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« Simple rapid method is reported to separate trace amounts of silver nanoparticles.

» Surface-modified magnetic particles capture and concentrate trace amounts (ppb) of AgNPs.
» Magnetic capture particles selectively separated silver nanoparticles from ionic silver.

* Recovery was better than 97% for AgNPs from tap water or environmental surface water.
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The recent surge in consumer products and applications using metallic nanoparticles has increased the possibility
of human or ecosystem exposure due to unintentional release into the environment. To protect consumer health
and the environment, there is an urgent need to develop tools that can characterize and quantify these materials
atlow concentrations and in complex matrices. In this study, magnetic nanoparticles coated with either dopamine
or glutathione were used to develop a new, simple and reliable method for the separation/pre-concentration of
trace amounts of silver nanoparticles followed by their quantification using inductively coupled plasma mass
spectrometry (ICP-MS). The structurally modified magnetic particles were able to capture trace amounts of silver
nanoparticles (~2 ppb) and concentrate (up to 250 times) the particles for analysis with ICP-MS. Under laborato-
ry conditions, recovery of silver nanoparticles was >99%. More importantly, the magnetic particles selectively cap-
tured silver nanoparticles in a mixture containing both nano-particulate and ionic silver. This unique feature
addresses the challenges of separation and quantification of silver nanoparticles in addition to the total silver in
environmental samples. Spiking experiments showed recoveries higher than 97% for tap water and both fresh
and saline surface water.
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1. Introduction example, dispersions of copper carbonate nanoparticles and microparti-

cles have recently been exploited commercially for the preservative

The unique chemical and physical properties associated with
engineered nanomaterials (ENMs) have led to a rapid increase in
nano-based products being introduced to the consumer market. The
manufacturing and commercialization of these nano-based consumer
products are projected to grow exponentially (PEN) and will undoubt-
edly have a major impact on future societies. Unique characteristics of
these particles due in part to their size, structure and high surface area
have yielded a myriad of benefits associated with their use. For
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treatment of wood (Matsunaga et al., 2009), replacing the highly toxic
chromated copper-arsenate formula. Sunscreen formulations based on
titanium dioxide nanoparticles are continually being advanced because
of their superior UV blocking capabilities by either light absorption or
scattering (Shi et al.,, 2012). In addition, because of its wide spectrum
biocide activity, nanosilver has been incorporated into a variety of
products including detergents, clothing (Falletta et al., 2008) dish-
washers, water filters (Dankovich and Gray, 2011), medical appliances
(Crabtree et al., 2003; Jones et al., 2004) and food packaging materials
(Gottesman et al., 2011). Alongside these benefits is the concern of pos-
sible adverse outcomes due to direct or indirect human or ecosystem
exposure. Given the increasing ubiquity and early acceptance of nano-
technology, the release of these ENMs into the ecosystem either in
their native form, derivatives or complexed with other compounds
may be inevitable. Several studies have observed toxic effects for
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different types of ENMs including silver (Beer et al, 2012; Hackenberg
et al.,, 2011; Lubick, 2008; Panacek et al., 2011; Teodoro et al., 2011),
gold (Cho et al,, 2009; Lasagna-Reeves et al., 2010), fullerene (Lovern
et al, 2007), and metal oxide (Posgai et al, 2011) nanoparticles.
These effects have been demonstrated in vitro and often at elevated
nanomaterial concentrations. There is, however, an urgent need to de-
velop sensitive tools to detect and characterize ENMs at lower concen-
trations expected to be present in environmental matrices.

Several nanoparticle characterization techniques based on light scat-
tering and electron microscopy have been used to determine size distri-
butions of nanoparticles in pristine laboratory settings (Montes-Burgos
et al.,, 2010; Ulrich et al., 2012). Current innovations such as single parti-
cle inductively coupled plasma mass spectrometry (sp-ICP-MS) and
asymmetric flow field flow fractionation with optical spectroscopic or in-
ductively coupled mass spectrometry (AF4-ICP-MS) show considerable
promise for direct detection and characterization of different forms of
ENMs. Although these techniques have been demonstrated to be sensi-
tive for nanomaterials in simple aqueous samples, there may be chal-
lenges to their direct application to low concentrations of ENMs in
environmentally complex matrices. For example, A4F may be limited
by unwanted losses of nanomaterials in separation channels mainly
due to non-specific particle-membrane interactions (MacCuspie et al.,
2011). In addition nanoparticles smaller than 30 nm cannot be accurate-
ly detected by sp-ICP-MS (MacCuspie et al., 2011; Mitrano et al., 2012).
Moreover, in a mixture of metallic particles and ions, sp-ICP-MS cannot
be distinguished between the nanoparticles and other colloid-bound
metal ions or precipitates (Mitrano et al., 2012) although this limitation
can be ameliorated by coupling a size-separation technique with SP-ICP-
MS (Pergantis et al., 2012). Consequently, there is a need for simple and
effective sample preparation methods, i.e. separation and/or pre-
concentration techniques for nanomaterials especially at low concentra-
tions and in complex matrices.

