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The problem of determining the elastoplastic properties of a prismatic bar from the given experimental
relation between the torsional moment M and the angle of twist per unit length of the rod’s length h is
investigated as an inverse problem. The proposed method to solve the inverse problem is based on the
solution of some sequences of the direct problem by applying the Levenberg-Marquardt iteration
method. In the direct problem, these properties are known, and the torsional moment is calculated as
a function of the angle of twist from the solution of a non-linear boundary value problem. This non-linear
problem results from the Saint-Venant displacement assumption, the Ramberg–Osgood constitutive
equation, and the deformation theory of plasticity for the stress–strain relation. To solve the direct prob-
lem in each iteration step, the Kansa method is used for the circular cross section of the rod, or the
method of fundamental solutions (MFS) and the method of particular solutions (MPS) are used for the
prismatic cross section of the rod. The non-linear torsion problem in the plastic region is solved using
the Picard iteration.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The torsion analysis of bars has a long history and can be traced
back to Saint-Venant, who provided a final conclusion to the prob-
lem of elastic uniform torsion. The Saint-Venant semi-inverse
method is used notably often for elastic and elastoplastic torsion
analyses (see for example, the following texts: Chakrabarty,
1987, Chapter 3; Mendelson, 1968, Chapter 11; and Kliusznikov,
1979, Chapter 4). The main interest from a designer point of view
is the torsional rigidity, which can be easily obtained from the rela-
tions between the torsional moment and the angle of twist per unit
length. If the elastoplastic material properties of a bar are known,
this relation is obtained by solving a non-linear boundary value
problem. Here, such problem is called a direct problem of elasto-
plastic torsion.

Currently, there are many methods to solve a direct problem.
Nadai (1931) was the first to propose a solution for an elastoplastic
pure-torsion problem, and he calculated a fully plastic torque
based on his sand heap analogy. In this analogy, sand is piled onto
a horizontal table with the shape of the cross section of a bar. The
slope of the resulting heap cannot exceed the angle of internal fric-
tion, which corresponds to the shear yield stress. Sadowsky (1941)
extended this analogy to sections with holes. Nadai (1954) devel-
oped an approximate solution for an elastoplastic torsion by com-
bining the membrane analogy and the sand heap analogy. The
analytical solution for the elastoplastic problem was first proposed
by Sokolovsky (1942); he prepared and used independent govern-
ing equations for elastic and plastic regions. He also developed a
solution for the torsion of an oval section of a bar of an elastic/per-
fectly plastic material using an inverse method. Christopherson
(1940) obtained a numerical solution for an elastoplastic problem
for an I-section using the finite deference method (FDM) and the
relaxation method. The analytical solutions of rectangular sections,
which have elastoplastic material property, were developed by
Smith and Sidebottom (1965) based on the Rayleigh–Ritz expan-
sion and the principle of stationary complementary energy. Hodge
(1966, 1967) used non-linear programming for the elastoplastic
torsion problem for perfectly plastic material. Hodge et al. (1968)
used the comparison between FDM and the non-linear program-
ming method in solving elastoplastic torsion problems. Yamada
et al. (1972) studied the elastoplastic uniform torsion and was
the first to the finite element method (FEM). Baba and Kajita
(1982) used a 2-node, 4-degree-of-freedom beam element for the
uniform torsion analysis and a 4-node, 12-degree-of-freedom rect-
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angular section element for the warping analysis of the sections.
May and Al-Shaarbaf (1989) used a standard 3-dimensional, 20-
node isoparametric quadratic brick element in the elastoplastic
analysis of the uniform and non-uniform torsion of members that
were subjected to pure and warping torsion. Dwivedi et al. (1990)
used FDM to solve a torsional springback in a square bar with non-
linear work-hardening material. The authors used the deformation
theory of plasticity with a Ramber–Osgood-type stress–strain rela-
tionship. The problem of torsional springback was also considered
(Dwivedi et al., 2002, 1992a, 1992b). Billinghurst et al. (1992)
developed a miter model for the shear strain distribution in steel
members under uniform torsion. Baniassadi et al. (2010) proposed
a solution for the torsion of a heat-treated rod of an elastic/per-
fectly plastic material using a semi-inverse method. The method
of fundamental solutions (MFS) for the elastoplastic torsion of pris-
matic rods has been presented (Kołodziej and Gorzelańczyk,
2012).If the elastoplastic material properties are not known and
are determined from experimentally provided discrete values of
the torsional moment MTi ¼ MTðhiÞ and the angle of twist per unit
length hi; we have an inverse problem of elastoplastic torsion. Such
inverse problem has received relatively less attention in literature
than the direct problem. Mamedov (1995, 1998) considered the in-
verse problem to determine the so-called plasticity function in the
Hencky correlation. The inverse problem was solved by solving the
sequence direct problem using finite element method. In the study
by Hasanov and Tatar (2010a), the plasticity function was also
identified within the range of the J2-deformation theory. The meth-
od used by the authors was based on the finite-difference discret-
ization of the non-linear elastoplastic problem and on the
parameterization of the unknown plasticity curve. Similar consid-
erations were provided in by Hasanov and Tatar (2010b), where
the authors considered a power-law material. In the aforemen-
tioned papers, the mesh methods (FEM and FDM) were used to
solve the inverse elastoplastic problems. In recent decades, mesh-
less methods have become popular in computational mechanics.
For example, the MFS method was successfully used to solve in-
verse heat conduction problems. Currently, MFS is applied in the
following inverse heat conduction problems, which involve the
identification of heat sources (Mierzwiczak and Kołodziej, 2010;
Yan et al., 2008, 2009; Kołodziej et al., 2010; Jin and Marin,
2007; Mierzwiczak and Kołodziej, 2011 and Yang et al., 2013),
the boundary heat flux (Xiong et al., 2010; Hon and Wei, 2004;
Dong et al., 2007; Shidfar et al., 2009), the Cauchy problem (Li
et al., 2011; Yang and Ling, 2011; Marin, 2005; Wei et al., 2007;
Zhou and Wei, 2008; Shigeta and Young, 2009; Marin, 2011; Wei
et al., 2013), the backward heat conduction problem (Johansson
et al., 2011a; Tsai et al. 2011), the Stefan problem (Johansson
et al., 2011b) and the identification of the boundary geometry
(Karageorghis and Lesnic, 2011; Lesnic and Bin-Mohsin, 2012;
Bin-Mohsin and Lesnic, 2012). The aforementioned application of
MFS is related to 2-dimensional problems. Another meshless
method that can be used to solve 1-dimensional non-linear equa-
tions is the Kansa method (Kansa, 1990).

