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This paper uses frame techniques to characterize the Schatten class properties of integral
operators. The main result shows that if the coefficients {〈k,Φm,n〉} of certain frame
expansions of the kernel k of an integral operator are in �2,p , then the operator is
Schatten p-class. As a corollary, we conclude that if the kernel or Kohn–Nirenberg symbol
of a pseudodifferential operator lies in a particular mixed modulation space, then the
operator is Schatten p-class. Our corollary improves existing Schatten class results for
pseudodifferential operators and the corollary is sharp in the sense that larger mixed
modulation spaces yield operators that are not Schatten class.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Integral operators arise naturally in many areas of mathematics and science. Pseudodifferential operators, which are
a particular type of integral operator, have appeared widely in the literature of physics, signal processing and differential
equations. An overview of pseudodifferential operators is given in Chapter 14 of [9], while more detailed expositions are
found in [6,13,17]. Because of the role of pseudodifferential operators in partial differential equations, the smoothness of the
Weyl and Kohn–Nirenberg symbols of a pseudodifferential operator has traditionally been used to characterize properties of
the operator, with the Hörmander symbol classes playing key roles.

More recently, pseudodifferential operators have been studied from a time–frequency perspective. Every pseudodifferen-
tial operator is a superposition of time–frequency shifts, and the properties of pseudodifferential operators have been well
described by time–frequency analysis. Results with this flavor appear in [3,18,22]. In particular the classical modulation
spaces M p,q

w (Rd), which are Banach spaces characterized by time–frequency shifts and mixed norms, have been useful sym-
bol spaces for studying continuity and Schatten class properties of pseudodifferential operators. (See [16] for applications
of mixed norms in other areas of harmonic analysis.) Using Gabor frames, elements in these spaces can be decomposed
into a superposition of time–frequency shifts, and this Gabor frame decomposition of the symbol of a pseudodifferential
operator can be used to characterize the properties of the operator. Results of this type appear in [2,8,10,14,19,21], while
modulation spaces appear implicitly in [11,20,5,12,15].

In this paper we develop a technique for analyzing the kernel of an integral operator which both generalizes and
improves existing techniques of time–frequency analysis of pseudodifferential operators, and in particular yields larger non-
smooth classes of Kohn–Nirenberg symbols which ensure that a given pseudodifferential operator is Schatten p-class.
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To obtain our main result, we analyze the slices of the kernel of an integral operator with a frame. If these decomposed
slices have a certain decay, then the operator is Schatten p-class. As a special case, we obtain the following theorem.

Theorem 1.1. Suppose {φm}m∈Λ is a frame for L2(Rd). Let Φm,n = φm ⊗ φn. If A is an integral operator with kernel k and p ∈ [1,2],
then A is Schatten p-class on L2(Rd) if

(∑
n∈Λ

( ∑
m∈Λ

∣∣〈k,Φm,n〉∣∣2
) p

2
) 1

p

< ∞.

Analyzing the slices of the kernel as in Theorem 1.1 with a Gabor frame in particular gives a time–frequency condition
on the kernel which ensures the operator is Schatten p-class. We show that this condition holds for kernels belonging to
certain Banach spaces M(c)p1,p2,...,p2d

w that we call mixed modulation spaces, which are natural generalizations of the tradi-
tional modulation spaces M p,q

w (Rd). In this paper we show that many of the interesting properties of traditional modulation
spaces also hold for mixed modulation spaces. Furthermore, inclusion of the Kohn–Nirenberg symbol in an appropriate
mixed modulation space ensures the corresponding operator is Schatten p-class. The relationship between mixed modu-
lation spaces and the kernels and Kohn–Nirenberg symbols of Schatten p-class operators is summarized in the following
theorem.

Theorem 1.2. Let A be a pseudodifferential operator with kernel k and Kohn–Nirenberg symbol τ . Assume p ∈ [1,2] and set 2 = p1 =
· · · = p2d and p = p2d+1 = · · · = p4d. For suitable c, if one of k, τ lies in M(c)p1,p2,...,p4d , then so does the other. In this case A is
Schatten p-class on L2(Rd).

