Finite index supergroups and subgroups of torsionfree abelian groups of rank two

Katsuya Eda ${ }^{\text {a,* }}$, Vlasta Matijević ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
${ }^{\mathrm{b}}$ Department of Mathematics, University of Split, N. Tesle 12, 21000 Split, Croatia
Received 8 June 2004
Available online 4 March 2008
Communicated by Michel Broué

Abstract

Every torsionfree abelian group A of rank two is a subgroup of $\mathbb{Q} \oplus \mathbb{Q}$ and is expressed by a direct limit of free abelian groups of rank two with lower diagonal integer-valued 2×2-matrices as the bonding maps. Using these direct systems we classify all subgroups of $\mathbb{Q} \oplus \mathbb{Q}$ which are finite index supergroups of A or finite index subgroups of A. Using this classification we prove that for each prime p there exists a torsionfree abelian group A satisfying the following, where $A \leqslant \mathbb{Q} \oplus \mathbb{Q}$ and all supergroups are subgroups of $\mathbb{Q} \oplus \mathbb{Q}$: (1) for each natural number s there are $\sum_{q \mid s, \operatorname{gcd}(p, q)=1} q s$-index supergroups and also $\sum_{q \mid s, \operatorname{gcd}(p, q)=1} q$ s-index subgroups; (2) each pair of distinct s-index supergroups are non-isomorphic and each pair of distinct s-index subgroups are non-isomorphic.

© 2008 Elsevier Inc. All rights reserved.
Keywords: Torsionfree abelian group; Rank two; Finite index; Subgroup; Supergroup

[^0]
1. Introduction and main results

This investigation originally started from a classification of finite-sheeted covering maps on connected compact abelian groups. When groups are 1-dimensional, a classification is fairly easy [2], which is reduced in principle to Baer's classification of torsionfree abelian groups of rank one. As a next step we have investigated the 2-dimensional case, which will appear in another paper [4]. In that paper we proved the following for a connected compact group Y :
(a) Every finite-sheeted covering map from a connected space over Y is equivalent to a covering homomorphism from a compact, connected group. Moreover, if Y is abelian, then the domain of the homomorphism is abelian.
(b) Let $f: X \rightarrow Y$ and $f^{\prime}: X^{\prime} \rightarrow Y$ be finite-sheeted covering homomorphisms over Y. Then f and f^{\prime} are equivalent as covering maps if and only if the two homomorphisms are equivalent as topological homomorphisms.

Accordingly we can reduce all things to the category of compact abelian groups, and then, by the Pontrjagin duality, it reduces further to an investigation of the equivalence class of finite index supergroups of torsionfree abelian groups of rank two. Here, two supergroups B and C of a group A are equivalent, if there exists an isomorphism between B and C which fixes every element of A. When B and C are finite index supergroups of A, the embedding of A to the direct sum of two copies of the rational group $\mathbb{Q} \oplus \mathbb{Q}$ induces embeddings of B and C to $\mathbb{Q} \oplus \mathbb{Q}$ and then equivalent supergroups B and C are mapped onto the same subgroup of $\mathbb{Q} \oplus \mathbb{Q}$. From now on, when we consider a supergroup of a torsionfree abelian group A of rank two, we assume that A is embedded into $\mathbb{Q} \oplus \mathbb{Q}$ and the supergroup is a subgroup of $\mathbb{Q} \oplus \mathbb{Q}$.

Every torsionfree abelian group A of rank two is presented by $A=\underline{\lim }\left(A_{n}, g_{n}: n<\omega\right)$ where A_{n} 's are copies of $\mathbb{Z} \oplus \mathbb{Z}$ and $g_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \alpha_{n} & t_{n}\end{array}\right] \in M_{2}(\mathbb{Z})$ such that $p_{n}, t_{n}>0$ and $0 \leqslant \alpha_{n}<p_{n}$. For a natural number s let F_{s} be the set of all positive integers q satisfying $\operatorname{gcd}\left(p_{n}, q\right)=1$ for almost all n and that there exists q_{1} such that $q q_{1} r=s$ and
(a) $\operatorname{gcd}\left(p_{n}, q_{1}\right)=\operatorname{gcd}\left(t_{n}, r\right)=1$ for almost all n;
(b) if $q_{1}>1$, the $\operatorname{gcd}\left(t_{n}, q_{1}\right) \neq 1$ for infinitely many n 's.

