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Introduction: Many biological response curves commonly assume a sigmoidal shape that can be approxi-
mated well by means of the 4-parameter nonlinear logistic equation, also called the Hill equation. However, es-
timation of the Hill equation parameters requires access to commercial software or the ability to write computer
code. Here we present two user-friendly and freely available computer programs to fit the Hill equation — a
Solver-based Microsoft Excel template and a stand-alone GUI-based “point and click” program, called HEPB.
Methods: Both computer programs use the iterative method to estimate two of the Hill equation parameters
(EC50 and the Hill slope), while constraining the values of the other two parameters (the minimum and maxi-
mum asymptotes of the response variable) to fit the Hill equation to the data. In addition, HEPB draws the pre-
diction band at a user-defined confidence level, and determines the EC50 value for each of the limits of this
band to give boundary values that help objectively delineate sensitive, normal and resistant responses to the
drug being tested. Results: Both programs were tested by analyzing twelve datasets that varied widely in data
values, sample size and slope, andwere found to yield estimates of theHill equation parameters that were essen-
tially identical to those provided by commercial software such as GraphPad Prism and nls, the statistical package
in the programming language R.Discussion: The Excel template provides a means to estimate the parameters of

the Hill equation and plot the regression line in a familiarMicrosoft Office environment. HEPB, in addition to pro-
viding the above results, also computes the prediction band for the data at a user-defined level of confidence, and
determines objective cut-off values to distinguish among response types (sensitive, normal and resistant). Both
programs are found to yield estimated values that are essentially the same as those from standard software such
as GraphPad Prism and the R-based nls. Furthermore, HEPB also has the option to simulate 500 response values
based on the range of values of the dose variable in the original data and the fit of the Hill equation to that data.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Dose–response studies typically produce data that manifest as a sig-
moid curve when a response is plotted against dosage (Fig. 1). A com-
mon inference done from such a curve is the estimation of the dose at
which 50% of the subjects show the desired response. This is usually
done by means of the four-parameter logistic nonlinear regression
equation with prediction band;
entration for 50% response, the
in the sigmoidal dose–response
subjects being tested show the
etic; RSS, the residual sum of
cient of determination, which
e that is accounted for by the in-

1 623 572 3647.
agkar).

. This is an open access article under
model (Eq. 1), modified from the original equation developed by A.V.
Hill to quantify the binding of oxygen to hemoglobin (Hill, 1910)

Ŷ ¼ aþ b−að Þ
1þ c

X

� �dh i ð1Þ

where Ŷ is the expected response at dosage X, a is theminimum asymp-
tote or the response when dosage= 0, b=themaximum asymptote or
the stabilized response for an infinite dosage, c is the dosage at which
50% of the subjects are expected to show the desired response (that is,
the response halfway between the minimum response asymptote a
and the maximum response asymptote b); it also denotes the point of
inflection in the dosage–response curve, and is referred to by various
terms (e.g., EC50, ED50, LD50, IC50), and d is the slope at the steepest
part of the curve, also known as the Hill slope. The model may be writ-
ten to represent an ascending sigmoid curve of the type in Fig. 1 or a
descending curve, depending on the sign of d. Specifically, positive d
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. The typical sigmoidal nature of a dose–response curve. This example shows the per-
centage of flies that are anesthetized at 75 s (mean ± SEM; triangles) plotted versus the
dose of isoflurane anesthesia given, and the Hill equation fit to the data using Graphpad
Prism software (solid line).
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values yield ascending curves while negative values yield descending
curves.

Eq. (1) represents one of a family of Hill equations that have been
used to describe specific non-linear relationships under diverse scenar-
ios, including, but not limited to, quantitative pharmacology (Gesztelyi
et al., 2012), ligand binding (Poitevin & Edelstein, 2013; Siman
et al., 2012), plant growth modeling (Zub, Rambaud, Bethencourt,
& Brancourt-Hulmel, 2012), andmodeling patterns of urban electric-
ity usage (To, Lai, Lo, Lam, & Chung, 2012).