The strongest known Schatten class result for pseudodifferential operators obtained by time–frequency analysis is The-
orem 1.2 of [8], which states that if the Weyl symbol or Kohn–Nirenberg symbol of a pseudodifferential operator is
in M2,2

vs (R2d), then the operator is Schatten p-class if p > 2d
d+s and s � 0. Although the crux of both Theorem 1.2 and [8,

Theorem 1.2] is time–frequency analysis with Gabor frames, our Theorem 1.2 is obtained by analyzing the slices of the ker-
nel with a Gabor frame, thus permitting a finer control on the properties of the kernel (and, consequently, the symbol). As
a result, we can show that Theorem 1.2 is stronger than [8, Theorem 1.2], in the sense that the mixed modulation space
described by Theorem 1.2 strictly contains the space M2,2

vs (R2d).
The mixed modulation space M(c)p1,p2,...,p4d is characterized by 4d decay parameters p1, p2, . . . , p4d , while the mixed

modulation space described by Theorem 1.2 essentially only has two decay parameters. This disparity suggests that Theo-
rem 1.2 may be extended to a larger mixed modulation space by a more subtle analysis of the kernel of a pseudodifferential
operator. However, this is not the case. In fact, we show that Theorem 1.2 is sharp in the sense that larger mixed modulation
spaces contain kernels and symbols of pseudodifferential operators that are not Schatten p-class.

The paper is organized as follows. Section 2 contains preliminary and background information. Section 3 is devoted to
the proof of Theorem 1.1. In Section 4, the definition of mixed modulation spaces M(c)p1,p2,...,p2d

w is given and the properties
of these spaces are described. In Section 5, we apply the results of Sections 3 and 4 to pseudodifferential operators.

2. Preliminaries

2.1. Weight functions

Definition 2.1. A locally integrable function v : Rd → [0,∞) is called a weight function. A weight function v : Rd → [0,∞) is
submultiplicative if

v(z1 + z2) � v(z1)v(z2) for all z1, z2 ∈ Rd.

A weight function v has polynomial growth if there are C, s � 0 such that v(z) � C(1 + |z|)s for all z ∈ Rd .

For each s � 0, the function vs(z) = (1 + |z|)s is a submultiplicative weight function with polynomial growth.

Definition 2.2. Suppose w : Rd → [0,∞) is a weight function and v : Rd → [0,∞) is submultiplicative. If there is a con-
stant C such that

w(z1 + z2) � C v(z1)w(z2) for all z1, z2 ∈ Rd,

then we call w a v-moderate weight.

We will assume throughout this paper that v : Rd → [0,∞) is a submultiplicative weight function of polynomial growth
symmetric in each coordinate, i.e. v(x1, . . . ,−xi, . . . , xd) = v(x1, . . . , xi, . . . , xd) for each i = 1,2, . . . ,d. We also assume
throughout that w is a v-moderate weight.
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2.2. Mixed norm spaces

Definition 2.3. Given measure spaces (Xi,μi) and given pi ∈ [1,∞] for i = 1,2, . . . ,d, we let L p1,p2,...,pd
w (X1, X2, . . . , Xd,

μ1,μ2, . . . ,μd) consist of all of the measurable functions F : X1 × X2 ×· · ·× Xd → C for which the following norm is finite:

‖F‖
L

p1,p2,...,pd
w

=
(∫

Xd

· · ·
(∫

X1

∣∣F (x1, . . . , xd)w(x1, . . . , xd)
∣∣p1 dμ1(x1)

) p2
p1 · · ·dμd(xd)

) 1
pd

,

with the usual modifications for indices pi which equal ∞.
If the measures μi for all i = 1,2, . . . ,d are clear from context we simply write L p1,p2,...,pd

w (X1, X2, . . . , Xd). If Xi = R

and μi is Lebesgue measure on R for all i = 1,2, . . . ,d, then we simply write L p1,p2,...,pd
w . If each Xi is countable and μi is

counting measure on Xi we simply write �
p1,p2,...,pd
w (X1, X2, . . . , Xd).

The mixed norm spaces L p1,p2,...,pd
w (X1, X2, . . . , Xd,μ1,μ2, . . . ,μd) are generalizations of the classical spaces L p and �p ,

and the proof that L p and �p are Banach spaces can be extended to the mixed norm spaces (see [1]).
The following technical lemma will be useful in later sections.

Lemma 2.4. If p > 2d
d+s and s � 0, then �

2,2
vs (Z2d,Z2d) � �2,p(Z2d,Z2d).

2.3. Schatten class operators

Definition 2.5. Suppose H is a Hilbert space and A : H → H is a linear operator. We say A is Schatten p-class and write
A ∈ I p(H) if

‖A‖I p = sup

(∑
n∈N

∣∣〈A fn, gn〉
∣∣p

) 1
p

< ∞,

where the supremum is taken over all pairs of orthonormal sequences { fn}n∈N , {gn}n∈N in H .

