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A Perspective on Epistasis: Limits of Models Displaying No Main Effect
Robert Culverhouse,1 Brian K. Suarez,1,2 Jennifer Lin,1 and Theodore Reich1,2

Departments of 1Psychiatry and 2Genetics, Washington University School of Medicine, St. Louis

The completion of a draft sequence of the human genome and the promise of rapid single-nucleotide-polymor-
phism–genotyping technologies have resulted in a call for the abandonment of linkage studies in favor of genome
scans for association. However, there exists a large class of genetic models for which this approach will fail: purely
epistatic models with no additive or dominance variation at any of the susceptibility loci. As a result, traditional
association methods (such as case/control, measured genotype, and transmission/disequilibrium test [TDT]) will
have no power if the loci are examined individually. In this article, we examine this class of models, delimiting the
range of genetic determination and recurrence risks for two-, three-, and four-locus purely epistatic models. Our
study reveals that these models, although giving rise to no additive or dominance variation, do give rise to increased
allele sharing between affected sibs. Thus, a genome scan for linkage could detect genomic subregions harboring
susceptibility loci. We also discuss some simple multilocus extensions of single-locus analysis methods, including a
conditional form of the TDT.

Introduction

A quarter century ago, the advent of recombinant-DNA
technology spurred what can arguably be called the
“golden age of human linkage studies.” The availability
of a large number of new DNA markers that could be
typed directly (e.g., RFLPs, VNTRs, and microsatellites),
coupled with major advances in computer software and
hardware, meant that the mapping of genes that are
individually sufficient to cause human disease rested on
little more than the collection of an adequate sample of
segregating families.

The approach is straightforward. A genome scan us-
ing 300–400 short-sequence tandem-repeat markers re-
veals a single linkage signal. Additional markers are
added to saturate this chromosomal region. Subsequent
identification of recombinants delimits the genomic seg-
ment containing the disease-causing gene. A search is
then initiated to identify all variants in the region (in-
sertions, deletions, single-nucleotide polymorphisms
[SNPs], repeat polymorphisms, etc.), and these, in turn,
are tested for cosegregation with the disease, usually in
the same families in which the original linkage signal
was found. Once the genetic lesion is identified, func-
tional analysis is used to clarify how the lesion alters
disease susceptibility.

This idealized scenario is not intended to trivialize the
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hard work needed to successfully complete each step.
Ten years, for instance, elapsed between the mapping
of the locus responsible for Huntington disease to chro-
mosome 4p (Gusella et al. 1983) and the subsequent
identification of the expanded CAG repeat in the gene’s
first exon (Huntington’s Disease Collaborative Research
Group 1993). Nonetheless, a litany of disease genes that
have been identified during the past 2 decades is ample
testimony to this strategy’s success.

But what about complex diseases? Is it reasonable to
suppose that an approach that must succeed in identi-
fying fully penetrant Mendelian genes will also succeed
for complex diseases? Most gene sleuths would answer
yes—but would add the caveat that, since recombinants
cannot be identified unambiguously, ancillary ap-
proaches are needed as well. Three approaches that of-
ten accompany linkage studies of complex diseases are
(1) family-based association studies (Spielman et al.
1993), (2) case-control studies (Woolf 1955), and (3)
measured genotype studies (Boerwinkle et al. 1986). All
of these ancillary approaches tacitly assume that allelic
variation in or around a particular susceptibility locus
makes a measurable difference in the phenotype. The
reasonableness of this assumption is so obvious that it
is rarely explicitly stated.

If the advances wrought a generation ago by recom-
binant-DNA technology can be said to have revolu-
tionized genetic research, we believe that the field is
poised to experience an even greater revolution in the
near future. Against the backdrop provided by the com-
pletion of a draft sequence of the human genome, it is
reasonable to expect that both SNP and expression-
microarray technologies will forever change how re-
search in human genetics is pursued. Moreover, we be-
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Table 1

Penetrances for a Generic Biallelic Two-Locus Model

GENOTYPE

PENETRANCE

OF GENOTYPE
MARGINAL

PENETRANCEBB Bb bb

AA f11 f12 f13 MA1

Aa f21 f22 f23 MA2

aa f31 f32 f33 MA3

Marginal penetrance MB1 MB2 MB3 K

lieve that these new technologies will make the three
ancillary strategies mentioned above all the more at-
tractive to researchers—even to the point of supplanting
traditional linkage analysis—for at least two reasons:
first, it has been argued that linkage methods simply do
not have the power to detect the small signals that can
be expected under some disease models (Risch and Mer-
ikangas 1996); second, even when appropriate power
can be obtained, multiplex pedigrees are substantially
more expensive to gather than are a series of unrelated
patients (for measured-genotype analyses), a series of
patients and “matched” unaffected subjects (for com-
parison with patients in case-control studies), or parents
and a single affected offspring (for family-based asso-
ciation studies).

