ of P_{1}, \ldots, P_{m} : and moreover, for $1 \leqslant l<l^{\prime} \leqslant s$, all vertices of C_{l} on P_{i} occur before all vertices of $C_{l^{\prime}}$. By (2.4), $s<\theta^{2 \theta-2}\left(\frac{1}{2} \theta^{2}\right)$, and so $n<2 m \theta^{2 \theta-2}\left({\underset{\frac{1}{2}}{ } \theta^{2}}_{m}^{m}\right)$, as required.
(2.7). Suppose that there are m disjoint paths in $G \in \mathscr{F}_{\theta}$ from A_{1} to A_{2}, where $A_{1}, A_{2} \subseteq V(G)$; and that B_{1}, \ldots, B_{n} are disjoint connected subgraphs of G, and for $1 \leqslant j \leqslant n, V\left(B_{j}\right)$ separates A_{1} and A_{2}. Then either $m<\frac{1}{2} \theta^{2}$ or $n<\theta^{2 \theta}$.

Proof. If possible, choose a counterexample with $|V(G)|+|E(G)|+m$ minimum. Then evidently we have $m=\frac{1}{2} \theta^{2}$.

Let $\left\{P_{1}, \ldots, P_{m}\right\}$ be a set of m disjoint paths in G from A_{1} to A_{2}. If some P_{i} and some B_{j} have an edge in common, we can contract that edge and produce a smaller counterexample. Thus no edge belongs to both some P_{i} and some B_{j}. Moreover, every edge belongs either to some P_{t} or to some B_{j}, for otherwise we could delete it.

It follows that

$$
E\left(P_{1}\right) \cup \cdots \cup E\left(P_{m}\right)=E(G)-\left(E\left(B_{1}\right) \cup \cdots \cup E\left(B_{n}\right)\right)
$$

If $\left\{P_{1}^{\prime}, \ldots, P_{m}^{\prime}\right\}$ is another set of m disjoint paths from A_{1} to A_{2}, we have, by the same argument,

$$
E\left(P_{1}^{\prime}\right) \cup \cdots \cup E\left(P_{m}^{\prime}\right)=E(G)-\left(E\left(B_{1}\right) \cup \cdots \cup E\left(B_{n}\right)\right)
$$

and hence

$$
E\left(P_{1}^{\prime}\right) \cup \cdots \cup E\left(P_{m}^{\prime}\right)=E\left(P_{1}\right) \cup \cdots \cup E\left(P_{m}\right)
$$

It follows that $\left\{P_{1}^{\prime}, \ldots, P_{m}^{\prime}\right\}=\left\{P_{1}, \ldots, P_{m}\right\}$, and so the set $\left\{P_{1}, \ldots, P_{m}\right\}$ is unique.
We claim that every vertex v of G is in some P_{i}. For if not, and v is an
isolated vertex, we can delete v, and if v is not an isolated vertex, we can contract some edge incident with v_{0} in either case we produce a smaller counterexample, which is impossible.

For $1 \leqslant j \leqslant n$, each P_{i} meets B_{j}, by our hypothesis. By (2.6),

$$
n<2 m \theta^{2 \theta-2}\binom{m}{\frac{1}{2} \theta^{2}}=\theta^{2 \theta}
$$

a contradiction, as required.
(2.8). Let $A_{1}, A_{2}, X \subseteq V(G)$, where $G \in \mathcal{F}_{\theta}$, and let B_{1}, \ldots, B_{n} be disjoint subgraphs of G, each with at most d components. Suppose that the following conditions are satisfied:
(i) $|X| \leqslant r n$, for some integer $r \geqslant 0$;
(ii) for $1 \leqslant j \leqslant n, X \cup V\left(B_{j}\right)$ separates A_{1} and A_{2};
(iii) there are m disjoint paths in G from A_{1} to A_{2}, each avoiding X.

Let $s=d+r\left(\theta^{2}-1\right)$. Then either $m<\frac{1}{2} s \theta^{2}$ or $n<2^{s \theta^{2 / 2}}\left(\theta^{2}+2 s \theta^{2 \theta}\right)$.
Proof. If possible, choose a counterexample with $|V(G)|+|E(G)|+m$ minimum. Then evidently we have $m={ }_{2}^{1} s \theta^{2}$.

Let P_{1}, \ldots, P_{m} be disjoint paths of G from A_{1} to A_{2}, avoiding X. If some edge of G in both in some P_{i} and in some B_{j}, we may contract it, and if some edge is neither in some P_{i} nor in some B_{j}, we may delete it, in either case producing a smaller counterexample. It follows that

$$
E\left(P_{1}\right) \cup \cdots \cup E\left(P_{m}\right)-E(G)-\left(E\left(B_{1}\right) \cup \cdots \cup E\left(B_{n}\right)\right),
$$

and so $\left\{P_{1}, \ldots, P_{m}\right\}$ is the unique set of m disjoint paths of G from A_{1} to A_{2} avoiding X.

Every vertex v of $V(G)-X$ is in one of P_{1}, \ldots, P_{m}; for if not, and v is isolated, we can delete it, and if v is not isolated, we can contract some edge incident with it, in either case producing a smaller counterexample.

Let $J_{1} \subseteq\{1, \ldots, n\}$ be defined by $j \in J_{1}$ of and only if some component of $B_{j} \backslash X$ meets at least $\frac{1}{2} \theta^{2}$ of the paths P_{1}, \ldots, P_{m}. By setting $A_{1}^{\prime}=A_{1}-X$, $A_{2}^{\prime}=A_{2}-X$, and applying (2.6) to $G \backslash X$, we deduce that $\left|J_{1}\right|<2 m \theta^{2 \theta-2} 2^{m}$.

Now let $J_{2} \subseteq\{1, \ldots, n\}$ be defined by $j \in J_{2}$ if and only if $\left|X \cap V\left(B_{j}\right)\right|>2 r$. Since B_{1}, \ldots, B_{n} are disjoint, we have

$$
r n \geqslant|X| \geqslant \sum_{1 \leqslant j \leqslant n}\left|X \cap V\left(B_{j}\right)\right| \geqslant 2 r\left|J_{2}\right| .
$$

If $r=0$, then $X=\varnothing$ and so $J_{2}=\varnothing$ by definition. If $r>0$, then $n \geqslant 2\left|J_{2}\right|$. Thus in either case $\left|J_{2}\right| \leqslant \frac{1}{2} n$, and so there exists $J_{3} \subseteq\{1, \ldots, n\}$ with

$$
\left|J_{3}\right| \geqslant \frac{1}{2} n-2 m \theta^{2 \theta-2} 2^{m}
$$

such that for every $j \in J_{3},\left|X \cap V\left(B_{j}\right)\right| \leqslant 2 r$ and every component of $B_{j} \backslash X$ meets fewer than $\frac{1}{2} \theta^{2}$ different P_{i} 's.

