

Available online at www.sciencedirect.com

journal of Algebra

Journal of Algebra 319 (2008) 267-271

www.elsevier.com/locate/jalgebra

An integral homological characterization of finite groups ☆

Fotini Dembegioti, Olympia Talelli*

Department of Mathematics, University of Athens, Panepistimiopolis, GR 157-84 Athens, Greece

Received 8 January 2007 Available online 31 October 2007 Communicated by Michel Broué To the memory of Karl W. Gruenberg

Abstract

We show that a group G is finite if and only if every injective $\mathbb{Z}G$ -module has projective length one. © 2007 Elsevier Inc. All rights reserved.

Keywords: spli $\mathbb{Z}G$; Finitistic dimension of $\mathbb{Z}G$; $H^n(G, \mathbb{Z}G)$; Groups acting on trees

1. Introduction

Let *G* be a group and $\mathbb{Z}G$ its integral group ring. For a $\mathbb{Z}G$ -module *M*, let $pd_{\mathbb{Z}G}M$ and $id_{\mathbb{Z}G}M$ denote the projective dimension and injective dimension of *M* respectively. The algebraic invariants of $\mathbb{Z}G$, silp $\mathbb{Z}G$ = sup{ $id_{\mathbb{Z}G}P \mid P$ a projective $\mathbb{Z}G$ -module} and spli $\mathbb{Z}G$ = sup{ $pd_{\mathbb{Z}G}I \mid I$ an injective $\mathbb{Z}G$ -module}, were studied in [4] in connection with the existence of complete cohomological functors on groups. In [4] it was shown that for any group *G* silp $\mathbb{Z}G \leq$ spli $\mathbb{Z}G$ and that if spli $\mathbb{Z}G < \infty$ then silp $\mathbb{Z}G$ = spli $\mathbb{Z}G$. It is not known whether there is a group *G* with silp $\mathbb{Z}G$ finite and spli $\mathbb{Z}G$ infinite.

The invariants silp $\mathbb{Z}G$ and spli $\mathbb{Z}G$ also appeared in the study of $\mathbf{H}\mathfrak{F}$ -groups in [2], where it was shown that if *G* is in $\mathbf{H}\mathfrak{F}$ then

findim $\mathbb{Z}G$ = silp $\mathbb{Z}G$ = spli $\mathbb{Z}G$ = $\kappa(\mathbb{Z}G)$

^{*} Corresponding author.

0021-8693/\$ – see front matter © 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jalgebra.2007.09.025

 $^{^{*}}$ This project is cofunded by the European Social Fund and National Resources, EPEAEK II—Pythagoras, grant #70/3/7298.

E-mail addresses: fdebeg@math.uoa.gr (F. Dembegioti), otalelli@math.uoa.gr (O. Talelli).

where findim $\mathbb{Z}G = \sup\{\operatorname{pd}_{\mathbb{Z}G} M \mid \operatorname{pd}_{\mathbb{Z}G} M < \infty\}$ and $\kappa(\mathbb{Z}G) = \sup\{\operatorname{pd}_{\mathbb{Z}G} M \mid \operatorname{pd}_{\mathbb{Z}H} M < \infty$ for every finite $H \leq G\}$. Actually it was proved in [9] that for any group G, if $\kappa(\mathbb{Z}G)$ is finite then

findim $\mathbb{Z}G$ = silp $\mathbb{Z}G$ = spli $\mathbb{Z}G$ = $\kappa(\mathbb{Z}G)$.

The invariants silp $\mathbb{Z}G$ and spli $\mathbb{Z}G$ are also related to the study of periodicity in group cohomology. If a group *G* has periodic cohomology after some steps, i.e. there are integers *q*, *k* with q > 0 so that the functors $H^i(G, _)$ and $H^{i+q}(G, _)$ are naturally equivalent for all i > k, then it was shown in [8] that silp $\mathbb{Z}G$ is finite if and only if spli $\mathbb{Z}G$ is finite. It was also shown that if a group *G* has periodic cohomology after some steps, then the periodicity isomorphism is given by cup product with an element in $H^q(G, \mathbb{Z})$ if and only if spli $\mathbb{Z}G$ is finite. Note that a group *G* has periodic cohomology after some steps and the periodicity isomorphisms are induced by cup product with an element in $H^q(G, \mathbb{Z})$ for some q > 0. This was proved in [6] for a certain class of groups and in [1] for any group.

Here we show:

Theorem. A group G is finite if and only if spli $\mathbb{Z}G = 1$.