The complex relationship between genotype and phe-
notype, however, may ultimately prove to be inade-
quately described by simply summing the modest effects
from several contributing loci. Instead, the relationship
may, as Sewell Wright (1923) argued, depend in a fun-
damental way on epistasis (i.e., the interaction between
loci) and genotype # environment interaction. Indeed,
it has been argued that epistatic interactions are a nearly
universal component of the architecture of most com-
mon traits. Templeton (2000), for instance, has listed a
number of phenotypes in which epistasis plays a large
role. An example in insects is the abnormal-abdomen
phenotype in Drosophila mercatorum (DeSalle and
Templeton 1986; Hollocher et al. 1992; Hollocher and
Templeton 1994). In humans, variation in triglyceride
levels can be explained, in part, by two sets of inter-
actions: between ApoB and ApoE in females and be-
tween the ApoAI/CIII/AIV complex and low-density li-
poprotein receptor in males (Nelson et al. 2001). Even
the seemingly “simple” Mendelian trait of sickle-cell
anemia is revealed to be greatly modified by epistatic
interactions. Individuals with sickle-cell anemia who are
homozygous for two polymorphisms near the Gg locus
(leading to the persistence of fetal hemoglobin) have
only mild clinical symptoms (Odenheimer et al. 1983;
Sing et al. 1985; el-Hazmi et al. 1992). Other human
diseases that recently have been reported to exhibit ep-
istatic interactions are Alzheimer disease (Zubenko et
al. 2001) and breast cancer (Ritchie et al. 2001).

The main reason that most studies of complex human
phenotypes fail to find evidence for epistatic interactions
may simply be that commonly used designs and analytic
methods inherently minimize or exclude the possibility
of epistasis (Frankel and Schork 1996). Because the in-
vestment in new study designs and analytic methods
may be high, we decided to examine the extent to which
purely epistatic interactions (i.e., interactions between
loci that do not display any single-locus effects) could
account for phenotype.

In the present article, we explore a class of transmis-
sion models in which each contributing susceptibility
locus has no phenotypic effect detectable by any of the
three ancillary approaches listed above. For these epi-
static models, the proper “unit of analysis” is not the
allelic variation at a single locus but, rather, is the mul-
tilocus genotype. We show that, in spite of the unde-
tectability of the contributing loci by the three ancillary
approaches, these models can result in both high heri-
tability and substantial increases in recurrence risk to a
proband’s relatives. In addition, we show that the in-
creased allele sharing engendered by these models can
be sufficient to allow the detection of the contributing
loci by linkage.

Since the space of epistatic models whose contributing
loci display no main effects is very large, we elected to
map an extreme envelope of these models. Our ap-
proach is similar in spirit to the determination of the
limits of the two-allele single-locus model with any ar-
bitrary penetrance vector (Suarez et al. 1976) and to its
generalization to multiple loci (Craddock et al. 1995).
Although there is no doubt that many phenotypes result
from the epistatic interaction of two or more loci, it is
unknown how often phenotypes correspond to the lim-
iting conditions considered here.

Models

Consider a dichotomous qualitative trait (e.g., “af-
fected” vs. “unaffected” phenotype) determined by L
biallelic loci. We examine the extent to which affection
status can be genetically determined (i.e., “broad sense”
heritability) in models for which the marginal penetrance
for each of the three genotypes is equal to K, the pop-
ulation prevalence of the disease, for each of the con-
tributing loci. In what follows, we assume that all dis-
ease-susceptibility loci are in Hardy-Weinberg equilib-
rium and that alleles at different susceptibility loci are
in linkage equilibrium.

Two-Locus Models

Let the alleles from locus A be denoted “A” and “a,”
and let those from locus B be denoted “B” and “b.” At
locus A, let AA be genotype 1, Aa be genotype 2, and
aa be genotype 3, and let the genotypes at locus B be
defined correspondingly. Let be the allele frequencypA
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of A, and let be the allele frequency of B. Let bep fB ij

the disease penetrance for the genotype consisting of
genotype i at locus A and genotype j at locus B. Let

be the marginal penetrance for genotype i at locusMAi

A, and let be the marginal penetrance for genotypeMBj

j at locus B.
The relationship between these variables is given by

the formulae

2 2M p p f � 2p (1 � p )f � (1 � p ) f i � {1,2,3} ,Ai B i1 B B i2 B i3

2 2M p p f � 2p (1 � p )f � (1 � p ) f j � {1,2,3} ,Bj A 1j A A 2j A 3j

2 2K p p M � 2p (1 � p )M � (1 � p ) M ,A A1 A A A2 A A3

2 2K p p M � 2p (1 � p )M � (1 � p ) M ,B B1 B B B2 B B3

(1)

and is commonly represented by the penetrance table
seen in table 1. For all of the genetic variation to be
epistatic, a two-locus model must also satisfy