Let $j \in J_{3}$. Let $X \cap V\left(B_{j}\right)=Y_{j}$, and let $N\left(Y_{j}\right)$ be the set of those vertices which are adjacent in G to at least one element of Y_{j}. A component of $B_{j} \backslash X$ which includes no element of $N\left(Y_{j}\right)$ is a component of B_{j}, and hence $B_{j} \backslash X$ has at most d such components. Each of these components meets fewer than $\frac{1}{2} \theta^{2}$ paths P_{i}. Hence at least $m-\frac{1}{2} d \theta^{2} \geqslant \frac{1}{2} r \theta^{2}\left(\theta^{2}-1\right)$ paths P_{i} meet at least one component of $B_{j} \backslash X$ which includes an element of $N\left(Y_{j}\right)$. Since $\left|Y_{j}\right| \leqslant 2 r$, there exists $v_{j} \in Y_{j}$ such that at least $\frac{1}{4} \theta^{2}\left(\theta^{2}-1\right)$ paths P_{i} meet a component of $B_{j} \backslash X$ which includes a vertex adjacent to v_{j}. Let $\left\{D_{j}^{1}, \ldots, D_{j}^{\alpha(j)}\right\}$ be a minimal set of components of $B_{j} \backslash X$ such that each D_{j}^{k} includes a vertex adjacent to v_{j} and at least $\frac{1}{4} \theta^{2}\left(\theta^{2}-1\right)$ paths P_{i} meet $D_{j}^{1} \cup \cdots \cup D_{j}^{\alpha(j)}$. Then $\alpha(j) \geqslant \frac{1}{2} \theta^{2}$ since each component of $B_{j} \backslash X$ meets fewer than $\frac{1}{2} \theta^{2}$ paths P_{i}. By the minimality of $\left\{D_{j}^{1}, \ldots, D_{j}^{\alpha(j)}\right\}$ there exist $P_{i(1)}, \ldots, P_{i(\alpha(j))}$ such that $P_{i(u)}$ meets D_{j}^{u} but meets no $D_{j}^{t}(t \neq u)$, for $u=1, \ldots, \alpha(j)$. Then $i(1), \ldots, i(\alpha(j))$ are distinct: define $I(j)=\left\{i(1), \ldots, i\left(\frac{1}{2} \theta^{2}\right)\right\}$.

Then $I(j) \subseteq\{1, \ldots, m\}$, for all $j \in J_{3}$, and so there exists $J_{4} \subseteq J_{3}$ with $\left|J_{4}\right| \geqslant$ $2^{-m}\left|J_{3}\right|$, such that for $j, j^{\prime} \in J_{4}, I(j)=I\left(j^{\prime}\right)=I$ say. Renumber, for simplicity, so that $I=\left\{1,2, \ldots, \frac{1}{2} \theta^{2}\right\}$, and for $j \in J_{4}, P_{i}$ meets D_{j}^{i} but does not meet any $D_{j}^{i^{\prime}}$ for distinct $i, i^{\prime} \in I$. For each $i \in I$, let Q_{i} be the subgraph of G consisting of the vertices and edges in the graphs P_{i} and $D_{j}^{i}\left(j \in J_{4}\right)$. Then $Q_{1}, \ldots, Q_{\theta^{2 / 2}}$ are all connected, and are disjoint, and do not intersect X. Moreover, if $1 \leqslant i \leqslant \frac{1}{2} \theta^{2}$ and $j \in J_{4}, v_{j}$ is adjacent to a vertex of Q_{i}. It follows that G has a minor isomorphic to the complete bipartite graph

$$
K_{\left|J_{4}\right|, \theta^{2} / 2}
$$

But $K_{\theta^{2} / 2, \theta^{2} / 2}$ has a minor isomorphic to the θ-grid, and $G \in \mathcal{F}_{\theta}$; thus $\left|J_{4}\right|<\frac{1}{2} \theta^{2}$. Hence $\left|J_{3}\right|<2^{m} \frac{1}{2} \theta^{2}$, and so

$$
\frac{1}{2} n-2 m \theta^{2 \theta-2} 2^{m}<2^{m} \frac{1}{2} \theta^{2}
$$

that is,

$$
n<2^{m}\left(\theta^{2}+4 m \theta^{2 \theta-2}\right)
$$

The result follows.
(2.9). If B_{1}, \ldots, B_{n} are disjoint connected subgraphs of a graph $G \in \mathscr{F}_{\theta}$, and $V^{\prime} \subseteq V^{\prime}(G)$ and $r \geqslant 0$ is an integer, then one of the following is true:
(i) there exists $J \subseteq\{1, \ldots, n\}$ with $|J|=r$ such that for each $j \in J$ there is a path P_{j} in G from B_{j} to V^{\prime}, and the paths $P_{j}(j \in J)$ are disjoint, and each has no internal vertex in $V^{\prime} \cup \bigcup_{j \in J} V\left(B_{j}\right)$;
(ii) there exist $X \subseteq V(G)$ and $J \subseteq\{1, \ldots, n\}$ with $|X|+|J| \leqslant 2^{r \theta^{+}}$, such that X separates V^{\prime} from every $B_{j}(j \in\{1, \ldots, n\}-J)$.

Proof. We assume (i) is false. Define $v=2^{r \theta^{4} / 2}\left(\theta^{2}+2 r \theta^{2 \theta+2}\right)$. Let $X_{0}=J_{0}=\varnothing$. We define inductively a sequence $X_{0}, X_{1}, \ldots, X_{v}$ of subsets of $V(G)$ and a sequence $J_{0}, J_{1}, \ldots, J_{v}$ of subsets of $\{1, \ldots, n\}$, as follows: Suppose that $X_{0}, \ldots, X_{i-1}, J_{0}, \ldots, J_{i-1}$ are defined. Put $J^{\prime}=\{1, \ldots, n\}-\left(J_{0} \cup \cdots \cup J_{i-1}\right)$. Now no $J \subseteq J^{\prime}$ satisfies (i), and so (by a form of Menger's theorem) there exist $X_{i} \subseteq V(G)$ and $J_{i} \subseteq J^{\prime}$ with $\left|X_{i}\right|+\left|J_{i}\right|<r$, such that every path in G from any $B_{j}\left(j \in J^{\prime}\right)$ to V^{\prime} uses either some vertex of X_{i} or some vertex of $\bigcup_{j \in J_{i}} V\left(B_{j}\right)$. This completes our inductive definition of X_{i}, J_{i}.