Computer programs have been available since the early 1970s to
estimate the parameters of different versions of the Hill equation,
most of which are specific to fitting kinetic data (Atkins, 1973; Knack
& Rohm, 1977; Leone, Baranauskas, Furriel, & Borin, 2005; Wieker,
Johannes, &Hess, 1970). None of these uses Eq. (1) specifically, although
commercial software exists that can be made to fit the four-parameter
logistic curve in Eq. (1) (e.g., GraphPad Prism, www.graphpad.com;
The MiraiBio Group of Hitachi Solutions at www.miraibio.com).
Eq. (1) can also be fit to data using a computer program written using
the open-access language, R, or the Solver Add-in in Microsoft Excel.
In addition, some of these also permit the computation of confidence
and prediction bands around the curve. However, the existing tools ei-
ther require an investment in commercial software, which are also typ-
ically opaque to the user as to the code and algorithms used to generate
the results, or require the ability of the user to write computer code in
order to accomplish these tasks.

A long-term goal of the Call laboratory is to determine the mech-
anism of action of inhaled anesthetics (IAs), for which Drosophila
melanogaster is used as themodel system for providing in vivo responses
to IAs in the presence of various genetic manipulations.Drosophila repre-
sents a good model for working with anesthetics as fruit flies follow the
Meyer–Overton rule of anesthetics and display physiological responses
to IAs similar to those in humans (Allada & Nash, 1993; Tinklenberg,
Segal, Tianzhi, & Maze, 1991). Additionally, flies provide an inexpensive,
yet robust model with access to a variety of genetic tools available to
answer many scientific questions in vivo.

The Call laboratory has recently adapted an apparatus for the quan-
tification of the Drosophila response to IAs (Dawson, Heidari, Gadagkar,
Murray, & Call, 2013). Known as the inebriometer, it was originally
designed to quantitativelymeasure the flies' response to ethanol vapors
(Weber, 1988). This adaptation and modification of the inebriometer
has enabled the rapid and efficient collection of simple quantitative
data from large genetic screens. The inebriometer consists of a large col-
umn that isfloodedwith the IA. As theflies succumb to the IA, they elute
out the bottom of the column and are counted. The Mean Elution Time
(MET) of the flies from the inebriometer column can then be computed,
followed by standard statistical analysis (e.g., t-test).

In order to verify consistent inebriometer function, control flies are
simultaneously assayed each day an experimental fly line is tested. In
a genetic screen consisting of hundreds of experimental fly lines, this
practice produces a large control dataset that presents a statistical prob-
lem: theMean Elution Time when used with standard statistical tests is
almost guaranteed to show a statistically significant difference between
the experimental fly line being assayed and the control, simply due to
the large numbers of flies used. Furthermore, the median test is also al-
most guaranteed to have low power due to the large sample sizes used;
~150 flies per assay. Therefore another approach was needed for the
analysis of the genetic screen data. Since the raw fly elution data from
the inebriometer was sigmoidal in nature, Eq. (1) was fit to the data,
followed by the estimation of what we term the ET50, which is analo-
gous to EC50, but represents the time, rather than the concentration, at
which 50% of the flies elute from the inebriometer column. The ET50
value was then used as a measure of the flies' response to the IA. This
is done by estimating the parameter c in Eq. (1), where X is the time it
takes for Y percent of flies to elute through the inebriometer, a and b
are the minimum and maximum asymptotes of the percentage of flies
eluting through the system (0 and 100, respectively), and d is the Hill
slope. Repeated assessments of the ET50 have shown it to be an efficient,
direct and reliable indicator of the flies' response to various IAs.

Here we present two computer programs: 1) a macros-enabled,
Solver-based Excel template developed in the Call laboratory, and 2) a
stand-alone Windows based computer program, HEPB (Hill Equation
with Prediction Band), designed and developed in the Gadagkar lab.
The Microsoft Excel template with Visual Basic for Applications (VBA)
macros uses the above formula and estimates the ET50 and the Hill
slope (variables c and d in Eq. (1)) for the inebriometer data. This tem-
plate utilizes the Solver tool that comes with Excel. Solver is an optimi-
zation tool that uses techniques fromOperations Research and haswide
applicability including regression analysis and curve fitting. However,
neither the availability nor the operation of Solver is straightforward
to the average researcher more familiar with the graphic user interface
(GUI) of most statistical software typically used to perform this type of
analysis. For this reason, and due to the large amount of data routinely
collected and the large number of student users in the Call laboratory,
a macro was written to automate this analysis within Excel. This made
the task very easy and straightforward even for the novice user as the
analysis was done simply by the press of a button after data entry
(Fig. 2). Furthermore, the macro ensured consistency in the output for
easy and accurate export of the data and results to the relational data-
base (Microsoft Access) being maintained in the laboratory. The Excel
macros proved to be very useful and convenient, and have becomea sta-
ple in the Call laboratory.