Avariety of approaches including chromatographic techniques, cloud
point extraction, centrifugation and filtration have been developed for
extraction, separation and concentration of ENMs from aqueous media
(Simonet and Valcarcel, 2009; Hanauer et al., 2007; Akbulut et al.,
2012; Liu et al., 2009; Maurer et al, 2013). Filtration is the most common,
although often problematic due to low sample recoveries. Factors such
as particle size, physicochemical properties of the particles and the filter
media will determine the filtration efficiency of a specific contaminant
(Kang and Shah, 1997). For the aforementioned sample preparation
techniques, a basic knowledge about the particle chemistry is essential
to ensure accurate measurements and minimal particle losses. Since
this information is often not directly accessible, there is a need for the de-
velopment of a simplified compact process that provides adequate sepa-
ration/concentration while still preserving the nanoparticle integrity
with minimal sample losses.

Magnetic particles as sorbents for nanoparticles can offer a valuable
separation/concentration method for trace amounts of nanoparticles,
prior to their determination by either spectroscopic or electrochemical
techniques. Nanoscale ferro-magnetic particles are typically super-
paramagnetic, hence they can be readily attracted by an external mag-
net but do not remain permanently magnetized after the field is
removed (Baig and Varma, 2013). Moreover, they can be easily tuned
by structural surface modifications (Baig and Varma, 2012) to form
highly effective and robust adsorbent materials. These features, com-
bined with the high surface area of the magnetic micro-/nano-particles,
make them effective tools for concentrating nanomaterial from envi-
ronmental samples. Recently, magnetic particles have emerged as a
new generation of adsorbent materials used for capturing environmen-
tal contaminants such as metal ions (Hu et al., 2007; Yavuz et al., 2006)
and hydrophobic organic compounds (Wang et al., 2008). The strategy
of chemical extraction with magnetic recovery has been demonstrated
to immobilize and pre-concentrate non-magnetic molecules and ions
to superparamagnetic particles by modifying these capture particles
with chelators such as glutathione and dopamine (Baig and Varma,

2013). Magnetic separation using these chemically-modified particles
offers simplicity and overcomes many of the problems associated with
conventional separation/preconcentration techniques (Wang et al.,
2008, Ashtari et al., 2009). To the best of our knowledge, magnetic par-
ticles have not been reported for the separation/concentration of silver
nanoparticles (AgNPs).

In the current study, we demonstrate the use of unmodified and sur-
face-modified magnetic particles for the capture and concentration of
AgNPs in aqueous media. The physical characterization of the magnetic
particles before and after exposure to AgNPs was conducted. In addition,
the applicability of this technique for use with AgNPs in environmental
water samples is reported. The novelties of this work include the high
potential for concentration of trace levels of nanoparticles as well as se-
lective removal of nanosilver in mixtures containing silver ions.

2. Experimental section
2.1. Chemicals

Silver nanoparticles (AgNPs) of several different sizes and with dif-
ferent surface coatings were obtained from Nanocomposix (San Diego,
CA) (polyvinyl pyrolidone (PVP)—stabilized 10 nm and 75 nm nominal
diameter, Biopure, aqueous suspension, 1.0 mg/mL) and citrate-
stabilized AgNPs 10 nm and 75 nm nominal diameter, Biopure, aque-
ous suspension, 1.0 mg/mL. These AgNPs are sold as standard particles
commissioned by the Organization for Economic Cooperation and
Development (OECD). Each OECD standard sample is provided with
batch-specific characterization data describing size, morphology, zeta
potential, and particle concentration. All nanoparticle dilutions were
made in ultrapure water (18 MQ, Barnstead Water Systems). Ultra-
pure hydrochloric acid (HCl) and nitric acid (HNOs), silver nitrate
(AgNO3), and silver standards for ICP-MS were purchased from Fisher
Scientific (USA). All chemicals were used as received without purifica-
tion. Magnetic particle stock suspensions (20 mg/mL) were prepared
in ultrapure water and sonicated for 10 min prior to use.