Under the above presentation of A we prove the following:
(1) For a natural number s, the number of distinct s-index supergroups of A is $\sum_{q \in F_{s}} q$ and the number of s-index subgroups of A is also $\sum_{q \in F_{s}} q$.
(2) Let $\left(\alpha_{n}: n<\omega\right)$ be semi-periodic and p a positive integer. If $p_{n}=p, t_{n}=1$ for almost all n or if $p_{n}=t_{n}=p$ for almost all n, then finite index supergroups of A are isomorphic to A, and all finite index subgroups of A are also isomorphic to A (Corollary 6.7).
(3) Let p be a prime and $p_{n}=p, t_{n}=1$ for every n and q be a natural number with $q>1$ and $\operatorname{gcd}(p, q)=1$. Let a p-adic integer $\sum_{n=0}^{\infty} \alpha_{n} p^{n}$ is not quadratic over \mathbb{Q}. Then, for each natural number s, distinct s-index supergroups of A are non-isomorphic. Moreover, distinct s-index subgroups of A are non-isomorphic (Theorem 5.2).

A restricted form of (3) was asserted in our former paper [3].
In the second section of the present paper we explain how to express a rank 2 torsionfree abelian group, its finite index supergroups, and its finite index subgroups by a sequence of
integer-valued matrices. In Section 3 we define super-admissible sequences and sub-admissible sequences and prove a classification theorem of the finite index supergroups and the subgroups of A. In Section 4 we concentrate to a certain kind of rank 2 torsionfree abelian groups and prove Theorem 5.2. In Section 5 we investigate about other groups of this kind.

Let ω denote the set of all non-negative integers and also denote the least infinite ordinal. Hence $n \in \omega$ and $n<\omega$ have the same meaning. Let \mathbb{N} be the set of positive integers, i.e. $\mathbb{N} \cup\{0\}=\omega$. When we use the word "integer" without the adjective " p-adic," it always means rational integer.

The major work of rank 2 torsionfree abelian groups is the work of Beaumont and Pierce [1]. They did not present groups in a particular manner, but they introduced invariants for subgroups of $\mathbb{Q} \oplus \mathbb{Q}$ and using them they showed a complete system of the invariants for the quasi-isomorphism classes of rank 2 torsionfree abelian groups. Two abelian groups are quasiisomorphic, if they have finite index isomorphic subgroups. Therefore, our approach is related to the isomorphism problem of determining whether two given quasi-isomorphic groups are isomorphic. On the other hand, recent works by logicians indicate that there is no complete answer to this problem [7,8,10], because the equivalence introduced in [1] has the same complexity level as that of the isomorphism types of the rank 1 torsionfree abelian groups, but the complexity level of the isomorphism types of the rank 2 torsionfree abelian groups is strictly harder than that of the rank 1 ones. However, it is still necessary to clarify relationship between our approach using direct systems and the invariants for the quasi-isomorphism classes. We will mention this slightly in Section 6.

2. Putting into limit systems

Definition 2.1. Let $M_{n}(\mathbb{Z})$ be the set of integer-valued $n \times n$-matrices and $C M_{n}(\mathbb{Z})$ be the set of $n \times n$-matrices $c=\left[c_{i j}\right] \in M_{n}(\mathbb{Z})$ such that $c_{i i}>0, c_{i j}=0$ for $j<i$ and $0 \leqslant c_{i j}<c_{i i}$ for $j>i$. Similarly let $C M_{n}^{*}(\mathbb{Z})$ be the set of $c=\left[c_{i j}\right] \in M_{n}(\mathbb{Z})$ such that $c_{i i}>0, c_{i j}=0$ for $j<i$ and $0 \leqslant c_{i j}<c_{j j}$ for $i<j$. For $f \in M_{n}(\mathbb{Z})$ let ${ }^{t} f$ denote the transposed matrix of f. An element of a free abelian group of rank n is denoted by a column vector and so matrices act from the left.