However, while the Hill equation was easily fit to the data and the
ET50 andHill slopewere determined quickly by themacros, the problem
of meaningfully comparing an experimental line with the control still
remained. In addition, an important goal of these assayswas also to clas-
sify a given fly line as having a sensitive, normal or resistant phenotype
to the IA. To help resolve both problems, that is, comparing an experi-
mental line to the control and classifying the experimental line as one
of the above three types, the stand-alone computer program, HEPB,
was developed. HEPB has an easy-to-use GUI that, in addition to esti-
mating the parameters c and d in Eq. (1), also computes the prediction
band (at a given level of confidence) for the control fly data and solves
for the X value when Y = 50% for each of the upper and lower limits
of the prediction band. These form the cut-off values to objectively dis-
criminate among sensitive, normal and resistant responses to a given
anesthetic. These two limits each give the boundary value between
sensitive and normal responses, and normal and resistant responses,
respectively (Fig. 3). This is similar to standard statistical practice for a
two-tailed test where the distribution under the null hypothesis is con-
structed, the critical regions delineated on either side of the curve, and
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Fig. 2. Screenshot of the Regression worksheet with sample data pasted. Entering the data automatically populates the graph. The Hill equation is fit to the data when the Perform Regres-
sion button is pressed. The user canmanually enter the values ofmin andmax (set at 0 and 100, respectively, by default), or push the button to automatically change them to theminimum
and maximum values of the data.
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the experimental value simply compared to the critical values on this
curve to accept or reject the hypothesis. Our critical values are the
ET50 values for the upper and lower limits of the prediction band for
the null distribution (the control). If the ET50 value for the experimental
run falls within these two limits, it is determined to be no different from
that of the control (null hypothesis accepted), and if it falls outside the
limits, the null hypothesis is rejected and we conclude that the experi-
mental run is statistically different from the control. Specifically, the ex-
perimental fly line is determined to be sensitive or resistant if the
corresponding ET50 falls outside the lower limit, or outside the upper
limit, respectively. Furthermore, HEPB has the option of generating
500 values of the response variable based on simulation, for equally
spaced values of the dose variablewithin the range specified in the orig-
inal data file, based on the fit of the Hill equation to the original data.
This can be useful if the sample size in the original data is small and
one is interested in understanding better the behavior of the dose–
response relationship in question. Both programs are freely avail-
able, and can be obtained by contacting the authors.
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Fig. 3. The Hill equation fit to the data in Fig. 2 (red line) and the 95% prediction band
bounded by the blue and green lines. The ET50 values for each of prediction band limits
(shown by the dashed and dotted lines to the X axis) delineate the boundaries between
the zones of sensitive, normal and resistant flies. Based on this, any future dataset with es-
timated ET50 values in the blue, pink or green zones will be classified as sensitive, normal
or resistant, respectively.
2. Methods

2.1. Regression and estimation of c and d in the macros-enabled Excel
template

The principle of least-squares in the context of regression states that
the linewith the best fit to the data is that for which the sum of squared

residuals, RSS ¼ ∑
n

i
Yi−Ŷ
� �2

, is the smallest (where Yi and Ŷ are the

observed and expected values, respectively, of the response variable
for the ith value of the dose (or explanatory) variable, and i is the num-
ber of pairs of values in the data). The Excel template presented here
contains VBA macros that utilize the built-in Solver tool to perform
iterations to determine the best-fit curve by minimizing RSS (cell O9
in Fig. 2). The Excel 2010+ version of Solver uses Generalized Reduced
Gradient (GRG), a robust algorithm for non-linear regression program-
ming (Lasdon, Waren, Jain, & Ratner, 1978). The initial value for c in
Eq. (1) is the calculated midpoint of the range of the data (explanatory
variable), and d is set to equal 1. Solver is adequate for this purpose
and generally determines the values of c and d quite accurately. How-
ever, accuracy is achieved only when the initial values used for these
parameters are close approximations of their final values. The formulae
used in the spreadsheet provide those approximations automatically
and the VBA macro has been programmed to check the R2 value (coef-
ficient of determination) that reflects the goodness of fit of themodel to
the data. For the first run, the starting value for c is the median of the X
variable and for d, it is 1. If the first run yields a R2≥ 0.99, the regression
results are accepted, as it is likely that Solver will not fit the data any
better if run again. If not, Solver is run automatically again with the
values of c and d determined from the initial fit, to yield better results.
For this second run, the stringency is reduced, such that the results
are accepted if R2 ≥ 0.95. If an R2 of 0.95 or higher is not achieved in
the second run, Solver is run one last time with the third set of starting
values for c and d determined in the samemanner as for the second run,
and the R2 value is reported. If R2≤ 0.50 or the analysis with Solver does
not converge (perhaps because the starting values are too far from the
final values), producing an error, the macro has been programmed to
recognize this and repeat the estimation with different starting values.
These starting values are determined for c by systematically selecting
values from the range of the dose variable, and d by choosing among