Put $X^{\prime}=X_{1} \cup \cdots \cup X_{v}, J=J_{1} \cup \cdots \cup J_{v}$. For $1 \leqslant i \leqslant v$, let B_{i}^{\prime} be the union of the graphs $B_{j}\left(j \in J_{i}\right)$. Then B_{i}^{\prime} has at most r components. Put

$$
A_{1}=\bigcup\left(V\left(B_{j}\right): j \in\{1, \ldots, n\}-J\right)
$$

and $A_{2}=V^{\prime}$. Now for $1 \leqslant i \leqslant v, X^{\prime} \cup V\left(B_{i}^{\prime}\right)$ separates A_{1} and A_{2}; for every path from A_{1} to A_{2} uses either a vertex of X_{i} or a vertex of B_{i}^{\prime}, by definition of X_{i}, J_{i}. Moreover, for $1 \leqslant i \leqslant v,\left|X_{i}\right|+\left|J_{i}\right|<r$, and so $\left|X^{\prime}\right|<r v$. By (2.8), the maximum number of disjoint paths in G from A_{1} to A_{2}, avoiding X^{\prime}, is less than $\frac{1}{2} r \theta^{4}$ (to apply (2.8), we set $d=r$). By Menger's theorem, there exists $X^{\prime \prime} \subseteq V(G)$ with

$$
\left|X^{\prime \prime}\right| \leqslant \frac{1}{2} r \theta^{4}
$$

such that $X^{\prime} \cup X^{\prime \prime}$ separates A_{1} and A_{2}. Put $X=X^{\prime} \cup X^{\prime \prime}$; then X separates V^{\prime} from every $B_{j}(j \in\{1, \ldots, n\}-J)$; and

$$
\begin{aligned}
|X|+|J| & \leqslant\left|X^{\prime \prime}\right|+\left|X^{\prime}\right|+|J| \\
& \leqslant\left|X^{\prime \prime}\right|+\sum_{1 \leqslant i \leqslant b}\left(\left|X_{i}\right|+\left|J_{i}\right|\right) \\
& \leqslant \frac{1}{2} r \theta^{4}+r v \\
& \leqslant 2^{r \theta^{4}}
\end{aligned}
$$

(after some arithmetic) and so (ii) is true.
Incidentally, the following extension of (2.7) will appear in [4].
(2.10). There is an integer $\theta^{\prime}>0$ such that if $A_{1}, \ldots, A_{\theta^{\prime}}$ are disjoint connected subgraphs of a graph $G \in \mathcal{F}_{\theta}$, and $B_{1}, \ldots, B_{\theta}$, are also disjoint connected subgraphs of G, then some A_{i} is disjoint from some B_{i}.

3. The Main Theorem

In order to prove our main theorem (1.1), it is only necessary to prove a special case, as we shall now see. Let \mathbf{Y}_{1} be the complete bipartite graph $K_{1,3}$. For $\lambda \geqslant 2$, we define $\mathbf{Y}_{\mathcal{A}}$ inductively by taking a copy of $\mathbf{Y}_{\lambda-1}$, and to each vertex of valency 1 in this graph making adjacent two new vertices. (See Fig. 1.)

In order to prove (1.1), it is only necessary to prove the following:
(3.1). For $\lambda \geqslant 1$, odd, there is a number $w(\lambda)$ such that every graph with no minor isomorphic to \mathbf{Y}_{λ} has path-with $\leqslant w(\lambda)$.
(The "odd" condition is introduced for future technical convenience.)
Proof of (1.1) (assuming (3.1)). For any forest H there is an odd value of λ such that \mathbf{Y}_{λ} has a minor isomorphic to H (e.g., any odd $\lambda \geqslant|V(H)|$ will do, although this is usually extravagent). If G is a graph with no minor isomorphic to H, then it certainly has no minor isomorphic to \mathbf{Y}_{λ}, and so, by (3.1), it has path-width $\leqslant w(\lambda)$. Thus (1.1) is true.

We now introduce a second class of graphs. \mathbf{H}_{0} is the graph with just one vertex and no edges, and \mathbf{H}_{1} is $K_{1,2}$. For $\lambda \geqslant 2$, we define \mathbf{H}_{λ} inductively by taking a copy of $\mathbf{H}_{\lambda-1}$, and to each vertex of valency 1 in this graph making adjacent two new vertices. (See Fig. 2.)
(3.2). For any even $\lambda \geqslant 0$, the $\left(2^{(\lambda+1) / 2}-1\right)$-grid has a minor isomorphic to \mathbf{H}_{λ}.

The proof by induction is left to the reader. We hope that a "proof by diagram" is convincing. Figure 3 shows a subdivision of \mathbf{H}_{6} drawn as a subgraph of a 15 -grid.
(3.3). For any $\lambda \geqslant 1, \mathbf{Y}_{\lambda}$ is isomorphic to a minor of $\mathbf{H}_{\lambda+1}$.

The proof is clear.

r_{2}

Y_{3}

Figure 1

0
H_{0}

H_{1}

H_{2}

H_{3}

Figure 2
(3.4). For any odd $\lambda \geqslant 1$, the $\left(2^{(\lambda+3) / 2}-1\right)$-grid has a minor isomorphic to Y_{λ}.

This follows from (3.2) and (3.3).
(3.5). For odd $\lambda \geqslant 1$, let $\theta=\max \left(6,2^{(\lambda+3) / 2}\right)$. For any graph G, if G has no minor isomorphic to \mathbf{Y}_{λ}, then $G \in \mathscr{F}_{\theta}$.

This follows from (3.4).
Thus to study the graphs with no minor isomorphic to Y_{λ}, we can confine ourselves to \mathscr{F}_{θ}, and hence we can apply the results of Section 2.

A rooted graph is a graph with one vertex distinguished, called the root. We denote the root of G by $\rho(G)$.