The notation "CMn" comes from covering homomorphisms [4].

Lemma 2.2. For each regular matrix $h \in M_{n}(\mathbb{Z})$ there exist unique $c \in C M_{n}(\mathbb{Z})$ and $f \in G L_{n}(\mathbb{Z})$ such that $h=c f$. Consequently there exist unique $c \in C M_{n}(\mathbb{Z})$ and $f \in G L_{n}(\mathbb{Z})$ such that $h=f^{t} c$.

Similarly, there exist unique $c \in C M_{n}^{*}(\mathbb{Z})$ and $f \in G L_{n}(\mathbb{Z})$ such that $h=f c$.
Proof. Starting from h we get such a c by successive use of elementary column operations. Hence, the existence of c and f is clear. Considering h and c to be homomorphisms mapping column vectors, we have $\operatorname{Im}(c)=\operatorname{Im}(h)$. On the other hand, if $\operatorname{Im}(c)=\operatorname{Im}\left(c^{\prime}\right)$ for $c, c^{\prime} \in C M_{n}(\mathbb{Z})$, then $c=c^{\prime}$. Therefore the uniqueness of c is clear and consequently f is also unique. Apply this for ${ }^{t} h$, then we have the second statement.

Similarly, considering successive use of elementary row operations as the preceding argument, we see the existence of $c \in C M_{n}^{*}(\mathbb{Z})$ and $f \in G L_{n}(\mathbb{Z})$ such that $h=f c$.

Now the next lemma is clear.

Lemma 2.3. Let B be a free abelian group of rank n and let $h: \mathbb{Z}^{n} \rightarrow B$ be an injective homomorphism. Then there exists a unique base for B such that h is expressed as a matrix c such that ${ }^{t} c$ is in $C M_{n}(\mathbb{Z})$. Moreover the matrix c is unique.

Similarly let C be a free abelian group of rank n and let $h: C \rightarrow \mathbb{Z}^{n}$ be an injective homomorphism. Then there exists a unique base for C such that h is expressed as a matrix c in $C M_{n}^{*}(\mathbb{Z})$. Moreover the matrix c is unique.

Lemma 2.4. Let A, X and Y be subgroups of a group B. Then $X+Y=\{x+y: x \in X$, $y \in Y\}$ is a subgroup of B. If $A \cap X \subseteq Y \subseteq A$, then $(X+Y) \cap A=Y$. If $Y \subseteq A \subseteq X+Y$, then $(X \cap A)+Y=A$.

Proof. The first statement is clear. To prove the second one it suffices to show $(X+Y) \cap A \subseteq$ Y. Let $x \in X, y \in Y$ and $x+y=a \in A$. Then $x=a-y \in A$ and hence $x \in A \cap X \subseteq Y$, which implies $x+y \in Y$. To show the third one, let $a \in A$. We have $x \in X$ and $y \in Y$ such that $a=x+y$. Since $x=a-y \in A, a \in(X \cap A)+Y$.

For an abelian group A let $A^{*}=\operatorname{Hom}(A, \mathbb{Z})$. Let A be a subgroup of B such that B / A is finite. Then the correspondence $h \mapsto h \mid A$ for $h \in B^{*}$ is a injection. Hence we identify B^{*} with a subgroup of A^{*}.

Lemma 2.5. Let B be a finitely generated free abelian group and A its finite index subgroup. Then B^{*} is a finite index subgroup of A^{*}.