71S.R. Gadagkar, G.B. Call / Journal of Pharmacological and Toxicological Methods 71 (2015) 68–76
the empirically determined Hill slope values in the Call laboratory for
sensitive and resistant relationships. This exercise is done in order to
reach or exceed the threshold of R2 ≥ 0.95. This process has yielded
excellent results with R2 values typically N 0.95 in the Call laboratory.
If R2 is still short of 0.95, however, and all the alternative sets of starting
values have been used, the analysis stops, the default values of c and d
are restored, and a message informing the user that the curve fit failed
appears. In this situation, the user can manually change all four values
in Eq. (1) in the template, as for instance, would be necessitated for a
and b if the min and max values in a given dataset are not the default
values of 0 and 100, respectively. To this end, a button next to the vari-
ables, a and b, allows the user to change automatically themin andmax
values to the minimum and maximum values of the entered dataset.
2.2. Regression and estimation of c and d in HEPB

HEPB also uses the least-squares criterion to determine the best fit to
the data, while approaching the problem somewhat differently from
Solver, namely by serial iteration. Each of three tandem iterations is
done by looping through 200 equally spaced values within the range
provided for the parameter d, nested within 200 equally spaced values
within the range provided for the parameter c. The set of three tandem
iterations with increasingly smaller ranges to iterate over ensures finer
estimates of the parameters c and d. The minimum and maximum
asymptotes (a and b, respectively) may be provided by the user or
alternatively, can simply be the minimum and maximum values of
the response variable in the data.

No starting values are required for the estimation of c and d. Instead,
an all-inclusive range of −50 to +50 for the estimation of d, and the
range defined by the min and max values of the dose (X) variable for
the estimation of c, are used in the first pass, and the iterations loop
over 200 equally spaced values between the corresponding limits
for both parameters in a nested fashion (explained below). Since
parameters a and b are fixed for a given dataset, it is a straightforward
procedure to estimate the values of c and d. The process begins by
regressing iteratively the response variable against the dose variable,
beginning with the value of a and progressing to the value of b, while
saving the estimated values of c and d from each iteration along with
the sumof the squared residuals (RSS).When the program runs through
all the iterations in the first pass over the ranges of both c and d (in in-
crements of 200 equally spaced values between the corresponding
limits for each), the values of these parameters are then estimated in
this round of iteration as those associated with the smallest RSS, based
on the least squares principle. The second pass or iteration is identical
to the first, the only difference being that the iteration range for the
estimation of each of c and d is now delimited by values 10% below
and above each of the values of c and d obtained from the first-pass
iteration. The final iteration is identical to the second iteration, except
that the new iteration ranges are set as ±1% around the values of c
and d obtained from the second iteration. The number of steps between
the two limits of each range is always maintained at 200 for both
parameters. Thus, the increasingly small size of the increment and
range to iterate over across the three sets of iterations (or passes) pro-
vide efficiency and accuracy in the estimation of the parameters.
There is no quality control embedded in the program (as in the case of
the Excel template). However, the R2 value has typically been above
95% for most datasets; when lower, it has been due to variation in the
data and not a poor fit. HEPB also includes the residuals from the regres-
sion in the output. The speed of the program was determined by
running it on a dataset with 5000 pairs of values (dataset XII, Table 1)
on a Dell Optiplex 980 computer with Intel Core™ i7 CPU 860 @
2.80 GHz processor, 8.00 GB of RAM, running on 64-bit, Microsoft Win-
dows 7 Professional operating system, and the analysis was completed
in 58 s. On a less powerful machine (Intel Core2 Duo E7500 @2.93GHz,
4 GB RAM, 32 bit Windows 7), it took 3 min and 56 s.
2.3. Prediction band

When the estimation involves a single value, it is customary to con-
struct a confidence interval around the point estimate. This requires
knowledge of the distribution that the estimate is expected to follow,
and the width of a given confidence interval depends on the level of
assurance required in ensuring that the unknown true value of the esti-
mate resides within that interval. When the confidence interval is con-
structed for each Ŷ value in a regression, however, the two series of
values at each end of the confidence interval then lie on either side of
the Ŷ values (the regression line), thus forming a band along the length
of the regression line.