M p M p K Gi,j � {1,2,3} (2)Ai Bj

To explore the space of penetrance models that satisfy
formulae (1) and formula (2), we varied K, , and .p pA B

For each set of parameter values, we searched for a pen-
etrance model that would maximize the proportion of
variation attributable to genotype. The total variance of
the dichotomous phenotype in the population is

. For models satisfying formulae (1)V (K) p K(1 � K)T

and formula (2), all of the variation attributable to ge-
notype is epistatic. This variation, , is given by theVI

following formula

� 2 2 2 2 2V(f,K,p ,p ) p p p (f � K) � 2p p (1 � p )(f � K)I A B A B 11 A B B 12

2 2 2 2 2�p (1 � p ) (f � K) � 2p (1 � p )p (f � K)A B 13 A A B 21

2 2 2�4p (1 � p )p (1 � p )(f � K) � 2p (1 � p )(1 � p ) (f � K)A A B B 22 A A B 23

2 2 2 2 2�(1 � p ) p (f � K) � 2(1 � p ) p (1 � p )(f � K)A B 31 A B B 32

2 2 2�(1 � p ) (1 � p ) (f � K) .A B 33

Thus, for fixed K, , and , maximizing the broadp pA B

heritability ( ) under the constraint repre-2h p V /VI T

sented by formula (2) is equivalent to the maximizing
of .VI

The constraints represented by formulae (1) imply
that, for fixed K, , and , the remaining five pene-p pA B

trances can be written as linear combinations of the four
corner penetrances: , , , and . Therefore, the setf f f f11 13 31 33

of satisfying formulae (1) and formula (2) forms afij

four-dimensional polyhedral subset of the nine-dimen-
sional unit hypercube, . Our goal is to maxi-9P [0,1]ip1

mize over this polyhedron. A linear transformationVI

converts this problem to the problem of maximizing the
distance between a fixed point in the interior of the poly-
hedron and other points in the polyhedron. Therefore,
one of the vertices of the polyhedron must correspond
to a model generating the maximum heritability. Deter-
mining the vertices of the polyhedron is a linear-algebra
problem that can, in theory, be solved explicitly for any
fixed values of our parameters. Because of the number
of constraints involved, we used the cdd� program (see
the “cdd and cddplus Homepage”), which implements
the “double description method” (Motzkin et al. 1953)
to find the vertices of the polyhedra of two-locus purely
epistatic models.

Table 2 lists estimated maximum heritabilities for var-
ious combinations of K, , and . For most K, thep pA B

greatest heritability was found when .p p p p 0.5A B

An alternative visualization tool is to vary K while keep-
ing and constant. Using cdd�, we were able top pA B

parameterize the vertices of the space of two-locus purely
epistatic models when , in terms of K. Thep p p p 0.5A B

range of K examined was because the maximum1(0, ]2

heritabilities are necessarily symmetric about . We1K p 2

found that there are 7 vertices when and that1K � (0, ]4

there are 25 vertices when . The curves corre-1 1K � ( , ]4 2

sponding to the maximum heritabilities are described by
the following formulae:

122K if K � 0,( ]4
V (K) p ;I

1 1 12{2K � K � if K � ,[ ]4 4 2

2K 1
if K � 0,( ]1 � K 4

2 2h p h (K) p .12max 2K � K � 4 1 1{ if K � ,[ ]K(1 � K) 4 2

These maxima can be achieved using the penetrances
given in table 3, for , and the penetrances given1K � (0, ]4

in table 4, for .1 1K � [ , ]4 2

A plot of population prevalence versus maximum her-
itability is shown in figure 1. This graph also contains
a plot of K versus total variance and of K versus max-
imum epistatic variance.

Figure 1 illustrates that there exist two-locus models
with no marginal genotypic effect at either locus but in
which genotype nonetheless accounts for a large portion
of the population variance. Although the heritability can
be high in these models, the constraints that eliminate
any marginal gene effects keep the recurrence risks mod-
est. In the manner described by Risch (1990), the relative
risks to offspring (lo) and to sibs (lsib) of an affected
individual can be computed from the parent-offspring
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Table 2