Equivalently, an operator is Schatten p-class if its singular values constitute an �p sequence. Consequently, trace-class op-
erators are exactly the Schatten 1-class operators and Hilbert–Schmidt operators are the Schatten 2-class operators. Schatten
∞-class operators are bounded operators.

2.4. Gabor transform

Suppose f : Rd → C is measurable. For x, ξ ∈ Rd define the translation operator Tx and modulation operator Mξ by

Tx f (t) = f (t − x) and Mξ f (t) = e2π it·ξ f (t),

and define the time–frequency shift π(x,ξ) by π(x,ξ) = Mξ Tx .

Definition 2.6. Fix φ ∈ S(Rd). Given f ∈ S ′(Rd), the Gabor transform of f with respect to φ is

Vφ f (x, ξ) = 〈 f , Mξ Txφ〉, x, ξ ∈ Rd.

The function φ is called the window function of the Gabor transform.

The value of Vφ f (x, ξ) gives information about the time–frequency content of f around x in time and ξ in frequency.
See [9] for background and information about the Gabor transform.

2.4.1. Gabor frames

Definition 2.7. A frame for a Hilbert space H is a sequence of elements {φx}x∈Λ in H such that there are A, B > 0 with

A‖ f ‖2 �
∑
x∈Λ

∣∣〈 f , φx〉
∣∣2 � B‖ f ‖2

for all f ∈ H . In this case A, B are frame bounds. If we can take A = B , then {φx}x∈Λ is a tight frame. A tight frame is Parseval
if A = B = 1. A Gabor frame for L2(Rd) is a sequence {Mξ Txφ}(x,ξ)∈Λ that is a frame for L2(Rd).
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Frames give non-orthogonal expansions of elements of H in terms of the frame elements. In particular, if {φx}x∈Λ is a
tight frame for H with frame bound B , we have

f = B−1
∑
x∈Λ

〈 f , φx〉φx ∀ f ∈ H .

See [4] for general background on frames and [9] for examples and properties of Gabor frames. In particular, there is a tight
Gabor frame for L2(Rd) whose generator φ is a nice function, e.g., φ ∈ C∞

c (Rd). However, the different statements of the
Balian-Low Theorem show that the elements of a Gabor frame which offers unique expansions (i.e. a Gabor Riesz basis)
necessarily have poor time–frequency localization.

2.4.2. Wilson bases
Wilson bases are orthonormal bases similar to Gabor Riesz bases in that they allow for unique, discrete expansions of

the elements of L2(Rd) in terms of time–frequency “molecules.” However, in contrast with Gabor Riesz bases, the elements
of a Wilson bases may be well localized in time and frequency.

For each k ∈ Zd , n ∈ (Z+)d let

Ψk,n(t) = ψk1,n1(t1)ψk2,n2(t2) · · ·ψkd,nd (td),

where

ψki ,ni (ti) =
{

Tki ψ(ti) if ni = 0,

1√
2

T ki
2
(Mni + (−1)ki+ni M−ni )ψ(ti) if ni > 0.

For suitable ψ ∈ L2(R), the sequence {Ψk,n}k∈Zd,n∈(Z+)d constitutes an orthonormal basis for L2(Rd). In this case we call
{Ψk,n}k∈Zd,n∈(Z+)d the Wilson basis generated by ψ (see [9] for details).

2.4.3. Modulation spaces
Fix φ ∈ S(Rd) and p,q ∈ [1,∞]. Define

‖ f ‖M p,q
w (Rd) = ‖Vφ f ‖

L
p1,p2,...,p2d
w

,

where p = p1 = p2 = · · · = pd and q = pd+1 = pd+2 = · · · = p2d . Let

M p,q
w

(
Rd) = {

f ∈ S ′(Rd): ‖ f ‖M p,q
w (Rd) < ∞}

.

Each M p,q
w (Rd) is a modulation space. For w = 1 we write M p,q

w (Rd) = M p,q(Rd).
The modulation space M p,q

w (Rd) consists of functions with a particular time–frequency decay controlled by the parame-
ters p,q and weight w .

2.5. Integral operators and pseudodifferential operators

An operator A of the form

A f (t) =
∫
Rd

k(t, y) f (y)dy

is an integral operator. The function k is the kernel of A.
A pseudodifferential operator with Kohn–Nirenberg symbol τ is an operator having the form

Kτ f (t) =
∫ ∫
R2d

τ̂ (ξ, x)Mξ T−x f (t)dx dξ.

Suitable Kτ can be realized as integral operators. In particular, if we let F2 denote the partial Fourier transform on the
last d variables of a function of 2d variables, i.e.