When the goal is to predict a new individual value of Y for a given
value of X, sP(Ŷ), the standard error of Ŷ, is given as the square-root of
the following expression (Snedecor & Cochran, 1980):

s2P Ŷ
� �

¼ 1
n−2
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The lower and upper prediction band limits for a given Ŷ value are
obtained using the following equation:

Ŷ � tα;n−2

� �
sP Ŷ
� �h i

ð3Þ

where α is the level of significance and n is the sample size in terms of
the number of pairs of values. If the predictions are being made for k
new X values, it would be necessary to use the Bonferroni inequality
and obtain the t value from the Student's t tables for α/k and (n − 2)
degrees of freedom (Snedecor & Cochran, 1980). However, since the
purpose of drawing the prediction band in the present case is to give
cut-off values that allow us to distinguish among sensitive, normal
and resistant responses to a given anesthetic being used in any given
experiment for the X values already in the data (Fig. 3), Eq. (5) is used
to obtain the lower and upper limits of the prediction band.

The c and d values for the upper and lower limits of the prediction
band are estimated in the same manner of sequential sets of iterations
as in the estimation of these parameters for the main regression equa-
tion, with the exception that the values of the corresponding prediction
limits are used here instead of the observed values of the response var-
iable. Once the values of c and d are obtained, the values for a given pre-
diction limit are then plugged into Eq. (1) and the cut-off value for that
limit obtained by solving for X when Y = 50%. Thus, the cut-off values
obtained from the upper prediction limit help distinguish between fly
lines with sensitive and normal responses, and those from the lower
prediction limit are used to distinguish between flies with normal and
resistant response.

In addition, we have incorporated in HEPB the option of generating
500 values of the response variable, using simulation, within the ob-
served range of the explanatory variable, based on the regression pa-
rameters estimated for the original data. The implementation of this
project was done using the Embarcadero ® Delphi ® XE language (Em-
barcadero ® RAD Studio XE Version 15.0.3953.35171).

3. Results

For the purposes of demonstration of our programs, a dataset from
the Call laboratory is used where 809 flies from 6 separate experiments
were assayed for their response to 1% isoflurane using the inebriometer
(Dawson et al., 2013). The data needs to be formatted in two columns,
the first (X) is the independent variable or the dose associated with a
desired response (e.g., time taken for a given fly to be fully anesthetized,



Table 1
Performance of the Excel template andHEPB in estimating c and d in Eq. (1)awhen compared to two standard computer programs, GraphPadPrism 6 and thenls statistical package in theR
programming language.

Dataset n Excel HEPB Prism R (nls)

c d c d c d c d

I 6 4.372 4.042 4.373 4.042 4.373 4.042 4.373 4.042
II 6 2.315 3.356 2.316 3.356 2.316 3.356 2.316 3.356
III 8 136.564 2.488 136.559 2.488 136.600 2.487 136.565 2.487
IV 10 7.328 10.954 7.328 10.956 7.328 10.950 7.328 10.954
V 14 1.246b 0.661b 1.249c 0.660c 1.247 0.661 1.245 0.661
VI 25 12.953 20.096 12.953 20.096 12.950 20.100 12.953 20.096
VII 27 −6.296 −10.846 −6.926 −10.845 6.926d −10.850d −6.926 −10.846
VIII 29 −5.783 −8.924 −5.783 −8.924 5.783d −8.924d −5.782 −8.923
IX 1055 342.701 4.859 342.706 4.859 342.700 4.859 342.701 4.859
X 740 197.577 2.410 197.570 2.410 197.600 2.410 197.578 2.410
XI 1494 16.043 1.820 16.069 1.826 16.070 1.826 16.070 1.826
XII 5000 103.009 1.668 102.971 1.667 103.000 1.668 103.009 1.667