2.2. Synthesis and surface modification of magnetic particles

Magnetic particles were synthesized according to a previously pub-
lished report (Baig and Varma, 2012). Briefly, FeSO4-7H,0 (13.9 g) and
Fe,(S04)3 (20 g) were dissolved in 500 mL water in a 1000 mL beaker.
Ammonium hydroxide (25%) was added slowly to adjust the solution to
pH 10. The reaction mixture was then continuously stirred for 1 h at
60 °C. The unmodified magnetic particles (UMPs) were magnetically
separated, washed with water until the pH reached 7, and then dried
under vacuum at 60 °C for 2 h.

2.3. Surface modification of magnetic particles

Surface modification was achieved by adapting previously published
reports (Baig and Varma, 2012; Polshettiwar and Varma, 2010). For
modification with glutathione, UMPs (0.5 g) were dispersed in 15 mL
water and 5 mL of methanol and sonicated for 15 min. Glutathione
(reduced form) (0.4 g) dissolved in 5 mL of water was added to this so-
lution and again sonicated for 2 h. The glutathione-functionalized mag-
netic particles (GMPs) were then isolated by centrifugation, washed
with water and methanol, and dried under vacuum at 50 to 60 °C.
Dopamine-modified magnetic particles were synthesized as follows;
UMPs (2 g) were dispersed in 25 mL water by sonicating for 30 min. Do-
pamine hydrochloride (1 g) dissolved in 5 mL of water was added to this
solution and again sonicated for 2 h. The dopamine-functionalized mag-
netic particles (DMPs) were then precipitated using acetone, isolated by
centrifugation, and dried under vacuum at 60 °C for 2 h.
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2.4. Material characterization

Scanning electron microscopy (SEM) was performed using a Zeiss
EVO MA SEM (Carl Zeiss SMT Ltd, Cambridge, UK) with an in-lens or
SE2 arrangement at 3-10 keV working voltage and ~5 mm lens to de-
tector distance. Carbon planchets (highly polished, 12.7 mm diameter,
Ted Pella Inc., Redding CA) were mounted on the stage using double-
sided carbon tape. X-ray mapping examinations were carried out
using a QUANTAX Bruker energy dispersive X-ray spectrometer at-
tached to the Zeiss microscope. The EDS mappings were carried out at
a voltage of 8-10 kV under vacuum conditions.

The ability of the magnetic particles to capture AgNPs was tested by
exposing 2 pg/mL AgNP solution to 2 mg/mL magnetic particles. Briefly,
magnetic particle suspensions were added to AgNPs, the mixture shak-
en for 30 min at 100 rpm to disperse the particles then incubated for
15 min to facilitate absorption of the AgNPs. The particles were magnet-
ically separated from the suspension using the magnetic capture flow
cell design shown in Fig. 1. The total silver content of the flow cell
eluate was analyzed by inductively coupled plasma-mass spectrometry
(ICP-MS) after digestion in aqua regia. The difference in silver content
before and after separation of the magnetic particles was indicative of
the amount of AgNPs captured by the magnetic particles.

2.5. Digestion and ICP-MS detection

AgNPs were quantified by measuring the total silver content either
in the flow cell eluate or directly by digesting the magnetic particles
after magnetic separation. ICP-MS instrument response curves for silver
were prepared using Ag certified reference material diluted in 1% HNOs.
All ICP-MS determinations were performed on a Perkin Elmer NEXION

Sample in Rubber gasket

_\«—Nagnet

Sample out

Fig. 1. (A) Magnetic particles in suspension; when a magnetic field is applied the solution
becomes clear and (B) magnetic separation flow cell used for separating magnetic parti-
cles from solution.

300D. Flow cell eluate solutions were digested by mixing 1 mL sample
with 2 mL of aqua regia (1:3, HNO3:HCL). In the case of magnetic parti-
cles 2 mL of aqua regia was added to the particles and allowed to digest
completely (solution remained clear with no visible particles) before di-
luting for ICP-MS analysis.