If G_{1}, G_{2} are rooted graphs we say that G_{2} has a rooted minor isomorphic to G_{1} if for each vertex v of G_{1} there is a subset $Y(v)$ of the vertices of G_{2}, satisfying conditions (M1)-(M4):
(M1) For distinct $v, v^{\prime} \in V\left(G_{1}\right), Y(v) \cap Y\left(v^{\prime}\right)=\varnothing$.
(M2) For each $v \in V\left(G_{1}\right), G_{2} \mid Y(v)$ is connected.
(M3) There is an injection $f: E\left(G_{1}\right) \rightarrow E\left(G_{2}\right)$ such that for every edge

Figure 3
e of G_{1}, if e has ends v, v^{\prime} say, then $f(e)$ has one end in $Y(v)$ and the other in $Y\left(v^{\prime}\right)$.
(M4) $\quad \rho\left(G_{2}\right) \in Y\left(\rho\left(G_{1}\right)\right)$.
We now introduced two further classes of trees. If $\gamma \geqslant 1, \delta \geqslant 1$ are integers, the rooted tree $P(\gamma, \delta)$ is defined as follows: Take δ disjoint copies of $\mathbf{H}_{\gamma-1}$. Each of these copies has a unique vertex of even valency; let these be $u_{1}, \ldots, u_{\delta}$, say. Take a path of δ new vertices $v_{1}, \ldots, v_{\delta}$ say, and for $1 \leqslant i \leqslant \delta$, add an edge joining u_{i} and v_{i}. The resultant graph is rooted at v_{1}, and is $P(\gamma, \delta)$. We also define $P(0, \delta)$ to be the path of δ vertices, rooted at one end, for $\delta \geqslant 1$.

Second, if $\gamma \geqslant 1, \delta \geqslant 2$ are integers, we define a rooted tree $Q(\gamma, \delta)$ as follows: Take a copy of $P(\gamma-1, \delta-1)$, with root v_{1} say, and a disjoint copy of $\mathbf{H}_{\gamma_{-1}}$. Let v_{2} be the (unique) vertex of the second graph with even valency. Take a new vertex v, and two new edges, joining v to v_{1}, v_{2}, respectively. The resultant graph is $Q(\gamma, \delta)$, and it is rooted at v. (See Fig. 4.)

Now let $\lambda \geqslant 1$ be odd. Define $\theta=\max \left(6,2^{(\lambda+3) / 2}\right), \alpha=2^{\theta^{4}}$, and $\beta=2^{\theta^{6}}$. For integers $x, i \geqslant 0$, define $f_{i}(x)$ inductively, by

$$
f_{0}(x)=x, \quad f_{i}(x)=f_{i-1}\left(\beta^{x}\right)(i>0)
$$

For integers γ, δ with $\gamma \geqslant 0$, and $\delta \geqslant 2$, define $p(\gamma, \delta)=f_{\gamma}(\delta)$; and if $\gamma \geqslant 1$, define $q(\gamma, \delta)=f_{\gamma-1}(\beta+2 \delta)$.
(3.6). With the above definitions, the following inequalities hold:
(i) $p(0, \delta) \geqslant \delta-2$ for all $\delta \geqslant 2$;
(ii) $q(\gamma, \delta) \geqslant \theta^{2}+p\left(\gamma-1,2\left|4 \theta^{2 \theta}\right| 2 \delta\right)$ for $1 \leqslant \gamma, 2 \leqslant \delta$;
(iii) $p(\gamma, \delta) \geqslant q(\gamma, 4)$ for $1 \leqslant \gamma, 2 \leqslant \delta$;
(iv) $p(\gamma, \delta) \geqslant \alpha^{\delta \cdot 2 \gamma}+\max \left(p(\gamma, \delta-1), q\left(\gamma, 3 \alpha^{\delta \cdot 2 \gamma}+6\right)\right)$ for $1 \leqslant \gamma \leqslant \lambda$, $3 \leqslant \delta$.

Proof. This is routine, and is left to the reader.
The aim of the next two sections is to prove the following:

Figure
(3.7). (i) If $G \in \mathscr{F}_{\theta}$, and is rooted and connected, and has no rooted minor isomorphic to $P(\gamma, \delta)$, then G has path-width at most $p(\gamma, \delta)$, for $0 \leqslant \gamma \leqslant \lambda, \delta \geqslant 2$.
(ii) If $G \in \mathscr{F}_{\theta}$, and is rooted and connected, and has no rooted minor isomorphic to $Q(\gamma, \delta)$, then G has path-width at most $q(\gamma, \delta)$, for $1 \leqslant \gamma \leqslant \lambda$, $\delta \geqslant 2$.

Proof of (3.1) (assuming (3.7)). Let G be a graph with no minor isomorphic to \mathbf{Y}_{λ}, where $\lambda \geqslant 1$ and is odd.

Let C be any component of G, and let C be assigned a root, arbitrarily. Now C has no rooted minor isomorphic to $P(\lambda, 3)$, because $P(\lambda, 3)$ has a minor isomorphic to \mathbf{Y}_{λ}. Moreover, $C \in \mathscr{F}_{\theta}$, by (3.5). Hence, by (3.7)(i), C has path-width $\leqslant p(\lambda, 3)$, and so by (1.4), G has path-width $\leqslant p(\lambda, 3)$.

Thus, to prove our main theorem, it suffices to prove (3.7).
The proof of (3.7) is divided into three parts, as follows: In Part 1 we prove that (3.7)(i) is true when $\gamma=0$. In Part 2 we show that for γ with $1 \leqslant \gamma \leqslant \lambda$, if (3.7)(i) is true for $\gamma-1$ and all $\delta \geqslant 2$, then (3.7)(ii) is true for γ and all $\delta \geqslant 2$. Finally, in Part 3 we show that for any γ with $1 \leqslant \gamma \leqslant \lambda$, if (3.7)(ii) is true for γ and all $\delta \geqslant 2$, then so is (3.7)(i). These three parts combined yield that (3.7) is true.