Source and features of the datasets:
I: Source: Finney, D. J. (1971) Probit Analysis, Cambridge: Cambridge University Press. The data (n = 6) examines the effect of a series of doses of rotenone (mg/l) on the aphid,
Macrosiphoniella sanborni.
II: Source: Hornick, R.B., Music, S.I., Wenzel, R., Cash, R.A., Libonati, J.P., Snyder, M.J., Woodward, T.E. (1971) The Broad Street Pump Revisited: Response of Volunteers to Ingested Cholera
Vibrios, Bulletin New York Academy of Medicine, 47, 1181–1191. The data (n = 6) examines the response to human ingestion of V. cholerae (Inaba 569B strain) with sodium bicarbonate.
III: Source: Jeske, D. R., Xu, H. K., Blessinger, T., Jensen, P. and Trumble, J. (2009) Testing for the Equality of EC50 Values in the Presence of Unequal Slopes With Application to Toxicity of
Selenium Types, Journal of Agricultural, Biological, and Environmental Statistics, 14, 469–483 The data (n = 8) shows the percentage of deaths in flies from exposure to different concen-
trations of selenomethionine, a form of the element, selenium.
IV: Source: A generic dataset downloaded from the internet.
V: Source: http://www.ats.ucla.edu/stat/sas/faq/doseresponse.htm. The webpage uses this data (n = 14) to demonstrate the parameterization shown in Pharmaceutical Statistics Using
SAS: A Practical Guide by Dmitrienko et al. for the expected response, Y, given a dose, X, for the four-parameter logistic model.
VI: Source: Milicer, H. and Szczotka, F., 1966, Age at Menarche inWarsaw girls in 1965, Human Biology, 38, 199–203. The data (n = 25) gives the proportion of female children reaching
menarche by a given age.
VII and VIII: Source: GraphPad Prism 6, 2014. The data (n = 27, n = 29) is sample dose response data provided by the program as an example for curve fitting analysis.
IX–XII: Source: Unpublished data from the Call laboratory, 2014. The data (n = 194, 740, 1494, 5000, respectively) comprises flies that have a resistant, normal, sensitive and normal
response to 1% isoflurane as measured in the inebriometer, respectively.
Note: All datasets are available in Table S1.
Note: All datasets are available in Table S1.

a The values of c and d are estimated in all four programs while constraining the values of a and b to the minimum and maximum values of the X variable in the data.
b Convergence achieved after starting values for c and d that were close to their respective final values were manually entered into the template.
c These values were achieved when the iteration ranges for c and d were changed in HEPB to reflect those suggested by the XY plot of the data.
d Convergence achieved after starting value for c that was close to its final value was manually entered into the program.
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as manifested by falling through the entire inebriometer column), and
the second (Y) is the response variable (e.g., the percentage of flies
that were anesthetized in a given time).
3.1. Macros-enabled Excel template with Solver

The analysis to estimate the parameters c and d and compute the
regression was done using the Excel template (available from the
authors). The instructions to enable the use of macros and Solver are
given in the Initial Instructions worksheet. The X and Y variables need
to be entered into the corresponding columns in the Regression
worksheet, following which, the graph will auto-populate with the
raw data (blue dots; Fig. 2). In this process, the user has the option to
change any or all of the four parameter values (that is, set the range
limits for a and b and starting values for c and d). A warning message
alerts the user if the range limits for a and b are set to bewithin the cor-
responding limits in the observed data. A button then allows the user to
assign a and b to the minimum and maximum values of the current
dataset.

The data are analyzed by pressing the Perform Regression button.
This runs Solver, which begins the optimization process by means of
iteration.When this process is complete, the Excel spreadsheet displays
the final Hill equation fit to the data and the values of c and d (called
EC50 and Hill slope in the template), alongwith the R2 value. The regres-
sion line is plotted in red in the graphwith the original data (Fig. 4). The
analysis on the example dataset yielded a c value (EC50) of 342.701 and
a d value (Hill slope) of 4.859, with a R2 value of 0.970. If the initial fit is
not deemed optimal by themacro (seemethods section for details), the
red regression line may shift and change as the starting values for c and
d are adjusted and the iterative process is repeated. This is normal.

3.2. HEPB

The data file (X and Y values) should be saved as a comma-delimited
(.csv) file, and opened by clicking on the File menu in HEPB and
selecting Open (Fig. 5). The two columns of data are displayed in the
memo field of the HEPB main interface for verification that the correct
file has been opened. In addition, the name of the file is displayed at
the bottom of the GUI, and remains there until another file is opened.
The user then clicks on the Analysis menu, and selects the Options sub-
menu. This opens the Analysis Options window (Fig. 6) where the user
can indicate to the program that theminimum andmaximum values of
the response variable in the data should be used as the fixed values of a
and b, respectively (see Eq. (1)), or alternatively, the user can provide
the values for the two constraints. The options for entering the values
become visible upon choosing the “No” radio button. In a similar man-
ner, the user can either accept the default options of iterating over the
range of X values for estimating c and the range of −50 to 50 for esti-
mating d, or enter the desired range for either or both parameters. The
user then chooses among five confidence levels for the prediction
band (80%, 85%, 90%, 95% and 97.5%), which have been provided
based on the algorithm by Shammas for the rapid approximation of
the critical values of the Student's t distribution (Shammas, 2009).
Finally, the user has the option of generating 500 values of the response
variable within the observed range of the explanatory variable,
based on the regression parameters estimated for the original data,
by checking the Simulate data checkbox.