Maximum Heritability in Purely
Epistatic Two-Locus Models

K pA pB VI h2

.50 .5 .5 .2500 1.000
.4 .2325 .930
.3 .2411 .964
.2 .1406 .563
.1 .0422 .169

.4 .4 .2200 .880
.3 .2256 .902
.2 .1308 .523
.1 .0545 .218

.3 .3 .2355 .942
.2 .1356 .542
.1 .0566 .226

.2 .2 .0791 .316
.1 .0330 .132

.40 .5 .5 .1700 .708
.4 .1592 .663
.3 .1589 .662
.2 .1012 .467
.1 .0422 .176

.4 .4 .1744 .727
.3 .1610 .671
.2 .1181 .492
.1 .0493 .205

.3 .3 .1673 .697
.2 .1243 .518
.1 .0518 .216

.2 .2 .1139 .475
.1 .0475 .198

.20 .5 .5 .0800 .500
.4 .0555 .347
.3 .0472 .295
.2 .0362 .226
.1 .0281 .276

.4 .4 .0615 .384
.3 .0486 .292
.2 .0400 .250
.1 .0292 .182

.3 .3 .0449 .281
.2 .0311 .194
.1 .0185 .116

.2 .2 .0409 .256
.1 .0199 .124

.10 .5 .5 .0200 .222
.4 .0139 .154
.3 .0118 .131
.2 .0091 .101
.1 .0070 .078

.4 .4 .0200 .222
.3 .0145 .161
.2 .0104 .116
.1 .0089 .099

.3 .3 .0178 .198
.2 .0097 .108
.1 .0054 .060

.2 .2 .0113 .126
.1 .0050 .056

covariance and the sibling covariance, respectively. To
compute these covariances, we used the variance com-
ponents as derived by Tiwari and Elston (1997). We
found that, for the models in tables 3 and 4, lo and lsib

are given by the following formulae:

1
1.25 if K � 0,( ]4

1l p ;o K � 41 1 1{1.25 � if K � ,[ ]2( )4 K 4 2

1
1.3125 if K � 0,( ]4

1l p .sib K � 41 1 1{1.3125 � if K � ,[ ]2( )4 K 4 2

Three-Locus Models

Although the vertices of the polyhedra of purely ep-
istatic models can, in theory, always be found, in practice
it proved computationally impractical, for many three-
locus parameter sets. These sets often involve several
thousand vertices. We found that a slight perturbation
in K could lead to a 20,000-fold increase in computing
time.

For this reason, we estimated the maxima for three-
locus models by using the nonlinear maximization meth-
ods implemented in the SAS Institute (1995) procedure
PROC NLP. Because this method estimates local rather
than global maxima, we used 1,000 random seeds for
each parameter set, choosing the highest resulting epi-
static variance as our approximation of the true maxi-
mum. We verified this approach on two-locus models,
finding the true maximum at each of 100 points.

Three-locus models produce a dramatic increase in the
maximum proportion of variation explainable by ge-
notype, as can be seen in figure 2. For the three-locus
case, we again have found specific models that closely
fit the numerically derived maxima plotted as dots in
figure 2, where the curves generated by these models are
drawn as a line beneath the dots. The fact that we could
find models with at least as high as the iterative es-VI

timates for each K indicates that rounding errors from
SAS are not likely to cause substantial overestimation
of the maximum heritability. In fact, for a few points
near and , the empirical estimateK p 0.4 K p 0.46
slightly underestimated the true maximum. Formulae for
the curves in figure 2 can be found in the Appendix.

The maximum possible heritability in models with no
single-locus additive or dominance variance is increased
dramatically in three-locus models compared with two-
locus models. For heritability to reach 90%, two-locus

models require a disease prevalence 147%, whereas
three-locus models can be completely genetic for prev-
alences as low as 25%. Furthermore, for K p 0.05–

, a range that includes the prevalences of many com-0.10
plex diseases, three-locus models can generate herita-
bilities of 35%–55%. In contrast, purely epistatic two-
locus models can only generate 10%–22% heritability.
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Table 3

Two-Locus Penetrances Yielding
Maximum h2 for 1K � (0, ]4

GENOTYPE

PENETRANCE

OF GENOTYPE

BB Bb bb

AA 0 0 4K
Aa 0 2K 0
aa 4K 0 0

Table 4

Two-Locus Penetrances Yielding
Maximum h2 for 1 1K � [ , ]4 2

GENOTYPE

PENETRANCE

OF GENOTYPE

BB Bb bb

AA 4K � 1 0 1
Aa 0 2K 0
aa 1 0 4K � 1

Three-locus models can also give rise to higher relative
risks than are possible in corresponding two-locus mod-
els. Three-locus penetrance models maximizing herita-
bility at the low end of disease prevalence ( )1K � (0, ]16

are parameterized in table 5. These models correspond
to (again computed by use of componentsl p 2.125sib

of variance that are derived by Tiwari and Elston
[1997]). In contrast, the highest lsib possible for two-
locus epistatic models is 1.3125.