3. Results and discussion

3.1. Characterization of adsorption of AgNPs to magnetic capture particles
by SEM

The synthesis and characterization of magnetic particles used in the
present study have been previously described (Baig and Varma, 2012;
Polshettiwar et al., 2009). Suspensions of these partially dispersed par-
ticles showed spherical morphology with a size range of 10-25 nm.
Functionalization of these magnetic particles with glutathione and do-
pamine hydrochloride for use as transition metal catalysts has also
been reported (Baig and Varma, 2012; Polshettiwar and Varma, 2010).
SEM analysis for each of the magnetic particle suspensions prior to
exposure to AgNPs showed what appeared as particle aggregates with
topological features at the sub-micron scale (Fig. 2). Due to instrument
resolution, individual magnetic particles previously described for these
preparations as having size distributions of 10-25 nm were not re-
solved (Baig and Varma, 2012). Representative EDS analysis of these
magnetic particles prior to exposure to silver nanoparticles indicated
the presence of iron and oxygen but no silver (Fig. 1S).

Several surface modified magnetic particles and combinations of
magnetic particles were analyzed for their ability to capture various
types and sizes of AgNPs. Fig. 3 shows the SEM micrographs of AgNPs
(75 nm, citrate-stabilized) trapped within different magnetic sorbent
materials. Elemental analysis confirmed the presence of AgNPs bound
to the magnetic particles (Fig. 2S). The white spheres (shown in the
red box) represent the AgNPs (Fig. 2S). EDS analysis of the background
showed the presence of Fe and O but no Ag (Fig. 3S). These magnetic
particles seem to form a porous framework that trapped the AgNPs. A
higher magnification image better shows this framework (Fig. 4S).

3.2. Adsorption of AgNPs onto magnetic particles, separation and analysis
by ICP-MS

Magnetic particles are advantageous as capture media for AgNPs in
that they can be used at a high magnetic particle to silver particle ratio
and then be easily separated from suspension. Although agglomerated,
to some extent, these magnetic capture particles are readily dispersed
by brief sonication and due to their nanoscale primary particle size,
show a relatively high surface area to mass ratio (Baig and Varma,
2012).

The experimental design for capture and analysis of AgNPs using
magnetic capture particles is shown in Fig. 4. After incubation of various
magnetic particle types with AgNP preparations (different sizes and dif-
ferent coatings), the mixtures were subjected to magnetic separation
and both the eluate and captured particles were extracted and analyzed
for total silver by ICP-MS. Upon exposure to a neodymium magnet, the
magnetic particles were easily separated from their suspension matrix
(Fig. 1A). The flow cell configuration allowed an efficient means for
bringing the capture particles into close proximity of the capture mag-
net (Fig. 1B).

AgNPs with different surface coatings (citrate and PVP) and with dif-
ferent sizes (10 nm and 75 nm) were incubated with different types
and combinations of magnetic particles (UMP, GMP, DMP, [equal mass
mixture of DMP, GMP], Mix D-G). Exposure of each type of AgNP to
the magnetic capture particles (UMP, GMP and Mix D-G) removed
more than 90% of the silver in the eluate (Fig. 5). The DMP particles
were less efficient in capturing and recovering AgNPs (with the excep-
tion of the 75 nm PVP-coated particles) from suspension. The decrease
in capture efficiency of the DMP magnetic particles may have been due
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Fig. 2. SEM micrographs of magnetic particles before exposure to AgNPs; (A) UMP; (B) Mix D-G; (C) GMP; and (D) DMP.

in part to the decreased binding of AgNPs to the magnetic particles and
also may have been due to the lower efficiency of magnetic capture for
these particles by the flow cell as evidenced by the color of the eluate
after separation indicating incomplete capture of the magnetic particles
in the flow cell (Fig. 5S). The presence of GMP particles mixed with the
DMP particles (i.e., Mix D-G) resulted in a visibly clear eluate after mag-
netic separation suggesting that the GMP particles assisted in aggrega-
tion and magnetic separation of the DMP particles (Fig. 5S).