(F2 F )(x, w) =
∫
Rd

F (x, y)e−2π iy·w dy for all x, w ∈ Rd,

then Kτ is an integral operator with kernel k = F −1
2 τ ◦ N , where N(x, y) = (x, x − y) for x, y ∈ Rd .

In general, the time–frequency properties of the symbol of a pseudodifferential operator determine if the operator is
Schatten p-class. Results of this type can be found in [8,10,15,20,21]. The strongest of these results is found in [8], in which
the authors obtain estimates on the singular values of pseudodifferential operators. The following theorem is a special case
of Theorem 1.2 in [8].
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Theorem 2.8. Suppose A is a pseudodifferential operator with Kohn–Nirenberg symbol τ . If τ ∈ M2,2
vs (R2d) with p > 2d

d+s and s � 0,

then A ∈ I p(L2(Rd)).

3. A Schatten class result for integral operators

In this section we find a general condition on the kernel of an integral operator which ensures the operator is Schatten
p-class.

Lemma 3.1. Assume { f j} j∈N , {g j} j∈N are orthonormal sequences in L2(Rd). Suppose {φn}n∈Λ is a Parseval frame for L2(Rd). For
G ∈ L2,p(Rd,Λ) define

T (G) =
{∑

n∈Λ

〈 f j, φn〉
〈
G(·,n), g j

〉}
j∈N

.

Then for all p ∈ [1,2], T : L2,p(Rd,Λ) → �p(N) is bounded with ‖T ‖ � 1.

Proof. Since {φn}n∈Λ has frame bounds A = B = 1, we have ‖φn‖L2(Rd) � 1 for all n ∈ Λ. Therefore

∥∥T (G)
∥∥

�1 =
∑
j∈N

∣∣∣∣∑
n∈Λ

〈 f j, φn〉
〈
G(·,n), g j

〉∣∣∣∣ �
∑
n∈Λ

∑
j∈N

∣∣〈 f j, φn〉
∣∣∣∣〈G(·,n), g j

〉∣∣

�
∑
n∈Λ

(∑
j∈N

∣∣〈 f j, φn〉
∣∣2

) 1
2
(∑

j∈N

∣∣〈G(·,n), g j
〉∣∣2

) 1
2

�
∑
n∈Λ

‖φn‖L2(Rd)

∥∥G(·,n)
∥∥

L2(Rd)
� ‖G‖L2,1(Rd,Λ)

and

∥∥T (G)
∥∥

�2 =
(∑

j∈N

∣∣∣∣∑
n∈Λ

〈 f j, φn〉
〈
G(·,n), g j

〉∣∣∣∣
2) 1

2

�
(∑

j∈N

(∑
n∈Λ

∣∣〈 f j, φn〉
∣∣2

)(∑
n∈Λ

∣∣〈G(·,n), g j
〉∣∣2

)) 1
2

=
(∑

n∈Λ

∑
j∈N

∣∣〈g j, G(·,n)
〉∣∣2

) 1
2

�
(∑

n∈Λ

∥∥G(·,n)
∥∥2

L2(Rd)

) 1
2

= ‖G‖L2,2(Rd,Λ).

Hence the theorem holds for p = 1 and p = 2. The Riesz–Thorin Interpolation Theorem gives the result for p ∈ (1,2). �
Theorem 3.2. Suppose {φm}m∈Λ is a Parseval frame for L2(Rd). Define Φm,n(t, y) = φm(t)φn(y). If A is an integral operator with
kernel k, then for all p ∈ [1,2]

‖A‖I p �
(∑

n∈Λ

( ∑
m∈Λ

∣∣〈k,Φm,n〉∣∣2
) p

2
) 1

p

.

Proof. Suppose { f j} j∈N , {g j} j∈N are orthonormal sequences in L2(Rd). Let G(y,n) = Aφn(y). Notice that 〈φn, A∗ g j〉 =
〈G(·,n), g j〉. Expanding f j with the frame {φm}m∈Λ and using the previous lemma, we have

(∑
j∈N

∣∣〈A f j, g j〉
∣∣p

) 1
p

=
(∑

j∈N

∣∣〈 f j, A∗ g j
〉∣∣p

) 1
p

=
(∑

j∈N

∣∣∣∣∑
n∈Λ

〈 f j, φn〉
〈
G(·,n), g j

〉∣∣∣∣
p) 1

p

� ‖G‖L2,p(Rd,Λ)

=
(∑

n∈Λ

‖Aφn‖p
L2(Rd)

) 1
p

=
(∑

n∈Λ

(∑
m∈Λ

∣∣〈Aφn, φm〉∣∣2
) p

2
) 1

p

=
(∑

n∈Λ

(∑
m∈Λ

∣∣〈k,Φm,n〉∣∣2
) p

2
) 1

p

.