http://www.ats.ucla.edu/stat/sas/faq/doseresponse.htm


Fig. 4. Screenshot of the Regressionworksheet after theHill equation isfit to the data. The values of thefinal regression line (see text) are given in the Statistics columns and also plotted in
red in the graph, and the estimated parameters (EC50 and Hill slope) along with R2 are shown.
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After all the selections have beenmade (or default options accepted),
the user then saves the options by pressing the Save Options button.
While this button saves the options selected, it also alerts the user to
any errorsmade on this page (e.g., invalid values) bymeans ofmessages
at the bottom of the page (Fig. 7). After correcting all the errors, the user
then presses the Save Options button again. This enables the Run sub-
menu in the Analysis menu in the main HEPB form, which can now be
selected. The analysis is then “Run.” The progress bar at the bottom of
the HEPB main interface tracks the status of the analysis.

The results (the estimated EC50 and Hill slope values for the regres-
sion, the cut-off values for the upper and lower limits of the prediction
band, and the R2 value) are displayed in the memo field of the main
form. These results are followed by the input values (X and Y), the
expected Y values based on the Hill equation regression (Y-hat),
the lower and upper limits of the prediction band for each X value
at the confidence level chosen by the user, and the residual (Y–Ŷ,
Fig. 8). If the option to simulate has been checked, the final output
is supplemented with the simulated values of the response variable
Fig. 5. The main window of HEP
for 500 values of the X variable, based on the Hill slope regression
on the original data. A window with the message, “Done!” indicates
the successful completion of the analysis. The output can be saved as a
.csv file to a folder of the user's choice. The default name of the file is
“Results,” which can be changed by the user. The example dataset
used above yielded values of 342.706 and 4.859 for c and d, respectively,
with a R2 value of 0.970. The GUI also allows the instructions, data or
results to be displayed and saved at any time.

As can be seen, the results from both the Excel template and the
HEPB program for the c and d variables (EC50 and Hill slope, respec-
tively) are essentially identical when using the example dataset from
the Call laboratory. In order to test if our two programs consistently
yielded similar results, we chose twelve different datasets (Supplemen-
tary Table 1) from the Call laboratory and elsewhere that varied widely
in size (6–5000 pairs of values) and exhibited a variety of curve shapes
and slopes (Fig. 9). The example dataset used in the analysis above is
dataset IX. Furthermore, we also analyzed these datasets using the nls
statistical package written by D.M. Bates and S. DebRoy in the R
B with the File menu open.



Fig. 6. The Analysis Options window is opened by clicking on the Options submenu in the Analysis menu on the main HEPB form.

Fig. 7. Screenshot of the Analysis Options window with error messages that are displayed when the Save Options button is pressed with the user having entered invalid values.
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Fig. 8. Screenshot of the window that pops up upon completion of the analysis informing the user of the successful completion of the analysis by means of the message “Done!” and the
simultaneous display of the results in the menu field of the main form of HEPB.
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programming language (R_Core_Team, 2013) and the commercial soft-
ware, GraphPad Prism 6.04 for Windows (GraphPad Software, La Jolla
California USA, www.graphpad.com), to ensure that the results of our
programs were consistent with those from commonly used, standard
software. In order to ensure appropriate comparisons among the differ-
ent programs, the values of a and b were constrained to the min and
max values in any given dataset. Table 1 shows the regression results
in terms of the values of c and d. As can be seen, the values between
the different programs are very similar, validating the use of the pro-
grams presented in this paper.

4. Discussion

The four-parameter logistic equation, also known as the Hill equa-
tion (Eq. (1)) is commonly used to model the non-linear relationship
I II
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Fig. 9.Hill equation fit to the various datasets of Table 1 used to compare the performance of the
These curves were fit with HEPB with the min and max variables (a and b in Eq. (1)) constrain
those used in Table 1.
typically seen in the association between dose and response. This
involves the estimation of four parameters (a–d) in the equation.
Here we provide two user-friendly computational methods that per-
form the analysis by constraining the values of a and b and estimating
the values of c and d by means of iteration, using the criterion of least
squares.