This characterization of finite groups supports Conjecture A in [9] which states that a group G admits a finite dimensional model for its classifying space for proper actions, <u>E</u>G, if and only if spli $\mathbb{Z}G$ is finite.

2. Proof of the theorem

Proposition 1. (See [4].)

- (a) For any group $G \operatorname{silp} \mathbb{Z}G \leq \operatorname{spli} \mathbb{Z}G$, and if $\operatorname{spli} \mathbb{Z}G < \infty$ then $\operatorname{silp} \mathbb{Z}G = \operatorname{spli} \mathbb{Z}G$.
- (b) If G is a group and H a subgroup of G then
 - (b₁) spli $\mathbb{Z}H \leq$ spli $\mathbb{Z}G$. (b₂) *If* |*G* : *H*| < ∞ *then* spli $\mathbb{Z}H$ = spli $\mathbb{Z}G$.

Since the injective \mathbb{Z} -modules are the divisible abelian groups, an immediate corollary of Proposition 1(b₂) is

Corollary 2. *If G is a finite group then* spli $\mathbb{Z}G = 1$.

Theorem 3. If G is a group with spli $\mathbb{Z}G = 1$ then G is finite.

Proof. Assume that spli $\mathbb{Z}G = 1$. By Theorem 2.2 of [8] spli $\mathbb{Z}G < \infty$ if and only if there is a \mathbb{Z} -split $\mathbb{Z}G$ -exact sequence $0 \to \mathbb{Z} \to A$ with $A \mathbb{Z}$ -free and $pd_{\mathbb{Z}G}A < \infty$. Since silp $\mathbb{Z}G =$ spli $\mathbb{Z}G$ it follows that $pd_{\mathbb{Z}G}A \leq 1$. By the corollary of [7], which is proved using the Almost Stability Theorem of Dicks and Dunwoody [3], it follows that *G* acts on a tree with finite vertex stabilizers. Hence, by a theorem of Tits (cf. [3, Theorem I. 4.12]), it follows that either *G* contains an element of infinite order or *G* is a countable locally finite group. Propositions 5 and 6 now complete the proof of the theorem. \Box

To prove Propositions 5 and 6 we will use the following lemma:

Lemma 4. If G is a group with spli $\mathbb{Z}G \leq n + 1$ and $H^n(G, P)$ is not a divisible abelian group for some projective $\mathbb{Z}G$ -module P, then spli $\mathbb{Z}G = n + 1$.

Proof. Since $H^n(G, P)$ is not a divisible abelian group, there is a prime p such that multiplication by $p: H^n(G, P) \to H^n(G, P)$ is not an epimorphism. The short exact sequence of trivial $\mathbb{Z}G$ -modules

$$0 \to \mathbb{Z} \xrightarrow{\pi_p} \mathbb{Z} \longrightarrow \mathbb{Z}_p \to 0$$

where π_p is multiplication by p, gives rise to the following exact sequence of abelian groups

$$H^{n}(G, P) \xrightarrow{\pi_{p}^{*}} H^{n}(G, P) \longrightarrow \operatorname{Ext}_{\mathbb{Z}G}^{n+1}(\mathbb{Z}_{p}, P)$$

where π_p^* is multiplication by p. It follows that $\operatorname{Ext}_{\mathbb{Z}G}^{n+1}(\mathbb{Z}_p, P) \neq 0$, hence $\operatorname{silp} \mathbb{Z}G \ge n+1$. By Proposition 1(a) spli $\mathbb{Z}G \ge n+1$. The result now follows. \Box

Proposition 5. If a group G contains an element x of infinite order then spli $\mathbb{Z}G \ge 2$.

Proof. By Proposition 1(b₁) it is enough to show that spli $\mathbb{Z}K = 2$ where $K = \langle x \rangle$. Since $H^i(K, _) = 0$ for i > 1 it follows that spli $\mathbb{Z}K \leq 2$. Since $H^1(K, \mathbb{Z}K) \simeq \mathbb{Z}$, the result follows from Lemma 4. \Box

Proposition 6. If a group G is an infinite countable locally finite group then spli $\mathbb{Z}G = 2$.

For the proof of Proposition 6 we need the following lemma:

Lemma 7. If a group G is an infinite countable locally finite group then $H^1(G, \mathbb{Z}G)$ has a direct summand isomorphic to $\frac{\prod_{n \in \mathbb{N}} \mathbb{Z}}{\bigoplus_{n \in \mathbb{N}} \mathbb{Z}}$. In particular, $H^1(G, \mathbb{Z}G)$ is not a divisible abelian group.