Taking the supremum of (
∑

j∈N
|〈A f j, g j〉|p)

1
p over all such orthonormal sequences { f j} j∈N , {g j} j∈N gives the result. �

The proofs of Lemma 3.1 and Theorem 3.2 can be generalized to prove Theorem 1.1.
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4. Mixed modulation spaces

In this section we introduce a generalization of the modulation spaces M p,q
w (Rd). Throughout this section, we assume

c is a permutation of the set {1,2, . . . ,2d}. To simplify some notation we identify c with the bijection c : R2d → R2d given
by c(x1, . . . , x2d) = (xc(1), . . . , xc(2d)).

Definition 4.1. Suppose φ ∈ S(Rd) and c is a permutation of {1,2, . . . ,2d} corresponding to the map c. Let M(c)p1,p2,...,p2d
w

be the mixed modulation space consisting of all f ∈ S ′(Rd) for which

‖ f ‖
M(c)

p1,p2,...,p2d
w

= ‖Vφ f ◦ c‖
L

p1,p2,...,p2d
w

< ∞.

When w = 1 we write M(c)p1,p2,...,p2d
w = M(c)p1,p2,...,p2d .

Notice that if c is the identity permutation and p = p1 = p2 = · · · = pd and q = pd+1 = · · · = p2d , then M(c)p1,p2,...,p2d
w =

M p,q
w (Rd). Hence the mixed modulation spaces are indeed generalizations of modulation spaces. Also notice that if p = p1 =

p2 = · · · = pd = pd+1 = · · · = p2d , then M(c)p1,p2,...,p2d
vs = M p,p

vs (Rd) for any permutation c.
The most interesting properties of modulation spaces carry over to the mixed modulation spaces. As the proofs are basic

generalizations of the proofs for modulation spaces, we state these properties without proof. See [9] for a detailed account
of the properties of modulation spaces.

Definition 4.2. Suppose c is a permutation of {1,2, . . . ,2d}. For each x ∈ R2d let πx = M(xd+1,...,x2d)T(x1,...,xd) . For measurable
ψ : Rd → C define an operator Υψ by

Υψ F (t) =
∫

R2d

F (x)πc(x)ψ(t)dx.

Theorem 4.3. Suppose ψ,γ ∈ M(c)1,...,1
v .

(a) For any f ∈ M(c)p1,p2,...,p2d
w , we have Υψ(Vγ f ◦ c) = 〈ψ,γ 〉 f .

(b) ||| f ||| = ‖Vψ f ◦ c‖
L

p1,p2,...,p2d
w

is an equivalent norm on M(c)p1,p2,...,p2d
w .

Theorem 4.3(b) implies that the definition of the mixed modulation spaces is independent of the choice of win-
dow φ ∈ S(Rd), with different windows φ giving equivalent norms. Furthermore, this fact also holds for φ in the larger
space M(c)1,...,1

v . Theorem 4.3(a) shows that for Gabor window functions in M(c)1,...,1
v , there is an inversion formula valid

on each M(c)p1,p2,...,p2d
w .

Corollary 4.4. For any p1, p2, . . . , p2d ∈ [1,∞], M(c)p1,p2,...,p2d
w is a Banach space.

Theorem 4.5. If p1, p2, . . . , p2d ∈ [1,∞), then M(c)
p′

1,p′
2,...,p′

2d
1
w

is the dual space of M(c)p1,p2,...,p2d
w , where p′

i ∈ [1,∞] satisfies
1
pi

+ 1
p′

i
= 1.

The next theorem states that if the window function is nice, then a Gabor frame for L2(Rd) gives bounded decomposi-
tions for all mixed modulation spaces.

Theorem 4.6. Suppose p1, p2, . . . , p2d ∈ [1,∞] and ψ ∈ M(c)1,...,1
v . Further suppose that {παnψ}n∈Z2d is a frame for L2(Rd) with

dual frame {παnγ }n∈Z2d . Then

(a) {παnψ}n∈Z2d is a Banach frame for M(c)p1,p2,...,p2d
w and there exist 0 < A � B < ∞ independent of p1, p2, . . . , p2d with

A‖ f ‖
M(c)

p1,p2,...,p2d
w

� ‖Vψ f ◦ c|αZ2d‖
�

p1,p2,...,p2d
w

� B‖ f ‖
M(c)

p1,p2,...,p2d
w

for all f ∈ M(c)p1,p2,...,p2d
w .