Part $1(\gamma=0) . \quad P(0, \delta)$ is a δ-vertex path, rooted at one end. We show, by induction on δ, that for $\delta \geqslant 2$ every connected rooted graph with no rooted minor isomorphic to $P(0, \delta)$ has path-width $\leqslant \delta-2$. If $\delta=2$ this is clear. We suppose then that $\delta>2$. Let G_{1}, \ldots, G_{r} be the components of $G \backslash\{\rho(G)\}$. For $1 \leqslant i \leqslant r$, let v_{i} be a vertex of G_{i} adjacent to $\rho(G)$ in G. We define $p\left(G_{i}\right)=v_{i}(1 \leqslant i \leqslant r)$. Then certainly for $1 \leqslant i \leqslant r, G_{i}$ has no rooted minor isomorphic to $P(0, \delta-1)$, and so by induction has path-width $\leqslant \delta-3$. Hence, by (1.4), $G \backslash\{\rho(G)\}$ has path-width $\leqslant \delta-3$, and so by (1.5), G has path-width $\leqslant \delta-2$. This completes the inductive argument that for $\delta \geqslant 2$ cvery rooted connected graph with no rooted minor isomorphic to $P(0, \delta)$ has path-width $\leqslant \delta-2$. But by (3.6)(i), $p(0, \delta) \geqslant \delta-2$, and so (3.7)(i) is true if $\gamma=0$. This completes the argument for Part 1.

4. Part 2: The Reduction of $Q(\gamma, \delta)$

We now assume that $1 \leqslant \gamma \leqslant \lambda$, and that for $\delta \geqslant 2$, every rooted connected graph in \mathscr{F}_{θ} with no rooted minor isomorphic to $P(\gamma-1, \delta)$ has pathwidth $\leqslant p(\gamma-1, \delta)$. We shall prove that for all $\delta \geqslant 2$, every rooted connected graph in \mathscr{F}_{θ} with no rooted minor isomorphic to $Q(\gamma, \delta)$ has pathwidth $\leqslant q(\gamma, \delta)$.

Suppose then that $G \in \mathscr{F}_{\theta}$, and is rooted and connected, and has no
rooted minor isomorphic to $Q(\gamma, \delta)$. Define $v=\theta^{2 \theta}$, and $\mu=2+4 v+2 \delta$. If G has no rooted minor isomorphic to $P(\gamma-1, \mu)$, then by hypothesis it has path-width $\leqslant p(\gamma-1, \mu) \leqslant q(\gamma, \delta)$, by (3.6)(ii). We assume then that G has a rooted minor isomorphic to $P(\gamma-1, \mu)$. Choose N maximum such that G has a rooted minor isomorphic to $P(\gamma-1, N)$, and then $N \geqslant \mu$. Choose an integer T maximum so that $2 v T \leqslant N-2 \delta$. Then $T \geqslant 2$, since $\mu \geqslant 4 v+2 \delta$. Put $n-1=v T$; and then

$$
N-2 \delta-2 v<2 n-2 \leqslant N-2 \delta
$$

by the maximality of T.
Now G has a rooted minor isomorphic to $P(\gamma-1, N)$; and so, since all vertices of this graph have valency $\leqslant 3, G$ has a subgraph H^{\prime} which is isomorphic to a subdivision of $P(\gamma-1, N)$, with a vertex v say corresponding to the root of $P(\gamma-1, N)$, and G has a path from v to $\rho(G)$, with no vertex except v in common with H^{\prime}. Let H be the subgraph of G consisting of the vertices and edges in H^{\prime} together with those in the path.

Now $P(\gamma-1, N)$ is formed by taking a path of N vertices $v_{1}^{\prime}, \ldots, v_{N}^{\prime}$ say, and if $\gamma \geqslant 2$, taking N disjoint copies of $\mathbf{H}_{\gamma-2}$, and joining them to $v_{1}^{\prime}, \ldots, v_{N}^{\prime}$ appropriately; and then letting v_{1}^{\prime} be the root. Let v_{1}, \ldots, v_{N} be the vertices of H^{\prime} which correspond to $v_{1}^{\prime}, \ldots, v_{N}^{\prime}$. For $1 \leqslant j \leqslant N-1$, let R_{j} be the set of vertices of H which may be joined to v_{N} by a path of H which avoids v_{j}, and put $R_{0}=V(H), R_{N}=\varnothing$. For $1 \leqslant j<n$, let $S_{j}=R_{2 j-2}-R_{2 j}$; and put $S_{n}=R_{2 n-2}$. Then S_{1}, \ldots, S_{n} are disjoint, and have union $V(H)$. For $1 \leqslant j \leqslant n$, let B_{j} be $H \mid S_{j}$. Then each B_{j} is a connected subgraph of G, and B_{1}, \ldots, B_{n} are disjoint.
(4.1). For $1 \leqslant j \leqslant n, S_{j}$ separates $\bigcup_{1 \leqslant j^{\prime} \leqslant j} S_{j^{\prime}}$ from $\bigcup_{j \leqslant j^{\prime} \leqslant n} S_{j^{\prime}}$ in G.

For suppose not; then there is a path of G from $S_{j_{1}}$ to $S_{j_{2}}$ say, where $1 \leqslant j_{1}<j<j_{2} \leqslant n$, with no interior vertices in H. Thus there is a path P of G from $S_{j_{1}}$ to S_{n}, avoiding $S_{1} \cup \cdots \cup S_{j_{1}-1} \cup S_{j_{1}+1}$. But then G has a rooted minor isomorphic to $Q(\gamma, \delta)$, as can be seen by deleting all vertices and edges of G except those in H and P, deleting all the vertices of $S_{j_{1}+2} \cup \cdots \cup S_{n-1}$ except those in P, and contracting all edges in $B_{1}, \ldots, B_{j_{1}}$ and P (note that B_{n} has a minor isomorphic to $P(\gamma-1,2 \delta)$ since $N-2 n+2 \geqslant 2 \delta$).
(4.2). For $v \leqslant j \leqslant n$, there exists $X_{j} \subseteq V(G)$ with $\left|X_{j}\right|<\frac{1}{2} \theta^{2}$, separating $\bigcup_{1 \leqslant j^{\prime} \leqslant j-v+1} S_{j^{\prime}}$ and $\bigcup_{j \leqslant j^{\prime} \leqslant n} S_{j^{\prime}}$.

Suppose not. Then by Menger's theorem there are $\frac{1}{2} \theta^{2}$ disjoint paths of G from $\bigcup_{1 \leqslant j^{\prime} \leqslant j-\nu+1} S_{j^{\prime}}$, to $\bigcup_{j \leqslant j^{\prime} \leqslant n} S_{j^{\prime}}$, and yet these two sets are separated
by each of $S_{j-v+1}, S_{j-v+2}, \ldots, S_{j}$, by (4.1). Then we have a contradiction from (2.7).