Proof. We have an exact sequence

$$
0 \rightarrow(B / A)^{*} \rightarrow B^{*} \rightarrow A^{*} \rightarrow \operatorname{Ext}(B / A, \mathbb{Z}) \rightarrow \operatorname{Ext}(B, \mathbb{Z})
$$

Since $(B / A)^{*}=0, \operatorname{Ext}(B / A, \mathbb{Z}) \cong B / A$ and $\operatorname{Ext}(B, \mathbb{Z})=0$, we have the conclusion.
Lemma 2.6. Let B_{2} be a finitely generated free abelian group and B_{1}, A_{1}, A_{2} be subgroups such that $A_{2}+B_{1}=B_{2}$ and $A_{2} \cap B_{1}=A_{1}$ and B_{2} / A_{1} is finite. Then $A_{2}^{*}+B_{1}^{*}=A_{1}^{*}$ and $A_{2}^{*} \cap B_{1}^{*}=B_{2}^{*}$ under the above identification.

Proof. We first show $A_{2}^{*} \cap B_{1}^{*}=B_{2}^{*}$. Since $B_{2}^{*} \leqslant A_{2}^{*} \cap B_{1}^{*}$, it suffices to show $A_{2}^{*} \cap B_{1}^{*} \leqslant B_{2}^{*}$. If $h \in A_{1}^{*}$ belongs to $A_{2}^{*} \cap B_{1}^{*}$, then we have $h_{1} \in A_{2}^{*}$ and $h_{2} \in B_{1}^{*}$ such that $h_{1}\left|A_{1}=h_{2}\right| A_{1}=h$. Define $\bar{h}(a+b)=h_{1}(a)+h_{2}(b)$ for $a \in A_{2}$ and $b \in B_{1}$. Then \bar{h} is well defined and $\bar{h} \in B_{2}^{*}$.

To show $A_{2}^{*}+B_{1}^{*}=A_{1}^{*}$ by contradiction, suppose the negation. Since $A_{2}^{*}+B_{1}^{*} \leqslant A_{1}^{*}$ and A_{1}^{*} is free and $A_{2}^{*}+B_{1}^{*}$ is a finite index subgroup of A_{1}^{*} by Lemma 2.5 , we have $h: A_{2}^{*}+B_{1}^{*} \rightarrow \mathbb{Z}$ which does not extend on A_{1}^{*}. We apply the preceding result to $A_{2}^{*}+B_{1}^{*}$. Then we have $\left(A_{2}^{*}+B_{1}^{*}\right)^{*}=$ $A_{2}^{* *} \cap B_{1}^{* *}$. Now h belongs to $A_{2}^{* *} \cap B_{1}^{* *}$, which is naturally isomorphic to $A_{2} \cap B_{1}=A_{1}$. Hence h can extend on A_{1}^{*}, which is a contradiction.

Lemma 2.7. Let B be a torsionfree abelian group of rank m and A be a subgroup of finite index. Then the following hold.
(1) For each $n \in \omega$, let A_{n} be free abelian groups of rank m such that $A_{n} \subseteq A_{n+1}$ and $A=\bigcup_{n<\omega} A_{n}$. Then there exist $n_{0}<\omega$ and free abelian groups B_{n} of rank m such that $A_{n} \subseteq B_{n} \subseteq B$ and $B_{n} / A_{n} \simeq B / A$ for $n \geqslant n_{0}$ and $B=\bigcup_{n \geqslant n_{0}} B_{n}$.
(2) For each $n \in \omega$, let B_{n} be free abelian groups of rank m such that $B_{n} \subseteq B_{n+1}$ and $B=\bigcup_{n<\omega} B_{n}$. Then there exist $n_{0}<\omega$ such that $B_{n} /\left(B_{n} \cap A\right) \simeq B / A$ for $n \geqslant n_{0}$. Consequently each $B_{n} \cap A$ is a free abelian group of rank m and $A=\bigcup_{n \geqslant n_{0}}\left(B_{n} \cap A\right)$.