Proof. Let $G = \bigcup_{n \in \mathbb{N}} G_n$ where $\{G_n\}_{n \in \mathbb{N}}$ is a family of finite subgroups of G such that $G_n < G_{n+1}$ for all $n \in \mathbb{N}$. There is a \mathbb{Z} -split short exact sequence of $\mathbb{Z}G$ -modules

$$0 \to \bigoplus_{n \in \mathbb{N}} \mathbb{Z}[G/G_n] \xrightarrow{\sigma} \bigoplus_{n \in \mathbb{N}} \mathbb{Z}[G/G_n] \xrightarrow{\pi} \mathbb{Z} \to 0$$
(1)

where $\sigma(gG_n) = gG_{n+1} - gG_n$ and $\pi(gG_n) = 1$ for all $n \in \mathbb{N}$, which gives rise to the following long exact sequence of abelian groups

$$\prod_{n \in \mathbb{N}} H^0(G_n, \mathbb{Z}G) \xrightarrow{\sigma^*} \prod_{n \in \mathbb{N}} H^0(G_n, \mathbb{Z}G) \to H^1(G, \mathbb{Z}G) \to \prod_{n \in \mathbb{N}} H^1(G_n, \mathbb{Z}G)$$

where $\prod_{n \in \mathbb{N}} H^1(G_n, \mathbb{Z}G) = 0$ since G_n is finite for all $n \in \mathbb{N}$. So the above exact sequence becomes

$$\prod_{n \in \mathbb{N}} \mathbb{Z}G^{G_n} \xrightarrow{\sigma^*} \prod_{n \in \mathbb{N}} \mathbb{Z}G^{G_n} \to H^1(G, \mathbb{Z}G) \to 0$$

and $H^1(G, \mathbb{Z}G) \simeq \operatorname{coker} \sigma^*$, where $\sigma^*(x_n)_{n \in \mathbb{N}} = (\operatorname{res} x_{n+1} - x_n)_{n \in \mathbb{N}}$ and $\operatorname{res} : \mathbb{Z}G^{G_{n+1}} \to \mathbb{Z}G^{G_n}$ are the restriction maps for all $n \in \mathbb{N}$.

Let T_n be a right transversal of G_n in G_{n+1} , such that $1_G \in T_n$ for $n \in \mathbb{N}$. Then the set $A_n = \{t_n t_{n+1} \cdots t_{n+k} \mid t_i \in T_i, n \leq i \leq n+k, k \geq 0\}$ is a right transversal of G_n in G, such that $A_n = \{ta \mid t \in T_n, a \in A_{n+1}\}$ and $1_G \in A_n$ for all $n \in \mathbb{N}$. The group $\mathbb{Z}G^{G_n}$ is a free abelian with basis $\{N_n a \mid a \in A_n\}$ where $N_n = \sum_{g \in G_n} g$. It turns out that $\operatorname{res}(N_{n+1}a) = \sum_{t \in T_n} N_n ta$ for all $a \in A_{n+1}$. So, if we denote by x^a the $(N_{n+1}a)$ th coordinate of an element $x \in \mathbb{Z}G^{G_{n+1}}$ we have that $(\operatorname{res} x)^{ta} = x^a$ for all $a \in A_{n+1}$, $t \in T_n$.

Consider the map $\phi : \prod_{n \in \mathbb{N}} \mathbb{Z} \to \prod_{n \in \mathbb{N}} \mathbb{Z}G^{G_n}$ with $\phi(m_n)_{n \in \mathbb{N}} = (m_n N_n)_{n \in \mathbb{N}}$. It is easy to show that if $m_n = 0$ for almost all $n \in \mathbb{N}$ then $(m_n N_n)_{n \in \mathbb{N}} \in \text{im } \sigma^*$. Conversely, let $(m_n N_n)_{n \in \mathbb{N}} = \sigma^*(x)$ for some $x = (x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{Z}G^{G_n}$. Then $m_n N_n = \text{res } x_{n+1} - x_n$ for all $n \in \mathbb{N}$. Thus for all $n \in \mathbb{N}$ and $a \in A_n$ we have that

$$(\operatorname{res} x_{n+1})^a - x_n^a = \begin{cases} 0, & \text{if } a \neq 1_G; \\ m_n, & \text{if } a = 1_G. \end{cases}$$