Because none of the alleles in these models have any
marginal effect on disease susceptibility, the disease
would not cause selection pressure on allele frequency
at any of the loci. Nonetheless, genetic drift, mutation,
and selection pressure from factors other than the disease
in question are likely to cause the allele frequencies to
be perturbed from 50%:50%. Figure 3 illustrates the
effect that unbalanced allele frequencies have on these
models. In this figure, pi denotes the frequency of the
less common allele at locus i. (This should not be in-
terpreted as the “disease allele” frequency. In these mod-
els, there are no “disease alleles,” only “disease geno-
types.”) Although, in models with these unbalanced
allele frequencies (i.e., 40%:60%, 20%:80%, and 20%:
80%), the total variance attributable to genotype is
smaller than that in models in which all alleles are
equally frequent, a sizable portion of the variation can
still be explained by genotype.

Four-Locus Models

Figure 4 illustrates the estimated maximum heritabil-
ities possible for models involving four interacting loci.
The maximum heritability remains 190% for preva-
lences 112%, and maximum heritability is not much less
than 50% unless prevalence is !2%. Furthermore, for
prevalences of 0%–2%, the maximum heritability pos-
sible with four loci is approximately four times as high
as that for models involving three loci. Some of the jag-
gedness seen in figure 4 may be attributable to the fact
that points for K are plotted in increments of 0.0025
and that only 1,000 iterations were used for each point.
We have observed that using too few iterations can con-
siderably underestimate the maximum heritability.

As before, the addition of a locus corresponds to an

increase in recurrence risk to relatives. At the low end
of disease prevalence ( ), lsib can reach 2.609K ! 0.0156
(calculated as above), in contrast to forl p 2.125sib

three-locus models and for two-locusl p 1.3125sib

models.
Also, when the allele frequencies are perturbed from

50%:50%, the maximum-heritability curves for four-
locus models appear to be more stable than those for
three-locus models. This can be seen by comparing figure
4 with figure 5. Figure 5 displays results from four-locus
models in which the frequencies of the less common
alleles are 20% at locus A, 30% at locus B, 40% at
locus C, and 50% at locus D. Maximum heritability
remains 195% for disease prevalences 116% and does
not fall to !50% unless the disease prevalence is !4%.

Detection of Epistatically Interacting Loci

Association

By design, the models described here have equal mar-
ginal penetrances for all single-locus genotypes. Because
of this, it is obvious that a qualitative measured-genotype
analysis of a single locus (analogous to the quantitative
measured genotype described by Boerwinkle et al.
[1986]) could not detect any of the contributing loci.
Furthermore, the equality of the marginal penetrances
implies that cases and controls have identical allele dis-
tributions at the contributing loci. Thus, a case-control
study examining one locus at a time would also fail to
detect the contributing loci.

A transmission/disequilibrium test (TDT [Spielman et
al. 1993]) study examining a single locus at a time would
also fail to detect the contributing loci, but the reasons
may seem less obvious. Within particular families, het-
erozygous parents would preferentially transmit allele A
to their affected offspring; however, in a similar pro-
portion of families, heterozygous parents would pref-
erentially transmit allele a to affected offspring. The
TDT, in common with other association analyses, keeps
track of the particular “at risk” allele that is either dif-
ferentially present in affected individuals or preferen-
tially transmitted to affected offspring. Thus, the evi-
dence from families transmitting allele A will “cancel
out” the evidence from families transmitting allele a. As
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Figure 1 Limits of two-locus, biallelic, purely epistatic (i.e.,
at each locus) models, with all alleles equally frequent.V p V p 0A D

The bottom curve represents the maximum variance due to genotype
(i.e., VI), the middle curve represents the total variance as a function
of disease prevalence (i.e., )), and the top curve repre-V p K(1 � KT

sents the maximum proportion of variance attributable to genotype
(i.e., ).2h p V /VI T

Figure 2 Limits of three-locus, biallelic, purely epistatic (i.e.,
at each locus) models, with all alleles equally frequent.V p V p 0A D

The bottom curve represents the approximate maximum variance due
to genotype (i.e., VI), estimated by an iterative maximization algorithm
from the SAS Institute (1995), the middle curve represents the total
variance (i.e., )) as a function of disease prevalence, andV p K(1 � KT

the top curve represents the values for h2 that we have found for
particular models; the dots on the top curve are the maximum pro-
portion of variance attributable to genotype (i.e., ), esti-2h p V /VI T

mated by the iterative maximization method.

a result, under these purely epistatic models, the TDT
statistic for the contributing loci will be equivalent to
those for “neutral” loci.

Since it is impossible to detect these loci by use of a
locus-by-locus genome scan for association, one might
consider a scan assessing two or more loci at a time.
Estimates of the number of SNPs required for a whole-
genome scan range from as many as 500,000 (Kruglyak
1999) to as few as 30,000 (Collins et al. 1999). To ex-
amine all two-way interactions for even the smaller num-
ber would require ∼450 million tests; to examine all
three-way interactions would require ∼4.5 trillion tests.
These are nontrivial computational tasks, not to mention
the statistical problem of correcting for multiple tests.