To confirm that the AgNPs were binding to the capture particles
rather than the containers and flow cell, a control experiment using
AgNPs in the absence of magnetic particles showed a minimal sorption
(<0.5%) of AgNPs to the separation cell and walls of the teflon vials used
for incubation of the magnetic particles and AgNPs. In addition to mea-
suring the disappearance of AgNPs from the flow cell eluate, total silver
was also extracted from the magnetically separated capture particles
and measured by ICP-MS. Results showed almost 100% recoveries for
the 75 nm PVP-stabilized and 75 nm citrate-stabilized AgNPs as cap-
tured by the UMP and Mix D-G magnetic particles (Fig. 6S). Although
the herein observed capture efficiency for AgNPs, even for the unmodi-
fied magnetic capture particles was high, it was not entirely unprece-
dented. Ashtari et al. (2009) observed a greater than 90% capture of
beryllium ion to unmodified magnetic particles and 100% recovery for
quinalizarine-modified particles.

3.3. Separation of AgNPs from ions

One of the features shown by the magnetic particle capture and sep-
aration technique was the varied ability of the magnetic particles to

bind silver ion. The DMP, GMP and Mix D-G particles captured silver
ions at levels between 20% and 50%, whereas the UMP particles cap-
tured silver ions at <5% (Fig. 5).

The selectivity of UMP particles towards AgNPs was further in-
vestigated using a binary mixture containing nanoparticle suspen-
sions and silver ions. Suspensions containing different ratios of
AgNPs (from 100% Ag* ions, maximum 2 pg/mL, to 100% AgNPs,
maximum 2 pug/mL) were incubated with the UMP particles. The sil-
ver content was analyzed by ICP-MS after magnetic separation. Fig. 6
shows that the amount of silver detected by ICP-MS after magnetic
separation is in reasonable agreement with the amount of silver
expected to be recovered if only the AgNPs were bound to the mag-
netic capture particles. The results indicate a high degree of selectiv-
ity for the AgNP over Ag ion.

3.4. Adsorption dynamics

The adsorption of AgNPs onto the magnetic particles was investigat-
ed as a function of incubation time for 75 nm PVP-stabilized and citrate-
stabilized AgNPs binding to Mix D-G particles. The initial AgNP concen-
tration was 2 pg/mL and the concentration of magnetic capture particles
was 2 mg/mL. The vials were placed on a shaker and continuously agi-
tated at 100 rpm at room temperature (23 + 2 °C). At the end of 5,
10, 20, 40, 60 and 120 min, one vial was taken out and the mixture
passed through the magnetic separation cell. The amount of AgNPs cap-
tured was calculated as the difference between the initial and final AgNP
concentration in suspension. Results showed that sorption equilibrium
was reached in <20 min (Fig. 7).
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Fig. 3. SEM micrographs of magnetic particles after exposure to AgNPs (75 nm citrate). (A) GMP; (B) Mix D-G; (C) DMP; and (D) UMP.

3.5. Trace analysis

The effectiveness of the magnetic particles (Mix D-G) in captur-
ing trace amounts of AgNPs (75 nm citrate-stabilized), at ng/mL

Experimental Flow Diagram

[ Magnetic Particles ]

N\ /

Incubation

l

Magnetic Separation
Flow Cell

l

)
7

Extraction

[Silver Nanoparticles]

ICP-MS

Fig. 4. Experimental flow diagram for capture and analysis of AgNPs using magnetic cap-
ture particles.

concentration levels was tested over a 30 min exposure time. The par-
ticles were separated using the magnetic separation cell, digested
with aqua regia and analyzed for silver content by ICP-MS (Fig. 8). The
method showed a high degree of correlation between the expected
and recovered AgNPs.

3.6. Volume effects

We also investigated the capture of AgNPs from relatively large sam-
ple volumes (500 mL). The water samples were spiked with 75 nm
citrate-stabilized AgNPs (100 pg/mL) and magnetic capture particles
(Mix D-G) were added at 1 mg/mL. The suspension was shaken for
30 min before magnetic separation. The separated magnetic particles
laden with AgNPs were resuspended into 2 mL of water before diges-
tion with aqua regia and analysis by ICP-MS; this represents a theoret-
ical 250-fold increase in AgNP concentration. Recovery of total silver
extracted from magnetically captured particles was 99.0 + 0.6%
(n = 4). Capture of the magnetic particles required ~30 min to pass
the 500 mL sample through the flow cell.