Since $x_1^a \neq 0$ for finitely many $a \in A_1$, there is an $r \in \mathbb{N}$ such that for any n > r there is an element $t_1 t_2 \cdots t_n = a \in A_1$ with $t_i \neq 1_G$ and $x_1^a = 0$. Then $x_1^a = (\operatorname{res} x_2)^a = x_2^{t_2 \cdots t_n} =$ $(\operatorname{res} x_3)^{t_2 \cdots t_n} = \cdots = x_n^{t_n} = (\operatorname{res} x_{n+1})^{t_n} = x_{n+1}^{1_G}$. It follows that $x_{n+1}^{1_G} = 0$ for all n > r. Since $x_{n+1}^{1_G} - x_n^{1_G} = (\operatorname{res} x_{n+1})^{1_G} - x_n^{1_G} = m_n$ we have that $m_n = 0$ for n > r + 1.

Thus ϕ induces an injection $\bar{\phi} : \frac{\prod_{n \in \mathbb{N}} \mathbb{Z}}{\bigoplus_{n \in \mathbb{N}} \mathbb{Z}} \hookrightarrow \operatorname{coker} \sigma^*$. We show that $\bar{\phi}$ is a pure injection. Let $(m_n N_n)_{n \in \mathbb{N}} + \operatorname{im} \sigma^* \in k(\operatorname{coker} \sigma^*)$ for some integer k > 1. Then there is an element $(x_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{Z} G^{G_n}$ such that $(m_n N_n - kx_n)_{n \in \mathbb{N}} \in \operatorname{im} \sigma^*$. Repeating the above argument modulo k we find that k divides m_n for almost all $n \in \mathbb{N}$, so $(m_n)_{n \in \mathbb{N}} \in k((\underbrace{\prod_{n \in \mathbb{N}} \mathbb{Z}}_{\bigoplus_{n \in \mathbb{N}} \mathbb{Z}}))$. Since $\underbrace{\prod_{n \in \mathbb{N}} \mathbb{Z}}_{\bigoplus_{n \in \mathbb{N}} \mathbb{Z}}$ is pure injective [5, 38.1 and 42.2], it follows that $\bar{\phi}$ splits. Since $\underbrace{\prod_{n \in \mathbb{N}} \mathbb{Z}}_{\bigoplus_{n \in \mathbb{N}} \mathbb{Z}}$ is not a divisible abelian group, the result follows. \Box

We return now to the

Proof of Proposition 6. Tensoring the \mathbb{Z} -split short exact sequence (1) of Lemma 7, with an injective $\mathbb{Z}G$ -module *I* yields the short exact sequence of $\mathbb{Z}G$ -modules

$$0 \to \bigoplus_{n \in \mathbb{N}} \mathbb{Z}G \otimes_{G_n} I \to \bigoplus_{n \in \mathbb{N}} \mathbb{Z}G \otimes_{G_n} I \to I \to 0$$

where $\operatorname{pd}_{\mathbb{Z}G} \mathbb{Z}G \otimes_{G_n} I = 1$ from Corollary 2. It follows that $\operatorname{pd}_{\mathbb{Z}G} I \leq 2$ for every injective $\mathbb{Z}G$ -module, so spli $\mathbb{Z}G \leq 2$. Applying Lemma 4 and Lemma 7 gives spli $\mathbb{Z}G = 2$. \Box

The theorem follows from Corollary 2 and Theorem 3.

References

- [1] A. Adem, J. Smith, Periodic complexes and group actions, Ann. of Math. 154 (2) (2001) 407-435.
- [2] J. Cornick, P.H. Kropholler, Homological finiteness conditions for modules over group algebras, J. London Math. Soc. 58 (1998) 49–62.
- [3] W. Dicks, M.J. Dunwoody, Groups Acting on Graphs, Cambridge Univ. Press, 1989.

- [4] T.V. Gedrich, K.W. Gruenberg, Complete cohomological functors on groups, Topology Appl. 25 (1987) 203-223.
- [5] L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York/London, 1970.
- [6] G. Mislin, O. Talelli, On groups which act freely and properly on finite dimensional homotopy spheres, in: M. Atkinson, et al. (Eds.), Computational and Geometric Aspects of Modern Algebra, in: London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, 2000, pp. 208–228.
- [7] O. Talelli, On groups with $cd_{\mathbb{O}}G \leq 1$, J. Pure Appl. Algebra 88 (1993) 245–247.
- [8] O. Talelli, Periodicity in group cohomology and complete resolutions, Bull. London Math. Soc. 37 (2005) 547–554.
- [9] O. Talelli, On groups of type Φ , Arch. Math. 89 (1) (2007) 24–32.