Proof. (1) Choose a finite subset F of B so that $\langle A \cup F\rangle=B$. We have n_{0} such that $\langle F\rangle \cap A \subseteq A_{n_{0}}$. Let $B_{n}=\langle F\rangle+A_{n}$. Then $B_{n} \cap A=A_{n}$ for $n \geqslant n_{0}$ by Lemma 2.4. Hence $B_{n} / A_{n} \simeq B / A$.
(2) Choose a finite subset F of B so that $\langle A \cup F\rangle=B$. We have n_{0} such that $\langle F\rangle \subseteq B_{n_{0}}$. Then $B_{n} /\left(B_{n} \cap A\right) \simeq B / A$ for $n \geqslant n_{0}$. The other statements are clear.

Definition 2.8. When A is a subgroup of a group B, we call B as a supergroup of A. When A is a finite index subgroup of a group B, we say B a finite index supergroup of A.

When we express a homomorphism by a matrix, we assume that an element of the domain is expressed by a column vector and the matrix acts from the left. We frequently identify matrices and homomorphisms between free abelian groups of finite rank. By Lemma 2.2 and an easy induction we have

Lemma 2.9. Let A be a torsionfree abelian group of rank 2. Then there exist lower diagonal matrices $f_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \alpha_{n} & t_{n}\end{array}\right] \in M_{2}(\mathbb{Z})$ such that $p_{n}, t_{n}>0$ and $0 \leqslant \alpha_{n}<p_{n}$, i.e. ${ }^{t} f_{n} \in C M_{2}(\mathbb{Z})$, and the direct limit $\xrightarrow{\lim }\left(A_{n}, f_{n}: n<\omega\right)$ is isomorphic to A where each A_{n} is a copy of $\mathbb{Z} \oplus \mathbb{Z}$.

Lemma 2.10. Let A be the direct limit $\underset{\longrightarrow}{\lim }\left(A_{n}, f_{n}: n<\omega\right)$ given in Lemma 2.9. If B is a torsionfree abelian group which contains A as a finite index subgroup, then there exist $n_{0}<\omega$ and lower diagonal matrices $g_{n}=\left[\begin{array}{cc}p_{n}^{\prime} & 0 \\ \beta_{n} & t_{n}^{\prime}\end{array}\right] \in M_{2}(\mathbb{Z})$ and $h_{n}=\left[\begin{array}{cc}q_{n} & 0 \\ c_{n} & r_{n}\end{array}\right]$ for $n \geqslant n_{0}$ which satisfy the following:
(1) $p_{n}^{\prime}, t_{n}^{\prime}, q_{n}, r_{n}>0$ and $0 \leqslant c_{n}<q_{n}$;
(2) the direct limit $\xrightarrow{\lim }\left(B_{n}, g_{n}: n<\omega\right)$ is isomorphic to B where B_{n} 's are copies of $\mathbb{Z} \oplus \mathbb{Z}$;
(3) the diagram

commutes and $\operatorname{Im}\left(g_{n}\right)+\operatorname{Im}\left(h_{n+1}\right)=B_{n+1}$ and $\operatorname{Im}\left(g_{n}\right) \cap \operatorname{Im}\left(h_{n+1}\right)=\operatorname{Im}\left(h_{n+1} \circ f_{n}\right)=$ $\operatorname{Im}\left(g_{n} \circ h_{n}\right) ;$
(4) $B / A \simeq B_{n} / \operatorname{Im}\left(h_{n}\right)$ for each n.