This paper aims to apply the MFS method to the inverse elasto-
plastic torsion problem in the prismatic rod case and to apply the
Kansa method in the cylindrical rod case. There are many different
models of isotropic elastoplasticity. Therefore, it is sometimes dif-
ficult to decide which model to use for a numerical implementa-
tion. In this paper, we chose the Ramberg–Osgood stress–strain
relation (Huth, 1955). This model is advantageous because it does
not have a well-defined yield point. Next, the torsion problem is
simplified by the absence of a boundary between the elastic and
plastic regions, which permits the same equations to apply
throughout the cross section. To the best knowledge of the authors,
this paper is the first application of this method to the inverse elas-
toplastic problem.
2. Problem formulation

The uniform torsion of prismatic rods may be formulated
according to the deformation theory as follows
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where wðx; yÞ is the Prandtl’s stress function, h is an angle of twist
per unit length of the rod, G is a secant shear modulus, Xe is the
cross sectional region of the bar.

The only two non-zero components of the stress tensor are gi-
ven by
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The resultant shear stress is given by
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Because the lines of shear stress at each point of the section bound-
ary must be directed along the tangent to the boundary, the lateral
surface of the bar is stress-free, and the boundary curve C must be a
line of constant stress function. For a simply connected cross sec-
tion, we may take

w ¼ 0 on C: ð4Þ

For the elastic torsion, the secant shear modulus is constant and
is known as the elastic shear modulus. Consequently, in this region,
the torsional rigidity is constant, and the torsional moment is lin-
early related to the angle of twist per unit length. For the elasto-
plastic torsion, there are a few different models of plastic
behavior. Here, we will use the Ramberg–Osgood for the secant
shear modulus in the following form
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where G0 is the elastic shear modulus, and b and n are dimension-
less constants that characterize the given material.