The macros-enabled Excel template uses Solver to estimate the pa-
rameters c and d of Eq. (1) and plots the regression line based on this
equation.Manipulation of Solver is done using VBAprogramming to au-
tomatically repeat the analysis using a different set of starting values
each time for the estimation of c and d if the regression yields an error
or if the criterion of R2 ≥ 0.5 is not met, thus ensuring quality control
without any input required from the user. This template was created
for a specific need in the Call laboratory and is being routinely used
there to assay different genetic lines of D. melanogaster for their
III IV

VII VIII

XI XII

se

Excel template andHEPBwith other programs (GraphPadPrism and anR-based program).
ed to the minimum and maximum values in the data. The roman numerals correspond to

http://www.graphpad.com
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response to various IAs, as it is very easy to use even by novice users.
Nevertheless, it is being presented in this paper as it is applicable to
analyzing any similar sigmoidal curve relationship in Excel, which is al-
most universally used. Furthermore, although the template provided
here will work satisfactorily in the majority of cases, savvy users may
modify the formulas and VBA code to suit their particular circumstances
more precisely.

However, the results provided by the Excel template are restricted to
the regression line and the estimates of c and d of Eq. (1), and do not
permit the response of the flies to the anesthetics to be classified into
sensitive, normal or resistant types — one of the major goals of the lab-
oratory. The stand-alone GUI-based Windows program HEPB does the
same analyses as above, but in addition it constructs a prediction band
at a user-defined confidence level and then determines the cut-off
values from those prediction band limits that help to objectively distin-
guish among sensitive, normal and resistant phenotypes. These values
also enable researchers to determine rapidly and objectively if experi-
mental values are statistically different from their control ranges in
their assays. As far as we are aware, HEPB is the only program that
does the four-parameter logistic regression, constructs the prediction
band for the data, and provides objective, empirically determined cut-
off values to distinguish among response phenotypes. Furthermore, it
optionally generates 500 simulated values of the response variable
within the range of the observed dose variable. This can be useful partic-
ularly when the sample size is limited and the user is unable to visualize
the dose–response behavior in the data.

While it might seem redundant to provide these two different ave-
nues for performing this analysis, we believe that each program fills a
niche within the laboratory. Most users will find the Excel template
straightforward and will be comfortable with its interface. Additionally,
it can interfacewith otherMicrosoft Office software, like Access, to store
data in a laboratory database, if needed. There are other sources that
also involve the use of Solver to fit non-linear equations (Harris,
1998). In addition, there are instructions available in several websites
on the internet. However, none of these sources provide a template
such as the one presented here that not only makes it easy for the unin-
formed user (who merely needs to enter the data in the template) but
more importantly, has been programmed to auto-check for the good-
ness of fit and redo the analysis with sets of alternative starting values
for c and d in Eq. (1) until the goodness of fit criterion is met. It has
been tested with a number of datasets that span a wide range of rela-
tionships between the dose and response and sample size (Fig. 9), and
has performed remarkably well (Table 1). A further advantage of our
template is that since it is being provided with permission to modify
the code to accommodate particularly intractable datasets. In such
cases, the non-savvy user would simply need to redo the regression
after manually adjusting the four variables. However, after extensive
testing done with a variety of datasets, we are confident that the need
for manual intervention or code-modification will be rare; such an
intervention was necessary in only one case (dataset V) among the
datasets used in Table S1, and several of these datasets were chosen to
be out of the ordinary.

As mentioned before, the Excel file, while giving the user a very easy
to use and useful template, does not provide the user with a means to
objectively screen new experimental strains to classify them as sensi-
tive, normal or resistant with respect to the response to the drug used.
Therefore, HEPB is being presented as a stand-alone program that, in
addition to performing this analysis on any set of data, provides the pre-
diction band based on a user-defined level of confidence and the bound-
ary values that help distinguish among sensitive, normal and resistant
phenotypes. It also has the option to simulate data.

In order to evaluate the robustness and consistency of the two
programs, we analyzed diverse datasets from the Call laboratory and
elsewhere with very different dose–response relationships (Fig. 9)
using both programs. In addition, we evaluated the accuracy of the
two programs by comparing the output to that from Prism and an R-
based program. The results, presented in Table 1, show that the output
from the macros-enabled Excel template and HEPB are robust and con-
sistentwith each other andwith other software commonly used for this
purpose. These easy to use programs are freely available by contacting
the authors.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.vascn.2014.08.006.
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