3.7. Environmental samples

The efficiency of this method in capturing AgNPs from aqueous en-
vironmental matrices containing varying amounts of diverse ions was
evaluated using 3 water samples. In addition to laboratory DI water
and local tap water, two environmental water samples were evaluated,
i.e., Lake Hancock (central Florida) water and San Francisco Bay water.
Prior to addition of AgNPs, these samples did not contain detectable
silver at an LOD of 400 ng/L. Each of these samples was spiked with
2 pg/mL AgNPs (75 nm PVP-stabilized) prior to adding magnetic


image of Fig.�3
image of Fig.�4

S.K. Mwilu et al. / Science of the Total Environment 472 (2014) 316-323 321

120.00% -
® 100.00% -
5
§- 80.00% -
O 60.00% -
£ 40.00% -
D 20.00% -
2
0.00%
% o Lo K &
T F S
S s
f & &S &
&Q QQ /<’7° 4,,Q °
QY A
s&&e
S S S
120.00% -
5 100.00% -
[7]
1
2 80.00% -|
o
©
o 60.00% -|
|
g
= 40.00% -
b7
® 20.00%
0.00%
&)
& & T
OO W
LA &I o
(,)(\ Q(\
XN TG AN Gl
ARSI CYZRY) ®+
Ny N

120.00% -
100.00% -|
80.00% -
60.00% -
40.00% -

% Silver Captured

20.00% -

0.00% -
.vé's’& QQQ «’5@ X '\0&
& oF & o &
((\ /\(.)Q ((\/ Q(\ Q?‘%
RO

O @ 4

&
®Q/

120.00% -
100.00% -|
80.00% -
60.00% -

40.00% -

% Silver Captured

20.00% -

0.00%

Q‘o

e R 2 R
\\&\\,\o

.{é’?} 3 < ?
&7 /\o)(\@ &7 QQ@QY%
Ve /

™ N
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capture particles (Mix D-G, 2 mg/mL). AgNPs were most efficiently
captured in the DI water as compared to the local tap water, lake
water or bay water. Results, however, indicate that the recovery of
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Fig. 6. Efficiency for capture of AgNP (75 nm citrate) by UMP from suspensions containing
different mass ratios of Ag™ ions and AgNPs.

spiked AgNPs was >96% in each of these matrices (Table 1). To ensure
that AgNPs did not stick to the container walls during shaking, 0.1% Tri-
ton X-100 was added to the experimental controls. It was determined
experimentally that the Triton X-100 did not affect the capture of
AgNPs by the magnetic particles. Representative properties of the
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Fig. 7. Time course for capture of AgNPs (75 nm citrate) by magnetic particles (Mix D-G).


image of Fig.�7

322 S.K. Mwilu et al. / Science of the Total Environment 472 (2014) 316-323

12 - R? = 0.9992
¢ Measured
10
2
g ?
2
o 64
(&)
©
E 4
£
2
0 T T T T T 1
0 2 4 6 8 10 12

Measured (ppb)
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particles (UMP)); r? = 0.9992.

environmental water samples (San Francisco Bay and Lake Hancock
water) are shown in Table 1S.

4. Conclusions

We have described a novel method for the separation of AgNPs in
aqueous systems. The AgNPs were captured and concentrated using
magnetic capture particles and quantified by ICP-MS. Physical charac-
terization by SEM/EDS confirmed the presence of AgNPs captured by
the magnetic particles. We then demonstrated the ability of the mag-
netic particles to selectively capture and concentrate (up to 250-fold
concentration factor) the trace levels of AgNPs in water. The advantage
of this method over commonly used separation techniques is its ease of
separation by the use of an external magnetic field. Experiments with
spiked environmental samples revealed that AgNPs can be recovered
in complex matrices; hence, this method has the potential as an analyt-
ical tool for concentrating and detecting nanoparticles from the
environment.
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Table 1
Capture efficiency of AgNPs spiked into environmental water samples.

Sample % AgNPs captured by magnetic particles
Distilled water 99.0 + 0.2
Tap water (Las Vegas) 981+ 0.3
Lake Hancock Water 982 + 03
San Francisco Bay Water 96.1 +£ 1.2

Magnetic capture particles, Mix D-G were added at 2 mg/mL.
ApNPs (75 nm PVP-stabilized) were spiked at 2 pg/mL (n = 3).
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