(b) If p1, p2, . . . , p2d ∈ [1,∞), then

f =
∑

m∈Z2d

〈 f ,παmψ〉παmγ =
∑

m∈Z2d

〈 f ,παmγ 〉παmψ

for all f ∈ M(c)p1,p2,...,p2d
w with unconditional convergence in M(c)p1,...,p2d

w .
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(c) If p1, p2, . . . , p2d ∈ [1,∞], then

f =
∑

m∈Z2d

〈 f ,παmψ〉παmγ =
∑

m∈Z2d

〈 f ,παmγ 〉παmψ

for all f ∈ M(c)p1,p2,...,p2d
w with weak∗ convergence in M(c)∞,...,∞

1
v

.

Theorem 4.6 can be used to prove embeddings among the mixed modulation spaces.

Lemma 4.7. If s � t and pi, ri ∈ [1,∞] with pi � ri for all i = 1,2, . . . ,2d, then M(c)p1,p2,...,p2d
vs ⊂ M(c)r1,r2,...,r2d

vt .

The following theorem states that Wilson bases are bases for the mixed modulation spaces.

Theorem 4.8. Let v : R2d → [0,∞) be a weight and w a v-moderate weight. Define ṽ(t) = max{v(t,0, . . . ,0), v(0, t,0, . . . ,0), . . . ,

v(0, . . . ,0, t)} for each t ∈ R. Assume ψ ∈ M1,1
ṽ⊗ṽ(R) generates an orthonormal Wilson basis {Ψk,n}n∈(Z+)d,k∈Zd for L2(Rd). Then

{Ψk,n}n∈(Z+)d,k∈Zd is an unconditional basis for M(c)p1,p2,...,p2d
w for each p1, p2, . . . , p2d ∈ [1,∞).

Corollary 4.9. Let X1 = X2 = · · · = Xd = Z and Xd+1 = Xd+2 = · · · = X2d = Z+ . Then the map

f → {〈 f ,Ψ(nc(1),nc(2),...,nc(d)),(nc(d+1),...,nc(2d))〉
}

n1∈Xc−1(1)
,n2∈Xc−1(2)

, ...,n2d∈Xc−1(2d)

is an isomorphism from M(c)p1,p2,...,p2d
w to �

p1,p2,...,p2d
w (Xc−1(1), . . . , Xc−1(2d)).

5. Pseudodifferential operators and Schatten classes

In this section we will use Theorem 3.2 to find conditions on the kernel and Kohn–Nirenberg symbol of a pseudodiffer-
ential operator that guarantee the operator is Schatten p-class.

We are particularly interested in permutations c of {1,2, . . . ,4d} satisfying the following:

(a) c maps {1,2, . . . ,d,2d + 1,2d + 2, . . . ,3d} to {1,2, . . . ,2d} bijectively and
(b) c maps {d + 1,d + 2, . . . ,2d,3d + 1,3d + 2, . . . ,4d} to {2d + 1, . . . ,4d} bijectively.

We call such permutations slice permutations because they relate nicely to the slice analysis of Section 3.

Corollary 5.1. Assume c is a slice permutation. Let 2 = p1 = p2 = · · · = p2d and p = p2d+1 = · · · = p4d. If p ∈ [1,2], k ∈ M(c)p1,...,p4d

and A is an integral operator with kernel k, then A ∈ I p(L2(Rd)).

Proof. Let {παmφ}m∈Z2d = {φm}m∈Z2d be a Parseval Gabor frame for L2(Rd) with φ ∈ M1,1(Rd) and let Φ(t, y) = φ(t)φ(y).
Then Φ ∈ M1,1(R2d). Let Φm,n(t, y) = φm(t)φn(y). By Lemma 3.2 in [11], {Φm,n}m,n∈Z2d is a Parseval frame for L2(R2d). For

m1,m2,n1,n2 ∈ Zd , with m = (m1,m2) and n = (n1,n2), we have

〈k,Φm,n〉 = VΦk(αm1,αn1,αm2,αn2).

For each slice permutation c, we see that( ∑
n∈Z2d

( ∑
m∈Z2d

∣∣〈k,Φm,n〉∣∣2
) p

2
) 1

p

=
( ∑

n1,n2∈Zd

( ∑
m1,m2∈Zd

∣∣VΦk(αm1,αn1,αm2,αn2)
∣∣2

) p
2
) 1

p

=
( ∑

n1,n2∈Zd

( ∑
m1,m2∈Zd

∣∣VΦk
(
c(αm1,αm2,αn1,αn2)

)∣∣2
) p

2
) 1

p

� B‖k‖M(c)p1,p2,...,p4d ,

where B is the constant ensured by Theorem 4.6(a). Hence if k ∈ M(c)p1,...,p4d , then, by Theorem 3.2, A ∈ I p(L2(Rd)). �
We can extend Corollary 5.1 to conditions on the symbol of a pseudodifferential operator.