The fact that the number of tests involved in exam-
ining the interactions grows as a polynomial in the num-
ber of loci suggests that successful analyses of interac-
tions will depend on a method of selecting a limited
number of candidate loci for consideration. Fortunately,
for the class of models discussed in the present article,
linkage analysis is often able to detect increased allele
sharing at loci that epistatically contribute to the affected
phenotype.

Linkage

Although the purely epistatic models discussed here
do not give rise to different allele frequencies in cases
and controls, they do give rise to excess allele sharing
among affected sibs. Because these epistatic models have
no “disease alleles” (only “disease genotypes”), the allele
that is shared excessively among affected sibs varies de-

pending on the mating type of the parents. However, in
contrast to association analyses, if half of the families
in a linkage analysis show increased sharing for allele A
at locus A and the other half show increased sharing for
allele a, then, for the combined sample, the linkage sta-
tistic at locus A is higher than that in either subsample.
Because the linkage statistic from each family is not tied
to a specific allele, the evidence for linkage from families
segregating for different alleles accumulates rather than
cancels. Consider, for instance, a collection of affected
sib pairs with a disease that conforms to the two-locus
model represented in table 3. Thirty-five of the possible
45 parental mating types are capable of segregating an
affected child, and 28 of these mating types give rise to
sib pairs with increased allele sharing at locus A, locus
B, or both. Indeed, at each locus the expected proportion
of alleles shared identical by descent is 4/7 (calculations
not shown), regardless of the value of K. Hence, regions
containing both loci are detectable by linkage analysis,
provided that the sample size is adequate.

Analysis of Candidate Loci

Once a limited number of candidate loci are selected,
it is feasible to examine the candidates for interactions.
We note that the number of tests necessary to evaluate
all two-, three-, and four-way interactions, for 30–60
candidate loci, has a range similar to the number of tests
suggested for a single genomewide association scan using
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Table 5

Three-Locus Penetrances Yielding Maximum h2 for 1K � (0, ]16

GENOTYPE

PENETRANCE OF GENOTYPE

CC Cc cc

BB Bb bb BB Bb bb BB Bb bb

AA 0 0 16K 0 0 0 0 0 0
Aa 0 0 0 0 4K 0 0 0 0
aa 0 0 0 0 0 0 16K 0 0

Figure 3 Limits of three-locus, biallelic, purely epistatic (i.e.,
at each locus) models. The bottom curve represents theV p V p 0A D

estimated maximum variance due to genotype (i.e., VI), the middle
curve represents the total variance (i.e., )) as a functionV p K(1 � KT

of disease prevalence, and the top curve represents the estimated max-
imum proportion of variance attributable to genotype (i.e., 2h p

).V /VI T

SNPs (Collins et al. 1999; Kruglyak 1999). Thus, al-
though searching for two-, three-, four-, or n-way in-
teractions among all the markers in a genome scan
would not be practicable, a candidate-locus approach
based on a genome scan for linkage may be.

Deriving appropriate and powerful methods to detect
epistatic interactions remains a matter for further study.
However, several straightforward methods are imme-
diately available, and some more-elaborate methods are
already in the literature.

Three Elementary Multilocus Methods

Cases only.—The most straightforward multilocus
analysis of cases-only data is a x2 test of independent
segregation for the loci. An analysis of data from the
two-locus models described in table 3, for instance,
yields an expected test statistic �2N, where N is the
number of cases. This is a consequence of the fact that
the expected value of the square of a random variable
is at least as great as the square of the expected value
of the variable. Under the null hypothesis of independent
segregation, this statistic would be distributed as a x2

with 4 df.
Case-control.—A second approach is a multilocus

case-control analysis. One method for doing this would
be to compare the distribution of cases among the 3L

genotypes, where L is the number of biallelic loci being
simultaneously examined, versus the distribution of
controls.

In this analysis, a sample of N cases and N unrelated
controls drawn from a population modeled by table 3
will, again, yield an expected x2 statistic �2N. However,
the degrees of freedom under the null hypothesis are now
8. Moreover, compared to a cases-only strategy, the in-
clusion of unrelated controls will add to the cost of ge-
notyping. In addition, for diseases with a variable age
at onset, the inclusion of controls who will eventually
develop the disease will compromise power.

Conditional TDT.— Unrecognized population admix-
ture can lead to false positives in both cases-only meth-
ods and case-control methods. The TDT was created to
address this problem.