Putting (5) into (1), we have the following governing equation
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The torsional moment can readily be obtained by integrating the
stress function

MT ¼ 2
ZZ

X
wdxdy: ð7Þ

It is convenient to introduce the following dimensionless quantities

W ¼ w
a � sp

; X ¼ x
a
; Y ¼ y

a
; ~h ¼ h � G0 � a

sp
;

j ¼
b � sn

p

Gn
0

; ~MT ¼
MT

a3 � sp
; ð8Þ

where a is a characteristic dimension of the cross section, and sp is a
nominal yield stress.

Then, the governing equation and the boundary condition have
the following forms
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where T is the non-dimensional resultant shear stress given as
follows
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The non-dimensional torsional moment has the form

~MT ¼ 2
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W � dXdY : ð12Þ

For the torsion of the rod with a circular cross section, the stress
function is only a function of polar coordinates, and Eq. (1) takes
the form
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where a is the radius of the rod, and the secant shear modulus is gi-
ven by
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The shear stress is given by

s ¼ dw
dr
: ð15Þ

Eq. (13) must be solved with the following boundary conditions

w ¼ 0 for r ¼ a;
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¼ 0 for r ¼ 0:
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After introducing the non-dimensional variables (8) and R = r/a, Eq.
(13) and the boundary conditions (16) take the forms
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The non-dimensional torsional moment has the form

~MT ¼ 4p
Z 1

0
WRdR: ð19Þ

The direct elastoplastic problem depends on solving Eq. (9) with
boundary condition (10) for the square cross section of the rod or
Eq. (17) with boundary condition (18) for the circular cross section
of the rod. In such cases, the non-dimensional angle of twist ~h and
the non-dimensional material parameters j and n are known. After
determining the stress function W, the torsional moment is calcu-
lated. As mentioned above, the purpose of this paper is to apply the
MFS to solve the inverse elastoplastic problem. The proposed
method is based on the Leveberg-Marquadt iteration, which re-
quires solving the direct problems at each iteration step.
3. Application of meshless methods to solve direct and inverse
problems

In the direct problem, the non-dimensional angle of twist ~h and
the non-dimensional material parameters j and n are known. The
problem lies in solving the non-linear differential equation (9) with
boundary condition (10) or Eq. (17) with boundary condition (18)
for the square or the cylindrical cross section of the rod,
respectively.

Algorithm 1 – direct problem for the square cross section of the
rod

Step 1. Choose the initial values for the parameters j = 0 and
n = 0.

Take j ¼ 0 and solve a simple problem using the MFS method
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Remark. In the numerical experiment, the cross section of the bars
can have an axis of symmetry. In such cases, it is convenient to con-
sider some repeated elements of the cross section. On the axis of
symmetry C2 in the repeated element, one has the boundary condi-
tion with a normal derivative, and the other parts of the boundary
C1, have the Dirichlet boundary conditions.

Step 2. For known j, n values, the right-hand-side function can
be approximated as
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using the radial basis function and the monomials
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amûðR̂lmÞ þ
XK

k¼1

bk ~ukðXl;YlÞ ¼ ~f ðXl;YlÞ; l ¼ 1;2; . . . ;Ni;

XNi

m¼1

am ~ukðXm;YmÞ ¼ 0; k ¼ 1;2; . . . ;K:

Step 3. Calculate the particular solution
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Step 4. Solve the homogenous problem
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using the MFS method.
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Step 5. Calculate the solution as a sum of the homogenous and
the particular solutions
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Step 6. Evaluate eW ¼ kWjþ1 �Wjk2.

If eW 6 tol, calculate ~MTð~h;j;nÞ ¼ 2
R R

~Xe
Wjþ1 � dXdY and STOP.

Else, take j = j + 1 and go back to Step 2.

Algorithm 2 – direct problem for the circular cross section of the
rod

Step 1. Choose the initial values for the parameters j = 0, n = 0.
Take j ¼ 0 and solve the simple problem
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Step 2. Make a uniform distribution of the area with N nodes
Ri ¼ ði� 1Þ=ðN � 1Þ, i ¼ 1; 2; . . . ;N .

Step 3. For known j, n, take j ¼ jþ 1 and solve the linear bound-
ary value problem
Fig. 1. The non-dimensional torsional moment ~MT as a function of the non-dimensional a
parameters j, n.

Fig. 2. The influence of the multi-quadric parameter c on the accuracy of the approxim
together with the number of Levenberg–Marquardt iterations (in brackets) (Ns = Nc = 80
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using the Kansa collocation method.
Step 4. Calculate the solution as a linear combination of the

multiquadric functions

Wj ¼
XN

i¼1

cðjÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where c is the shape parameter.
Step 5. Evaluate eW ¼ kWjþ1 �Wjk2.