Theorem 5.2. Let A be a pseudodifferential operator with kernel k and Kohn–Nirenberg symbol τ . Assume p ∈ [1,2] and set 2 = p1 =
· · · = p2d and p = p2d+1 = · · · = p4d. If c is a slice permutation and one of k, τ lies in M(c)p1,p2,...,p4d , then so does the other. In this
case A ∈ I p(L2(Rd)).
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Proof. Using the fact that k = F −1
2 τ ◦ N we can show that |〈k, M(z,t)T(x,y)Φ〉| = |〈τ , M(z+t,−y)T(x,−t)F2(Φ ◦ N−1)〉| for all

x, y, z, t ∈ Rd . Hence

‖k‖M(c)p1,p2,...,p4d =
(∫ ∫ (∫ ∫ ∣∣〈k, M(z,t)T(x,y)Φ〉∣∣2

dx dz

) p
2

dy dt

) 1
p

=
(∫ ∫ (∫ ∫ ∣∣〈τ , M(z+t,−y)T(x,−t)F2

(
Φ ◦ N−1)〉∣∣2

dx dz

) p
2

dy dt

) 1
p

=
(∫ ∫ (∫ ∫ ∣∣〈τ , M(z,y)T(x,t)F2

(
Φ ◦ N−1)〉∣∣2

dx dz

) p
2

dy dt

) 1
p

� ‖τ‖M(c)p1,p2,...,p4d . �
Theorem 5.2 is stronger than the previously known Theorem 2.8, as the following lemma shows.

Lemma 5.3. Let c be a slice permutation and let 2 = p1 = · · · = p2d, p = p2d+1 = · · · = p4d. If p > 2d
d+s with s � 0, then M2,2

vs (R2d) �

M(c)p1,p2,...,p4d .

Proof. Let X1 = X2 = · · · = X2d = Z and X2d+1 = X2d+2 = · · · = X4d = Z+ and define

S( f ) = {〈 f ,Ψ(nc(1),...,nc(2d)),(nc(2d+1),...,nc(4d))〉
}

n1∈Xc−1(1)
,n2∈Xc−1(2)

, ...,n4d∈Xc−1(4d)

.

Since M2,2
vs (R2d) = M(c)2,2,...,2

vs , Corollary 4.9 implies that

S : M2,2
vs

(
R2d) → �2,2,...,2

vs
(Xc−1(1), . . . , Xc−1(4d))

and

S : M(c)p1,p2,...,p4d → �p1,p2,...,p4d (Xc−1(1), . . . , Xc−1(4d))

are isomorphisms. Furthermore, by Lemma 2.4, we have

�2,2,...,2
vs

(Xc−1(1), . . . , Xc−1(4d)) � �p1,p2,...,p4d (Xc−1(1), . . . , Xc−1(4d))

for p > 2d
d+s with s � 0. Hence we obtain the following diagram

M2,2
vs (R2d)

S

M(c)p1,p2,...,p4d

S

�
2,2,...,2
vs (Xc−1(1), . . . , Xc−1(4d)) �p1,p2,...,p4d (Xc−1(1), . . . , Xc−1(4d))

Since S is an isomorphism, the result follows. �
By Lemma 4.7, increasing any one of the exponent parameters p1, . . . , p4d or decreasing the weight parameter s yields a

mixed modulation space larger than M(c)p1,p2,...,p4d
vs . The next theorem shows Theorem 5.2 is sharp in the following sense:

increasing the exponent parameters or decreasing the weight parameter of the mixed modulation space in Theorem 5.2
gives a larger mixed modulation space, but pseudodifferential operators with kernels or Kohn–Nirenberg symbols in this
larger space need not be Schatten class.

Theorem 5.4. Assume s � 0, p1, . . . , p2d ∈ [2,∞], p2d+1, . . . , p4d ∈ [p,∞] and c is a slice permutation. Assume at least one of the
following is true:

(a) s < 0.
(b) At least one of p1, . . . , p2d is larger than 2.
(c) At least one of p2d+1, . . . , p4d is larger than p.