For $v \leqslant j \leqslant n$, choose X_{j} as in (4.2), minimal.
For $1 \leqslant j \leqslant n$, let Z_{j} denote the set of all vertices of G which can be joined to a vertex of S_{j} by a path of G which avoids $\left(S_{1} \cup \cdots\left(S_{n}\right)-S_{j}\right.$. Then clearly $Z_{j} \cap\left(S, \cup \cdots \cup S_{n}\right)=S_{j}$ and $Z_{1} \cup \cdots \cup Z_{n}=V(G)$. By (4.1), $Z_{j} \cap Z_{j^{\prime}} \neq \varnothing$ only if $\left|j-j^{\prime}\right| \leqslant 1$.
(4.3). For $v \leqslant j \leqslant n, X_{j} \subseteq S_{j-v+1} \cup Z_{j-v+2} \cup \cdots \cup Z_{j-1} \cup S_{j}$.

For if $v \in X_{j}$, then by the minimality of X_{j} there is a path P from $\bigcup_{1 \leqslant j^{\prime} \leqslant j-v+1} S_{j^{\prime}}$ to $\bigcup_{j \leqslant j^{\prime} \leqslant n} S_{j^{\prime}}$, which avoids $X_{j}-\{v\}$ and uses v, and which has no interior vertices in

$$
\bigcup_{1 \leqslant i^{\prime} \leqslant j-1+1} S_{j^{\prime}} \cup \bigcup_{j \leqslant j^{\prime} \leqslant n} S_{j^{\prime}}
$$

Since $S_{j-v+2} \cup \cdots \cup S_{j-1}$ separates $\bigcup_{1 \leqslant j^{\prime} \leqslant j-v+1} S_{j^{\prime}}$ and $\bigcup_{j \leqslant j^{\prime} \leqslant n} S_{j^{\prime}}$ (by (4.1)), P has an interior vertex u in $S_{j u+2} \cup \cdots \cup S_{j-1}$. Choose u such that the subpath P^{\prime} of P from v to u has minimum length. Then no vertices of P^{\prime} except v, u are in $S_{1} \cup \cdots \cup S_{n}$. If $v \notin S_{1} \cup \cdots \cup S_{n}$, then $v \in Z_{j-v+2} \cup \ldots \cup Z_{j-1}$, because of P^{\prime}. If $v \in S_{1} \cup \ldots \cup S_{n}$, then

$$
v \in S_{j-v+1} \cup S_{j-w+2} \cup \cdots \cup S_{j-1} \cup S_{j}
$$

by (4.1), since no interior vertices of P^{\prime} are in S_{j-v+1} or S_{j}. Thus in either case,

$$
v \in S_{j-v+i} \cup Z_{j-v+2} \cup \cdots \cup Z_{j-1} \cup S_{j}
$$

as claimed.
(4.4). For $v \leqslant i \leqslant n, \mathrm{I} \leqslant j \leqslant n$, if $s \in S_{j}$, then
(i) X_{i} separates s and $\rho(G)$ if $j \geqslant 1$, and
(ii) X_{i} does not separate s and $\rho(G)$ if $j \leqslant i-v$.

Statement (i) follows from the definition of X_{i}, since $\rho(G) \in S_{1}$. To show (ii), we obscrve that from (4.3), the path of H from s to $\rho(G)$ does not meet X_{i} if $j \leqslant i-v$.

Let $Y_{i}=X_{i ; i}$ for $1 \leqslant i \leqslant T$. From (4.3), Y_{1}, \ldots, Y_{T} are disjoint.
(4.5). For $1 \leqslant i, i^{\prime} \leqslant T$ and for every $y \in Y_{i^{\prime}}, Y_{i}$ separates y and $\rho(G)$ if and only if $i \leqslant i^{\prime}$.

If $i=i^{\prime}$ the result is true, and so we assume that $i \neq i^{\prime}$. Define

$$
Z=S_{v i^{\prime}-v+1} \cup Z_{v i^{\prime}-v+2} \cup \cdots \cup Z_{v i^{\prime}-1} \cup S_{v i^{\prime}}
$$

and

$$
S=S_{\nu i^{\prime}-v+1} \cup S_{\nu i^{\prime}-v+2} \cup \cdots \cup S_{v i^{\prime}-1} \cup S_{v i^{\prime}}
$$

By (4.3), $y \in Z$ and there is a path of G from y to some $s \in S$ within Z. Now $Z_{j} \cap Z_{j^{\prime}} \neq \varnothing$ only if $\left|j-j^{\prime}\right| \leqslant 1$, and so this path avoids

$$
S_{v i-v+1} \cup Z_{v i-v+2} \cup \cdots \cup Z_{v i-1} \cup S_{v i}
$$

since $i \neq i^{\prime}$. Hence by (4.3) it avoids Y_{i}. Thus Y_{i} separates y and $\rho(G)$ if and only if it separates s and $\rho(G)$. The result follows from (4.4).

For $1 \leqslant i \leqslant T-1$, let W_{i} be the set of all vertices v of G such that Y_{i} separates v and $\rho(G)$, and Y_{i+1} does not separate v and $\rho(G)$. Let W_{0} be the set of vertices not separated from $\rho(G)$ by Y_{1}, and let W_{T} be the set of vertices separated from $\rho(G)$ by Y_{T}. Then the sequence

$$
W_{0} \cup Y_{1}, W_{1} \cup Y_{2}, W_{2} \cup Y_{3}, \ldots, W_{T-1} \cup Y_{T}, W_{T}
$$

is a path-decomposition of G by (4.5) and (1.7), and the intersection of any consecutive pair of terms of this sequence has cardinality $\leqslant \frac{1}{2} \theta^{2}$. In order to complete step 2, it suffices to show that $G\left|W_{0}, \ldots, G\right| W_{T}$ each have pathwidth $\leqslant p(\gamma-1, \mu)$, by (1.6) and (3.6)(ii). By (1.4), it suffices to show that for $0 \leqslant i \leqslant T$, every component of $G \mid W_{i}$ has path-width $\leqslant p(\gamma-1, \mu)$.

Thus, take $0 \leqslant i \leqslant T$, and let C be a component of $G \mid W_{i}$. Assign a root to C, arbitrarily. By our initial hypothesis it is sufficient to show that C has no rooted minor isomorphic to $P(\gamma-1, \mu)$. Suppose for a contradiction, that it does; then C has a subgraph D which is isomorphic to a subdivision of $P(\gamma-1, \mu)$.

Let

$$
A=\bigcup_{v(i+1) \leqslant j \leqslant n} S_{j}, B=\bigcup_{1 \leqslant j \leqslant \nu(i-1)} S_{j} .
$$

(4.6). A, B and W_{i} are disjoint.