If eW 6 tol, calculate ~MT ¼ 4p
R 1

0 WRdR and STOP.
Else, go back to Step 3.

In the inverse problem, the non-dimensional material parame-
ters j and n are unknown, but we know the non-dimensional tor-
sional moment as a function of the non-dimensional angle of twist
~MT ¼ ~MTð~hÞ: To solve this problem for both the prismatic and the
cylindrical cross sections of the rod, the Levenberg–Marquardt
method can be used according to the following algorithm (Press
et al., 1992).

Algorithm 3 – inverse problem for the square and the circular
cross sections
ngle of twist ~h for the square cross section of the rod and for two different values of

ate solution in the lower (black solid line) and upper (gray dashed line) range of ~h
, Ni = 100, s = 0.2 and j0 = 0.021195, n0 = 3.447).



Fig. 3. The influence of the number Ni of the RBF functions on the accuracy of the approximate solution in the lower (black solid line) and upper (gray dashed line) range of ~h
together with the number of Levenberg–Marquardt iterations (in brackets) (Ns = Nc = 80, c = 0.1, s = 0.2 and j0 = 0.021195, n0 = 3.447).

Fig. 4. The influence of the distance s of the source points to the fictitious boundary on the accuracy of the approximate solution in the lower (black solid line) and upper (gray
dashed line) range of ~h together with the number of Levenberg–Marquardt iterations (in brackets) (Ns = Nc = 80, Ni = 100, c = 0.1 and j0 = 0.021195, n0 = 3.447).
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Step 1. Choose an initial guess for the fitted parameters j ¼ j0,
n ¼ n0 and the constants hj, hn subsequently used for the approx-
imation of derivatives with the central finite differences.

Step 2. Compute eðj;nÞ according to the following formula

eðj;nÞ ¼
XNe

i¼1

½ ~MTð~hi;j;nÞ � ~MTi�
2
; ð24Þ
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Fig. 5. The influence of the distance d between the collocation points on the accuracy of t
range of ~h together with the number of Levenberg–Marquardt iterations (in brackets) (N
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�
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2 � hn
:

Remark. This step requires solving the direct problem (Algorithm 1
or 2) 5�Ne times.

Step 3. Pick a modest value for k, e.g. k = 0.001.
Step 4. Solve the linear system of equations

A1;1 A1;2

A2;1 A2;2

� �
dj
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� �
¼
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; ð25Þ
he approximate solution in the lower (black solid line) and upper (gray dashed line)
s = 80, Ni = 100, c = 0.1, s = 0.2 and j0 = 0.021195, n0 = 3.447).



Table 1
The identification of the material parameters (j = 0.023552997, n = 3.83) for a square
cross section of the rod in the lower range of ~h for different number Ne of data points
and selected initial values j0, n0. (Ns = Nc = 80, Ni = 100, c = 0.1, s = 0.2).

Ne Iteration j n drelj drel n

j0 = 0.0223725, n0 = 3.6385
15 5 0.0235529972 3.8299999992 4.25E�11 1.92E�10
30 5 0.0235529972 3.8299999999 8.20E�11 4.33E�12
60 5 0.0235529972 3.8299999999 4.00E�12 9.34E�13

j0 = 0.021195, n0 = 3.447
15 6 0.0235529972 3.8300000001 1.10E�11 4.95E�11
30 6 0.0235529972 3.8300000000 1.19E�11 6.29E�13
60 6 0.0235529972 3.8300000000 2.56E�13 5.98E�14

j0 = 0.0200175, n0 = 3.2555
15 6 0.0235529972 3.8300000004 2.79E�11 1.26E�10
30 6 0.0235529972 3.8299999999 5.98E�12 3.15E�13
60 6 0.0235529972 3.8299999999 1.58E�13 3.61E�14

j0 = 0.01884, n0 = 3.064
15 6 0.0235529972 3.8299999993 3.84E�11 1.73E�10
30 6 0.0235529972 3.8299999999 5.51E�11 2.91E�12
60 7 0.0235529972 3.8299999999 1.16E�13 2.69E�14

Table 2
The identification of the material parameters (j = 0.023552997, n = 3.83) for a square
cross section of the rod in the upper range of ~h for different number Ne of data points
and selected initial values j0, n0 (Ns = Nc = 80, Ni = 100, c = 0.1, s = 0.2).