If 1 � p � 2, then there are pseudodifferential operators with kernels in M(c)p1,p2,...,p4d
vs and pseudodifferential operators with Kohn–

Nirenberg symbols in M(c)p1,p2,...,p4d
v that are not in I p(L2(Rd)).
s
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Proof. Suppose A is a pseudodifferential operator with kernel k and Kohn–Nirenberg symbol τ . Since∣∣〈k, M(z,t)T(x,y)Φ〉∣∣ = ∣∣〈τ , M(z+t,−y)T(x,−t)F2
(
Φ ◦ N−1)〉∣∣,

it follows that for each slice permutation c, there is a slice permutation c̃ with ‖τ‖
M(c)

p1,p2,...,p4d
vs

� ‖k‖
M(c̃)

p1,p2,...,p4d
vs

. Hence

it suffices to show that for each slice permutation c, there are pseudodifferential operators with kernels in M(c)p1,p2,...,p4d
vs

that are not Schatten p-class.
To avoid complicated notation, we prove the theorem only for the permutation c(x1, . . . , x4d) = (xd+1, . . . , x2d, x3d+1, . . . ,

x4d, x1, . . . , xd, x2d+1, . . . , x3d). The result is proven similarly for other slice permutations.
In the case that (a) or (b) holds, we can adapt some of the arguments in [7] to complete the proof. In particular, if

k(t, y) = k1(t)k2(y) is the kernel of an integral operator A, then A f = 〈 f ,k2〉k1. Hence if k1 /∈ L2(Rd), then A does not map
into L2(Rd), and if k2 /∈ L2(Rd), then A : L2(Rd) → L2(Rd) is not bounded. Let c′ be the permutation with associated bijection
c′(n1, . . . ,n2d) = (nd+1, . . . ,n2d,n1, . . . ,nd). If (a) holds, choose k1 ∈ M2,2

vs (Rd)\ L2(Rd) and k2 ∈ M p,p(Rd). If (b) holds, choose
k1 ∈ M(c′)p1,...,p2d \ L2(Rd) and k2 ∈ M(c′)p2d+1,...,p4d . In either case k(t, y) = k1(t)k2(y) ∈ M(c)p1,p2,...,p4d

vs , but the integral
operator with kernel k is not a bounded operator on L2(Rd).

Hence we assume (c) is true. Choose λ ∈ �p2d+1,...,p3d,p3d+1,...,p4d ((Z+)d,Zd) \ �p,p((Z+)d,Zd). Assume {ψ j,l} j∈Zd, l∈(Z+)d is

a Wilson basis for L2(Rd) generated by ψ ∈ M1,1(R). Then

{Ψ( j1, j2),(l1,l2)} j1, j2∈Zd, l1,l2∈(Z+)d = {ψ j1,l1 ⊗ ψ j2,l2} j1, j2∈Zd, l1,l2∈(Z+)d

is a Wilson basis for L2(R2d) generated by ψ ∈ M1,1(R). Set

k(t, y) =
∑
j∈Zd

∑
l∈(Z+)d

λl, jψ j,l(t)ψ j,l(y).

Then

Ψ(nc(1),nc(2),...,nc(2d)),(nc(2d+1),...,nc(4d)) = Ψ(nd+1,...,n2d,n3d+1,...,n4d),(n1,...,nd,n2d+1,...,n3d)

= ψ(nd+1,...,n2d),(n1,...,nd) ⊗ ψ(n3d+1,...,n4d),(n2d+1,...,n3d).

By Corollary 4.9

‖k‖
M(c)

p1,p2,...,p4d
vs

�
( ∑

n4d∈Xc−1(4d)

· · ·
( ∑

n1∈Xc−1(1)

∣∣〈k,Ψ(nc(1),...,nc(2d)),(nc(2d+1),...,nc(4d))〉
∣∣p1

) p2
p1 · · ·

) 1
p4d

=
( ∑

n4d∈Z

(
· · ·

( ∑
n2d+1∈Z+

|λ(n2d+1,...,n3d),(n3d+1,...,n4d)|p2d+1

) p2d+2
p2d+1 · · ·

) p4d
p4d−1

) 1
p4d

= ‖λ‖�
p2d+1,...,p3d ,p3d+1,...,p4d ((Z+)d,Zd)

so k ∈ M(c)p1,p2,...,p4d ⊂ M(c)p1,p2,...,p4d
vs . The pseudodifferential operator A with kernel k has singular values equal to the

elements of the sequence λ. Hence A /∈ I p(L2(Rd)). �
Notice that the proof of the previous theorem shows that Theorem 5.2 does not hold for p > 2. That is, if p > 2 and

k ∈ M(c)2,2,...,2,p,...,p , the corresponding integral operator may not even be bounded on L2(Rd).
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