For every vertex of A is separated from $\rho(G)$ by Y_{i} (if $i>0$) and by Y_{i+1} (if $i<T$), from (4.4). Every vertex of W_{i} is separated from $\rho(G)$ by Y_{i} (if $i>0$) but not by Y_{i+1} (if $i<T$), by the definition of W_{i}. Every vertex of B is separated from $\rho(G)$ neither by Y_{i} (if $i>0$) nor by Y_{i+1} (if $i<T$), from (4.4). The result follows.
(4.7). There is a path in G from $V(D)$ to $V(H)$ avoiding $A \cup B$.

This follows from (4.5) and the definition of W_{i} when $i=0$. When $1 \leqslant i \leqslant T$ there is a path P within W_{i} from D to Y_{i}, by definition of W_{i}, P certainly avoids $A \cup B$, by (4.6). Let y be a vertex of Y_{i} on P. By (4.3) there is a path P^{\prime} from y to $S_{\nu t-v+1} \cup \cdots \cup S_{v i}$ which avoids $A \cup B$. The union of P and P^{\prime} yields a path satisfying (4.7).

If $i \geqslant 2$, let w_{1} be the vertex of $S_{v i-v}$ which is adjacent in H to a vertex of $S_{v i-v+1}$. If $i=0$ or 1 , lct w_{1} bc $\rho(G)$.
(4.8). There is a path P_{1} in G from D to w_{1}, avoiding $A \cup B-\left\{w_{1}\right\}$.

This is clear from (4.7). Let P_{1} be a minimal such path, so that it uses only one vertex of D, d_{1} say. Let P_{0} be the path of H from w_{1} to $\rho(G)$.

Now D is a subdivision of $P(\gamma-1,4 v+2 \delta+2)$. But $P(\gamma-1,4 v+2 \delta+2)$ consists of a $(4 v+2 \delta+2)$-vertex path with vertices $p(1), \ldots, p(4 v+2 \delta+2)$ say, in order, and (if $\gamma>1) 4 v+2 \delta+2$ copies of $\mathbf{H}_{\gamma-2}, I I(1), \ldots, I(4 v+2 \delta+2)$ say, in order, and an edge from $p(j)$ to $I(j)$ $(1 \leqslant j \leqslant 4 v+2 \delta+2)$. By the first end of D we mean the subgraph of D corresponding to $H(1), H(2)$ and the path of D joining them. By the second end we mean the subgraph corresponding to $H(4 v+2 \delta+1), H(4 v+2 \delta+2)$ and the path joining them.
(4.9). d_{1} is in one of the ends of D.

Otherwise, since $4 v+2 \delta+2 \geqslant 2 \delta, G$ has a rooted minor isomorphic to $Q(\gamma, \delta)$, as can be seen by deleting all vertices and edges of G not in D, P_{0}, or P_{1}, and contracting all edges in P_{0} and P_{1}.

Without loss of generality we may assume that d_{1} is in the first end of D.

$$
(4.10) . \quad i \neq T
$$

If $i=T$, then G has a rooted minor isomorphic to $P(\gamma-1,2 v(T-1)+$ $4 v+2 \delta$) by (4.8) and (4.9), as can be seen by deleting all vertices and edges of G except those of H within B and those of P_{1} and D, and by contracting the edges in P_{1} and those in the first end of D. But

$$
2 v(T-1)+4 v+2 \delta>N
$$

by the maximality of T, contrary to the maximality of N.
Let w_{2} be the vertex of $S_{v i+v}$ adjacent in H to a vertex of $S_{v i+\nu-1}$.
(4.11). There is a path P_{2} from D to w_{2} avoiding $A \cup B-\left\{w_{2}\right\}$.

This follows from (4.7) and (4.10).
Choose a minimal path P_{2} satisfying (4.11) so that P_{2} only contains one
vertex of D, d_{2} say. Let P_{3} be the path of H from w_{2} to S_{n}, with no internal vertex in S_{n}.

(4.12). d_{2} is in the second end of D.

If not, then the second end of D is disjoint from P_{1}, P_{2}, A and B. But then G has a rooted minor isomorphic to $Q(\gamma, \delta)$, as can be seen by deleting all vertices and edges of G not in $D, P_{0}, P_{1}, P_{2}, P_{3}$, and S_{n} and contracting the edges of $P_{0}, P_{1}, P_{2}, P_{3}$, and those of D not incident with vertices of the second end.
(4.13). P_{1} and P_{2} are disjoint.

If not, then the union of P_{1} and P_{2} contains a path P_{2}^{\prime} from d_{1} to w_{2} avoiding A and $B . P_{2}^{\prime}$ then satisfics the defining conditions for P_{2}, and so from (4.12) we deduce d_{1} is in the second end of D, which is impossible because the ends of D are disjoint (since $4 v+2 \delta+2 \geqslant 4$).

(4.14). Conclusion.

From (4.12) and (4.13) we deduce that G has a rooted minor isomorphic to $P(\gamma-1),(N-4 v)+(4 v+2 \delta+2-4))=P(\gamma-1, N+2 \delta-2)$, as can be seen by deleting all vertices of G except those in A, B, D, P_{1} and P_{2}, and contracting the edges in P_{1}, P_{2} and the ends of D. This contradicts the maximality of N, and completes the argument for Part 2.

5. Part 3: The Reduction of $P(\gamma, \delta)$ When $\gamma \geqslant 1$

We now assume that $1 \leqslant \gamma \leqslant \lambda$, and that for all $\delta \geqslant 2$, every rooted connected graph in \mathscr{F}_{θ} with no rooted minor isomorphic to $Q(\gamma, \delta)$ has pathwidth $\leqslant q(\gamma, \delta)$. We shall show, by induction on $\delta \geqslant 2$, that every rooted connected graph in \mathscr{F}_{θ} with no rooted minor isomorphic to $P(\gamma, \delta)$ has pathwidth $\leqslant p(\gamma, \delta)$.

Suppose then that $G \in \mathscr{F}_{\theta}$ is a rooted connected graph with no rooted minor isomorphic to $P(\gamma, \delta)$. If G has no rooted minor isomorphic to $Q(\gamma, 4)$, then by hypothesis, its path-width is $\leqslant q(\gamma, 4) \leqslant p(\gamma, \delta)$ by (3.6)(iii). Thus we may assume that G has a rooted minor isomorphic to $Q(\gamma, 4)$.