Ne Iteration j n drelj drel n

j0 = 0.0223725, n0 = 3.6385
15 8 0.0235530263 3.8299982061 1.23E�06 4.68E�07
30 9 0.0235529952 3.8300001224 8.27E�08 3.02E�08
60 10 0.0235530037 3.8299996387 2.76E�07 9.43E�08

j0 = 0.021195, n0 = 3.447
15 8 0.0235530199 3.8299985964 9.67E�07 3.67E�07
30 10 0.0235529950 3.8300001329 8.98E�08 3.47E�08
60 10 0.0235530037 3.8299996383 2.77E�07 9.44E�08

j0 = 0.0200175, n0 = 3.2555
15 8 0.0235530270 3.8299981632 1.26E�06 4.79E�07
30 8 0.0235529950 3.8300001345 9.10E�08 3.51E�08
60 10 0.0235529918 3.8300002949 2.25E�07 7.70E�08

j0 = 0.01884, n0 = 3.064
15 7 0.0235530084 3.8299993086 4.76E�07 1.80E�07
30 10 0.0235529934 3.8300002340 1.58E�07 6.11E�08
60 10 0.0235529806 3.8300009191 7.03E�07 2.49E�07
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where b1 ¼ � @e
@j, b2 ¼ � @e

@n, A1;1 ¼ ð1þ kÞ @e
@j

� 	2, A1;2 ¼ A2;1 ¼ @e
@j

@e
@n , and

A2;2 ¼ ð1þ kÞ @e
@n

� 	2 .
Step 5. Evaluate eðjþ dj;nþ dnÞ (solve the direct problem –

Algorithm 1 or 2 – Ne times).
Step 6. If eðjþ dj;nþ dnÞP eðj;nÞ, k ¼ 10 � k and go to Step 4.
Table 3
The influence of the random noise of data points on the identification of the material
parameters (j = 0.023552997, n = 3.83) for a square cross section of the rod in the
lower range of ~h (Ns = Nc = 80, Ni = 100, c = 0.1, s = 0.2 and j0 = 0.021195, n0 = 3.447).

D ~MT

[%]

Iteration j n drelj drel n

0 6 0.0235529972 3.8300000001 1.09E�11 4.95E�11
0.25 5 0.0243347526 3.6619368209 3.32E�02 4.38E�02
0.5 7 0.0243241881 3.9032391855 3.27E�02 1.91E�02
0.75 7 0.0433559380 3.7810176098 3.32E�02 1.28E�02
1 5 0.0246830888 3.6347518964 4.80E�02 5.10E�02
1.25 7 0.0239005561 4.0024509887 1.47E�02 4.50E�02
1.5 6 0.0312134311 2.9570840882 3.25E�01 2.28E�01
1.75 6 0.0273350200 2.7837007061 1.60E�01 2.73E�01
2 5 0.0229706041 3.7156977987 2.47E�02 2.98E�02
Step 7. If eðjþ dj;nþ dnÞ < eðj;nÞ, k ¼ k=10, update the trial
solution j ¼ jþ dj, n ¼ nþ dn .

If k½dj; dn�k2 6 tol, STOP; Else, go back to Step 4.
Note that in the above algorithms we use the following

notation: Ns is the number of source points, Ni is the number of
interpolation points ðXl;YlÞ 2 X and K is the number of monomials.
Subsequently, we denote by Nc the number of collocation points
ðXc;YcÞ 2 C, Subsequently, we denote by Nc the number of
collocation points ðXc;YcÞC. The source points are located on the
fictitious contour similar to the boundary of the area at a given
distance s. To interpolate the right hand side of the governing
equations with the radial basis functions (RBF), the multiquadric

function ûðR̂mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̂2

m þ c2
q

is used with the shape factor c.
4. Numerical results

The first numerical experiment performed by the authors con-
cerns a prismatic rod made of chrome-nickel steel, which is hard
and is represented by the following G0 = 65.16 MPa, b = 2.1 � 107,
sp = 300 MPa, n = 3.83, and j = 0.023552997 (Fig. 1(a)). In the sec-
ond numerical experiment, we choose the material with the fol-
lowing parameter values n = 5, and j = 0.005 (Fig. 1(b)).
Subsequently, we analyze the properties of the methods proposed
in the paper on the basis of the numerical results obtained for
chrome-nickel steel.