A conditional TDT is one possible way to address the
same issue in a multilocus setting. For this, a sample of

N trios is stratified by the genotype of the offspring at
one (or more) of the candidate loci. A TDT analysis is
then performed at another candidate locus, for each stra-
tum of the data. The P values from the individual TDTs
are then combined, by use of Fisher’s (1932) statistic
( , where is the TDT P value corre-mS p �2S ln(p ) pip1 i i

sponding to the ith stratum of the data). Under the null
hypothesis, S has a x2 distribution with 2m df, where m
is the number of strata.

Consider, again, the model represented in table 3.
When we condition on locus A, the trios with AA off-
spring would yield an expected x2 statistic of N/4 if a
TDT analysis were performed at locus B, the trios with
aa offspring would yield the same expected x2 statistic,
and the trios with Aa offspring yield an expected x2

statistic of 1, independent of sample size. The Fisher
statistic in this case would be tested against a x2 distri-
bution with 6 df.

In the absence of population admixture, the condi-
tional TDT (as well as the traditional TDT) is less pow-
erful than a cases-only strategy or a case-control strategy.
Furthermore, a TDT-type analysis comes at the addi-
tional cost of requiring a threefold increase in genotyping
(i.e., two parents and the affected offspring), compared
to the cases-only strategy.

Other methods.—We do not claim that the methods
described above are optimal in power; and they certainly
are not exhaustive. They are simple to apply, however,
and can be used to test any number of loci, for simul-
taneous interactions.
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Figure 4 Limits of four-locus, biallelic, purely epistatic (i.e.,
at each locus) models, with all alleles equally frequent.V p V p 0A D

The bottom curve represents the estimated maximum variance due to
genotype (i.e., VI), the middle curve represents the total variance (i.e.,

) as a function of disease prevalence, and the top curveV p K(1 � KT

represents the estimated maximum proportion of variance attributable
to genotype (i.e., ).2h p V /VI T

Figure 5 Limits of four-locus, biallelic, purely epistatic (i.e.,
at each locus) models. The bottom curve represents theV p V p 0A D

estimated maximum variance due to genotype (i.e., VI), the middle
curve represents the total variance (i.e., )) as a functionV p K(1 � KT

of disease prevalence, and the top curve represents the estimated max-
imum proportion of variance attributable to genotype (i.e., 2h p

).V /VI T

Other published multilocus analysis methods relying
on association include the marker-association-sequence
x2, or “MASC,” method applied to two loci (Dizier et
al. 1994). A method similar to the conditional TDT is
the generalized TDT (Rice et al. 1995), if the genotypes
at auxiliary loci are used as covariates. Nelson et al.
(2001) used a combinatorial method for identifying the
multilocus genotypes contributing to variation in serum
triglyceride levels. Ritchie et al. (2001) used a related
data-reduction technique to identify a four-locus risk
factor for breast cancer.

Two-locus linkage methods include a sib-pair analysis
(Dizier and Clerget-Darpoux 1986), a two-locus LOD-
score method (Lathrop and Ott 1990; Schork et al.
1993), and a two-locus version of the maximum-LOD-
score method (Cordell et al 1995).

Discussion

We have seen that, if the true genetic model underlying
a disease is purely epistatic, with no additive or domi-
nance variation at any of the susceptibility loci, then
association methods analyzing one locus at a time will
have no power to detect the loci. Nonetheless, linkage
methods will have power and so might allow the detec-
tion of the susceptibility loci.

The models used to demonstrate these facts are
boundary cases. They represent extreme limits in terms
of two parameters: the marginal deviation is zero and,
given that constraint, the heritability is at its maximum
value. For any disease prevalence and for any allele-

frequency distribution, merely relaxing the maximum
heritability condition leads to infinitely many models
that still display no single-locus marginal effect but that,
nonetheless, may appear more “natural” in that they
have nonzero penetrances for all genotypes. In fact, al-
most every purely epistatic model includes both incom-
plete penetrances and “phenocopies.”

Because few researchers specifically test for epistasis,
it is difficult to gauge the extent to which purely epistatic
interactions are involved in human disease. However,
the chief importance of these results is not that purely
epistatic models exist; rather, it lies in the implications
that these results have for largely epistatic models with
small marginal effects. Relaxing the condition of zero
single-locus marginal deviation results in a much larger
class of models, albeit a less mathematically tractable
class. The heritabilities and ls found in the setting of
zero marginal deviation are useful in providing lower
bounds for the maximum values possible when mar-
ginal effects are small; in particular, although the models
specifically discussed here are boundary cases, they im-
ply that seemingly “natural” models can account for
most of the variation in disease even if all the single-
locus effects were to pass undetected.