Now $P(\gamma, 2)$ is isomorphic to a rooted minor of $Q(\gamma, 4)$, and so G has a rooted minor isomorphic to $P(\gamma, 2)$. It follows that $\delta>2$. By induction on δ, we have that every rooted connected graph in \mathscr{F}_{θ} with no rooted minor isomorphic to $P(\gamma, \delta-1)$ has path-width $\leqslant p(\gamma, \delta-1)$.

Let H be \mathbf{H}_{γ}, rooted at its vertex of valency 2 . Now H is isomorphic to a rooted minor of $Q(\gamma, 4)$ and so G has a rooted minor isomorphic to H.

Choose an integer $N \geqslant 0$, maximum such that there exist $X_{0}, X_{1}, \ldots, X_{N} \subseteq V(G)$, disjoint, with the following properties:
(X1) $\rho(G) \in X_{0}$, and $G \mid X_{0}$ rooted at $\rho(G)$ has a rooted minor isomorphic to H;
(X2) for $1 \leqslant i \leqslant N, G \mid X_{i}$ has a minor isomorphic to $\mathbf{Y}_{\gamma-1}$.
Now all vertices of $\mathbf{Y}_{\gamma-1}$ have valency $\leqslant 3$, and so for $1 \leqslant i \leqslant N, G \mid X_{i}$ has a subgraph B_{i} which is isomorphic to a subdivision of $\mathbf{Y}_{\gamma \ldots 1}$. Moreover, $G \mid X_{0}$ has a subgraph B_{0} which consists of a subgraph H^{\prime} isomorphic to a subdivision of H, together with a path from $\rho(G)$ to the vertex of H^{\prime} corresponding to the root of H, such that the path has only this vertex in common with H^{\prime}.

Clearly we may assume that $X_{i}=V\left(B_{i}\right)(0 \leqslant i \leqslant N)$. Suppose that there exists $J \subseteq\{1, \ldots, N\}$ with $|J|=\delta \cdot 2^{\gamma}$, and disjoint paths $P_{j}(j \in J)$ of G, such that
(i) for each $j \in J, P_{j}$ has one end in X_{j} and the other in X_{0};
(ii) for each $j \in J, P_{j}$ has no interior vertex in $X_{0} \cup \bigcup_{j^{\prime} \in J} X_{j^{\prime}}$.

Now B_{0} has only 2^{γ} vertices distinct from $\rho(G)$ of valency 1 , and B_{0} is a tree; and so there are paths Q_{1}, \ldots, Q_{2} of B_{0}, each from $\rho(G)$ to some vertex of valency 1 distinct from $p(G)$, such that every vertex of B_{0} is used by at least one of $Q_{1}, \ldots, Q_{2 \gamma}$. It follows that there exists $J^{\prime} \subseteq J$ with $\left|J^{\prime}\right|=\delta\left(=2^{-\gamma}|J|\right)$ such that for some $i\left(1 \leqslant i \leqslant 2^{\gamma}\right)$, all the paths $P_{j}\left(j \in J^{\prime}\right)$ have their terminal vertices on Q_{i}. But then G has a rooted minor isomorphic to $P(\gamma, \delta)$, as can be seen by deleting all vertices except those in Q_{i} and P_{j} and $B_{j}\left(j \in J^{\prime}\right)$, and for each $j \in J^{\prime}$ contracting all edges of P_{j} except one. Thus there there is no such J.

By (2.9) (setting $V^{\prime}=X_{0}, r=\delta \cdot 2^{\gamma}$, and $n=N$) we deduce that there exists $X \subseteq V(G)$ and $J \subseteq\{1, \ldots, N\}$ with $|X|+|J| \leqslant \Omega$, where $\Omega=\alpha^{\delta \cdot 2 \gamma}$ (and $\alpha=2^{\theta^{4}}$, as before), such that X separates X_{0} from X_{j} for every $j \in\{1, \ldots, N\}-J$. To complete the argument for Part 3, it suffices to show that every component of $G \backslash X$ has path-width $\leqslant \max (p(\gamma, \delta-1)$, $q(\gamma, 3 \Omega+6)$), by (3.6)(iv), (1.4), and (1.5). Thus, let C be a component of $G \backslash X$. There are two cases.
(5.1). If X_{0} does not contain any vertex of C, then C has path-width $\leqslant p(\gamma, \delta-1)$.

Let P be a minimal path in G from $V(C)$ to X_{0}. Then P has at least one edge, and no interior vertex in $V(C) \cup X_{0}$. Let v be the vertex of C on P. Root C at v. Suppose that C has a rooted minor isomorphic to $P(\gamma, \delta-1)$. Then G has a rooted minor isomorphic to $P(\gamma, \delta)$, as can be seen by contracting all edges of P except one and contracting one "half" of B_{0},
suitably chosen. This is a contradiction, and so C has no such rooted minor. By induction, (5.1) is true.
(5.2). If X_{0} contains a vertex of C, then C has path-width at most $q(\gamma, 3 \Omega+6)$.

In this case C contains no vertices of $\cup\left(X_{j}: j \in\{1, \ldots, N\}-J\right)$ since X separates X_{0} and this set. Let P be a minimal path of B_{0} from $V(C)$ to $\rho(G)$. Let v be the vertex of C on P. Root C at v. Suppose that C has a rooted minor isomorphic to $Q(\gamma, 3 \Omega+6)$. Then there exist $X_{0}^{\prime}, \ldots, X_{\Omega+1}^{\prime} \subseteq V(C)$, disjoint, such that $C \mid X_{0}^{\prime}$, rooted at v, has a rooted minor isomorphic to H, and for $1 \leqslant i \leqslant \Omega+1, C \mid X_{i}^{\prime}$ has a minor isomorphic to $\mathbf{Y}_{\gamma-1}$. But then the sets

$$
X_{0}^{\prime} \cup V(P), X_{1}^{\prime}, \ldots, X_{\Omega+1}^{\prime} \quad \text { and } \quad X_{j}(j \in\{1, \ldots, N\}-J)
$$

satisfy (X1) and (X2), and there are $\Omega+1+N-|J|>N$ of them. This contradicts the maximality of N, and hence proves (5.2). This completes the argument for Part 3, and so proves (3.7).

References

1. N. Robertson and P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, submitted.
2. N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, J. Combinatorial Theory (Ser. B), to appear.
3. N. Robertson and P. D. Seymour, Graph minors. IV. Tree-width and well-quasiordering, submitted.
4. N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph, submitted.

[^0]: * Partially supported by National Science Foundation Grant MCS 8103440.