Consider the prismatic rod with the square cross section. For
the given parameters j, n, the non-dimensional torsional moment
~MT ¼ ~MTð~hÞ is first approximated as a function of the non-
dimensional angle of twist ~h using Algorithm 1 (see also

Fig. 1(a)). The obtained results f ~MTi
; ~hig

Ne

i¼1, where Ne denotes the
number of data points, are used as input data for the inverse prob-
lem to determine the non-dimensional material parameters j and
n with Algorithm 3. For subsequent values of j and n, in step 2 of
Algorithm 3, the value of ~MTð~hi;j;nÞ in (24) is calculated with

Algorithm 1. The derivatives @ ~MT ð~hi ;j;nÞ
@j , @ ~MT ð~hi ;j;nÞ

@n are approximated
with the central finite differences for hj = 0.001 and hn = 0.005.
For the comparison reasons we consider two different sets of the
data points f ~MTi

; ~hi gNe
i¼1 corresponding to two appropriate ranges

of the angle of twist ~h. The first one (hereinafter referred to as
the lower range) relates to ~h 2 (0,1.5] and it features a nearly linear
relationship between the angle of twist and the torsional moment.
The second one (referred to as the upper range) relates to ~h 2
(1.0,2.5] and it features a nonlinear characteristics (see also
Fig. 1(a)). The material parameters j and n are identified in each
range considered for Ne = {15,30,60}, respectively.

First we study the influence of the MFS and MPS parameters on
the accuracy of the numerical solutions. We choose a representa-
Table 4
The influence of the random noise of data points on the identification of the material
parameters (j = 0.023552997, n = 3.83) for a square cross section of the rod in the
upper range of ~h (Ns = Nc = 80, Ni = 100, c = 0.1, s = 0.2 and j0 = 0.021195, n0 = 3.447).

D ~MT

[%]

Iteration j n drelj drel n

0 8 0.0235530199 3.8299985964 9.56E�07 3.67E�07
0.25 7 0.0243981939 3.7863549045 3.59E�02 1.14E�02
0.5 8 0.0243106205 3.7934715001 3.22E�02 9.54E�03
0.75 9 0.0234744667 3.8316327831 3.33E�03 4.26E�04
1 7 0.0222418407 3.8799870383 5.57E�02 1.31E�02
1.25 7 0.0243811410 3.7557077194 3.52E�02 1.94E�02
1.5 7 0.0248451388 3.7293421910 5.49E�02 2.63E�02
1.75 7 0.0248699252 3.7720064155 5.59E�02 1.51E�02
2 8 0.0242319343 3.8125008352 2.88E�02 4.57E�03



Fig. 6. The non-dimensional torsional moment ~MT as a function of the non-dimensional angle of twist ~h for the cylindrical cross section of the rod for four different values of
parameters j, n.

Table 5
The identification of the material parameters (j = 0.023552997, n = 3.83) for a for a
cylindrical cross section of the rod for different number Ne of data and selected initial
values j0, n0 (N = 21, c = 0.1).

Ne Iteration j n drelj drel n

j0 = 0.0223725, n0 = 3.6385
15 5 0.023580302 3.83102365 1.16E�03 2.67E�04
30 9 0.023573018 3.83100515 8.50E�04 2.62E�04
45 12 0.023560753 3.829379 3.29E�04 1.62E�04
60 12 0.023558322 3.83073284 2.26E�04 1.91E�04

j0 = 0.1, n0 = 3.447
15 5 0.023580357 3.83033308 1.16E�03 8.70E�05
30 6 0.023552997 3.83 1.16E�10 1.42E�13
45 8 0.023584659 3.82974971 1.34E�03 6.53E�05
60 10 0.023552997 3.83 1.00E�11 2.10E�11

j0 = 0.1, n0 = 3.0
15 9 0.033593588 3.00198089 4.26E�01 2.16E�01
30 29 0.034471288 2.93922104 4.64E�01 2.33E�01
45 18 0.033568516 2.98523579 4.25E�01 2.21E�01
60 6 0.034853126 2.91302017 4.80E�01 2.39E�01