Although we have only examined two-, three-, and
four-locus models, the results lead us to two obvious
extrapolations. First, we expect that, with a sufficient
number of contributing loci, purely epistatic interac-
tions could account for virtually all the variation in
affection status for diseases with any prevalence. Sec-
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Figure 6 Comparison of maximum heritabilities for three-locus,
purely epistatic models with (top curve) and without (bottom curve)
two-locus interactions. The maximum heritabilities for two-locus,
purely epistatic models (middle curve) are included as a reference.

ond, models involving more loci could be associated
with ls even greater than the 2.6 found for four-locus
models.

Of course, there are subclasses of purely epistatic
models (providing no marginal evidence for the involve-
ment of any single locus) for which, in addition, no
two, three, or loci jointly give evidence of in-L � 1
volvement in the disorder. This leads to the concern that
even assessment of all two-, three-, and ( )-wayL � 1
interactions among candidate loci may be insufficient
for detection of the contributing loci.

This concern is ameliorated by the fact that such mod-
els are associated with lower heritabilities and much
lower l values than those of the models that we have
examined. The restriction on maximum heritabilities in
these models is most easily seen by examining L-locus
models for which no collection of loci shows mar-L � 1
ginal deviations. The fact that all loci must pairwise
satisfy the two-locus constraints implies that the max-
imum heritability in this case is theoretically bounded
above by the values from the two-locus model. In fact,
a check of three-locus models for which the two-locus
marginal penetrances do not deviate from K (illustrated
in fig. 6) shows that the true maximum heritability is
even lower than the general upper bound.

The fact that lsib will diminish exponentially with the
number of simultaneously hidden loci is a simple con-
sequence of the formula relating the covariance between
siblings and the components of variation. For an L-locus
system, this is given by the following formula (Kempth-
orne 1957):

1 1 1 1
Cov p V � V � V � Vsib A D AA AD2 4 4 8

j k1 1 1
� V � … � V .j k�DD A D( ) ( )16 2 4j�kpL

Thus, if M loci are “hidden,” Covsib cannot be greater
than 2�M. For this reason, these models can make only
a small contribution to l.

Researchers of many complex diseases (including
non–insulin-dependent diabetes mellitus, prostate can-
cer, and schizophrenia) face the conundrum of moder-
ately heritable diseases for which locus-by-locus anal-
yses have not accounted for the predicted genetic
variance. The models discussed in the present article
provide one possible explanation for this.

Had data been gathered for a disease that closely
fitted one of the epistatic models considered here, it is
likely that the linkage signals from the contributing loci
would have been rejected as false positives. The im-
possibility of using locus-by-locus association analyses
to either confirm or narrow the signal region would
make it very easy to reject the true signals.

These considerations lead us to believe that, in situ-
ations in which heritability is moderate to high but in
which locus-by-locus analyses do not account for the
predicted genetic variance, it is worth pursuing a hy-
pothesis of interacting loci near the linkage peaks. Even
regions containing modest linkage signals may be good
sources of candidate loci.

The epistatic models examined here were constructed
so that none of the loci could be detected by case-con-
trol, measured-genotype, or TDT analyses of single loci.
We found that a large fraction of the variation in af-
fection status can be explained by such models, for a
wide range of population prevalences and allele fre-
quencies. Less extreme—and, therefore, more “natu-
ral”—models displaying small marginal effects can ac-
count for even more variation.

Since, for the class of epistatic models considered
here, locus-by-locus linkage analyses do not suffer from
the drawbacks of association analyses, we conclude that
they will continue to prove useful even when dense SNP
maps are available and rapid genotyping becomes less
costly.
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Appendix

Three-Locus Models

The formula below describes the estimated maximum-
epistatic-variance curve for all models involving three
loci. It was derived by use of specific models that we
found by using our maximization search method. The
third piece of the curve,

�2 � 1/211 12V p K , for K � , ,[ ]I 2 14 8

has a form different than that of the other pieces and
has anomalous limits; nonetheless, checks of the vertices
of the solution polyhedra for several values of K in and
around this region confirm the estimated values.

129K if K � 0,( ]16
�2 � 1/21 129K � K � if K � ,[ ]

16 16 14
�2 � 1/211 12K if K � ,[ ]

2 14 8

9 29 1 529K � K � if K � ,[ ]4 128 8 32

3 5 329K � 2K � if K � ,[ ]16 32 16

3 3 129K � 3K � if K � ,[ ]8 16 4

7 1 929K � 5K � if K � ,[ ]8 4 32
V p .I

17 85 9 529K � K � if K � ,[ ]4 128 32 16

25 165 5 1129K � K � if K � ,[ ]4 128 16 32

11 33 11 329K � K � if K � ,[ ]2 32 32 8

15 57 3 1329K � K � if K � ,[ ]2 32 8 32{
27 189 13 729K � K � if K � ,[ ]4 128 32 16

35 301 7 1529K � K � if K � ,[ ]4 128 16 32

15 129K � 8K � 2 if K � ,[ ]32 2
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