j0 = 0.01, n0 = 4.0
15 27 0.023552997 3.83000002 1.34E�08 3.96E�09
30 11 0.023533189 3.83210575 8.41E�04 5.50E�04
45 26 0.023497404 3.83284157 2.36E�03 7.42E�04
60 32 0.023552996 3.83000003 3.30E�08 7.13E�09

j0 = 0.01, n0 = 5.0
15 22 0.023552997 3.83000002 1.69E�08 5.42E�09
30 25 0.023552997 3.83000002 1.73E�08 4.38E�09
45 28 0.023552997 3.83000002 2.15E�08 5.49E�09
60 32 0.023552997 3.83000002 2.40E�08 5.02E�09
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tive set of values for the following parameters: the multi-quadric
parameter c (c ¼ 0:1;0:2; . . . ;0:6), the number Ni of the radial basis
functions (RBF) that is equal to the number of interpolation points
Fig. 7. The influence of the shape parameter c in the Kansa method on the accuracy of t
j0 = 0.01, n0 = 5.0).
Ni (Ni = 16, 36, 64, 100, 144, 196), the distance s of the source
points to the boundary (s ¼ 0:1;0:2; . . . ;0:6) and the distance d be-
tween the collocation points (d = 0.05, 0.04, 0.034, 0.028, 0.025,
0.022) related to the appropriate number of collocation points Nc
(Nc = 80, 100, 120, 140, 160, 180). We examine the numerical sta-
bility of the method considered with respect to the decreasing
amount of noise added to the data. For this purpose we use the in-
put data with some random disturbance value, i.e. we take

~~MTi
¼ ~MTi

ð1þ RN � D ~MTÞ; ð26Þ

where D ~MT 2 ½0;2� (in%) is a disturbance’s coefficient, RN 2 ½�1;1� is
a random number, and ~~MTi

, ~MTi
are the disturbed and the exact the

non-dimensional torsional moments, respectively. Then, we also
choose four various pairs of the initial values {j0,n0} for the Leven-
berg–Marquardt method, i.e. {j0 = 0.0223725, n0 = 3.6385},
{j0 = 0.021195, n0 = 3.447}, {j0 = 0.0200175, n0 = 3.2555},
{j0 = 0.01884, n0 = 3.064}. Finally, with the exact values of j and
n known for the elastoplastic problem considered, the accuracy of
the material parameters obtained with Algorithm 3 can be mea-
sured using the relative errors drelj and drel n, respectively. Note that
all computations concerning the rod of the square cross section
were performed with the C++ libraries for the floating-point conver-
sions in the double extended precision format (dedicated for the In-
tel C++ compiler) as proposed in Jankowska (2010).

Consider the influence of the MFS and MPS parameters on the
accuracy of the numerical solutions presented in Figs. 2–5. We
can see that the smallest values of the relative errors drelj and drel n
for a given elastoplastic problem are obtained for c = 0.1, s = 0.2,
Ni = 100 and d = 0.05 (Nc = 80) for both the lower and the upper
range of ~h. Note that the accuracy is usually higher (except for
the one presented in Fig. 4 and 5) and the number of Levenberg–
Marquardt iterations lower, in the case of the lower range of ~h.
he approximate solution for the cylindrical cross section of the rod (N = 11, Ne = 21,



Fig. 8. The influence of the number of the nodes N in the Kansa method on the accuracy of the approximate solution for the cylindrical cross section of the rod (Ne = 21, c = 0.1,
j0 = 0.01, n0 = 5).
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The higher accuracy is also possible if we use more data points in
the Levenberg–Marquardt iteration procedure (see also Tables 1
and 2). In Tables 1 and 2 we consider the identification of the mate-
rial parameters j, n for different numbers Ne of data points and se-
lected initial values j0, n0 in the lower and the upper range of ~h,
respectively. As we could expect, the greater number of Ne causes
the increase of the numerical results accuracy with virtually con-
stant number of iterations (more iterations is required only in
the case of selected experiments in the upper range of ~h). Finally,
we examine the influence of the random noise of data points on
the accuracy of the identification process. As we can observe in Ta-
bles 3 and 4, the method proposed in the paper is stable and a
small number of iterations is required. The higher accuracy can
be observed for the greater number Ne of the data points used.

For the cylindrical cross section, all numerical experiments are
performed for N = 20 nodes and c = 0.2. At the beginning, for four
different pairs of coefficients j, n, the direct problem for the circu-
lar cross section of the rod has been solved, and the results are
shown in Fig. 6. The angle of twist per unit length ~h in the range
of 0.1–1.5, which determined the results of the torque
~MTi
¼ ~MTð~hiÞ, is similar for different pairs of {j,n}. Therefore, when

solving the inverse problem, the coefficients j and n in the data

f ~MTi
; ~hig

Ne

i¼1 are selected so that ~hi is in the range of [1.5,3.0].
A numerical-experiment identification of the coefficients j and

n has been performed for different numbers of known pairs
f ~MTi

; ~hig
Ne

i¼1 and various initial values of j0 and n0. The input data
f ~MTi

; ~hig have been generated by solving a direct problem
(Algorithm 2) for given values of j = 0.023552997 and n = 3.83
(chrome-nickel steel). The values of twist angles were determined
using the formula ~h ¼ 1:5þ ði� 1Þ � � �1:5=Ne, where Ne = {15, 30,
45, 60}. Table 5 shows the results for five various pairs of the initial
values {j0,n0} for the Levenberg–Marquardt method, i.e.
{j0 = 0.0223725, n0 = 3.6385}, {j0 = 0.1, n0 = 3.447}, {j0 = 0.1,
n0 = 3.0}, {j0 = 0.01, n0 = 4.0} and {j0 = 0.01, n0 = 5.0}. It can be
Table 6
The influence of the random noise of data points on the identification of the material
parameters (j = 0.023552997, n = 3.83) for a cylindrical cross section of the rod
(Ne = 21, N = 11, c = 0.15, j0 = 0.01, n0 = 5.0).

D ~MT [%] Iteration j n drelj drel n

0 12 0.023552997 3.83 7.44E�09 9.75E�10
0.25 8 0.023476408 3.83309867 3.25E�03 8.09E�04
0.5 6 0.023596855 3.83012018 1.86E�03 3.14E�05
0.75 4 0.023726488 3.81887235 7.37E�03 2.91E�03
1 7 0.021916546 3.87915112 6.95E�02 1.28E�02
1.25 7 0.023045787 3.84814142 2.15E�02 4.74E�03
1.5 6 0.02348428 3.83515395 2.92E�03 1.35E�03
1.75 6 0.023224161 3.88685395 1.40E�02 1.48E�02
2 3 0.023455756 3.9040352 4.13E�03 1.93E�02
observed that the convergence for the expected value of the iden-
tified parameters was not achieved in all examples. The conver-
gence of the method affects both the initial value of j0, n0 and
the number of data Ne. Consider the influence of the Kansa method
parameters on the accuracy of the numerical solutions presented
in Figs. 7 and 8. We can see that the smallest values of the relative
errors drel j and drel n for a given elastoplastic problem are obtained
for c = 0.1 (Fig. 7) and for N = 11 (Fig. 8). Table 6 shows the influ-
ence of the random noise of data of identification of the material
parameters (n = 3.83, j = 0.023552997) for Ne = 21 with, j0 = 0.01
and n0 = 5.0. With the increase of noise of the data, identification
of the material parameters deteriorates. However, the effect of ran-
dom noise of data on the results of the identification is
insignificant.

5. Conclusions

A new inverse method to determine the elastoplastic properties of
materials that were described by the Ramberg–Osgood stress–strain
relation is proposed. In such stress–strain relation, there is an identi-
cal formula for the elastic and the elastoplastic regions, which permits
an identical governing equation to be applied throughout the cross
section. The algorithm is based on the knowledge of some couplings
of the torsional moment and the angle of twist f ~MTi

; ~hig
Ne

i¼1, which
allows one to obtain the non-dimensional material parameters j
and n in the Ramberg–Osgood’s equation. In the proposed inverse
method, the Leveberg-Marquadt iteration is used, which requires
solving the direct problem at each iteration. The direct non-linear
torsion problem is solved using Picard iteration procedure. For the
prismatic cross section of the rod, at each iteration step, the method
of fundamental solution and the method of particular solution are
used. Particular solutions are obtained using the radial basis function.
For the cylindrical cross section of the rod, the Kansa method is used at
each iteration step. In both cases, the propose algorithms are easy to
implement and can be used for complicated geometry because they
are mesh-free. The Leveberg-Marquadt iteration method with the
MFS (square rod) is always quickly convergent, and the Kansa method
(circular rod) does not always guarantee a convergence to the
expected results.
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