Proof. Since each f_{n} is injective, we may assume that A_{n} is a subgroup of A. Then we have $n_{0}<\omega$ and subgroups B_{n}^{\prime} of B such that $B_{n}^{\prime} / A_{n} \simeq B / A$ for $n \geqslant n_{0}$, by Lemma 2.7(1). Since each B_{n}^{\prime} is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$, we fix a basis for each B_{n}^{\prime} and express the inclusion map from A_{n} to B_{n}^{\prime} by a matrix $h_{n}^{\prime} \in M_{2}(\mathbb{Z})$. For each h_{n}^{\prime} there exist an invertible matrix $i_{n} \in M_{2}(\mathbb{Z})$ and $q_{n}, r_{n}>0$ and $0 \leqslant c_{n}<q_{n}$ such that for $n \geqslant n_{0}, i_{n} h_{n}^{\prime}=\left[\begin{array}{cc}q_{n} & 0 \\ c_{n} & r_{n}\end{array}\right]$. We denote the inclusion
map from B_{n}^{\prime} to B_{n+1}^{\prime} by g_{n}^{\prime}. For each n, let B_{n} denote the range of i_{n}, then $B_{n} \simeq \mathbb{Z} \oplus \mathbb{Z}$. Further, let $h_{n}=i_{n} h_{n}^{\prime}$ and $g_{n}=i_{n+1} g_{n}^{\prime} i_{n}^{-1}$. Since each i_{n} is invertible in $M_{2}(\mathbb{Z}), g_{n} \in M_{2}(\mathbb{Z})$ and $\xrightarrow{\lim }\left(B_{n}, g_{n}: n<\omega\right)$ is isomorphic to $\xrightarrow{\lim }\left(B_{n}^{\prime}, g_{n}^{\prime}: n<\omega\right)=B$.

By Lemma 2.6 we have an inverse system which is dual to the direct system in Lemma 2.10.

commutes and $\operatorname{Im}\left(f_{n}^{*}\right)+\operatorname{Im}\left(h_{n}^{*}\right)=A_{n}^{*}$ and $\operatorname{Im}\left(f_{n}^{*}\right) \cap \operatorname{Im}\left(h_{n}^{*}\right)=\operatorname{Im}\left(f_{n}^{*} \cdot h_{n+1}^{*}\right)=\operatorname{Im}\left(h_{n}^{*} \cdot g_{n}^{*}\right)$.
Since the dual matrix is given by transposed matrix, we have

$$
f_{n}^{*}=\left[\begin{array}{cc}
p_{n} & \alpha_{n} \\
0 & t_{n}
\end{array}\right], \quad g_{n}^{*}=\left[\begin{array}{cc}
p_{n}^{\prime} & \beta_{n} \\
0 & t_{n}^{\prime}
\end{array}\right] \quad \text { and } \quad h_{n}^{*}=\left[\begin{array}{cc}
q_{n} & c_{n} \\
0 & r_{n}
\end{array}\right] \quad \text { for } n<\omega
$$

Lemma 2.11. For $n<\omega$, let $f_{n}, g_{n}, h_{n} \in M_{2}(\mathbb{Z})$ be given by $f_{n}=\left[\begin{array}{cc}p_{n} \\ 0 & \alpha_{n}\end{array}\right], h_{n}=\left[\begin{array}{cc}q_{n} & c_{n} \\ 0 & r_{n}\end{array}\right], h_{n+1}=$ $\left[\begin{array}{cc}q_{n+1} & c_{n+1} \\ 0 & r_{n+1}\end{array}\right]$ such that

- $p_{n}, t_{n}, q_{n}, r_{n}, q_{n+1}, r_{n+1}>0$;
- $0 \leqslant \alpha_{n}$ and $h_{n}, h_{n+1} \in C M_{2}(\mathbb{Z})$;
- $\operatorname{Im}\left(h_{n}\right)+\operatorname{Im}\left(f_{n}\right)=\mathbb{Z} \oplus \mathbb{Z}$ and $\operatorname{Im}\left(h_{n}\right) \cap \operatorname{Im}\left(f_{n}\right)=\operatorname{Im}\left(f_{n} h_{n+1}\right)=\operatorname{Im}\left(h_{n} g_{n}\right)$.

Let $d=\operatorname{gcd}\left(p_{n}, q_{n}\right)$ and $p_{n}=p^{*} d$ and $q_{n}=q^{*} d$.
Then $\operatorname{gcd}\left(t_{n}, r_{n}\right)=\operatorname{gcd}\left(p_{n}, q_{n}, c_{n} t_{n}-r_{n} \alpha_{n}\right)=1, q_{n}=q_{n+1} d, r_{n} d=r_{n+1}$ and $q^{*}=q_{n+1}$. Consequently there exist q and r such that for sufficiently large $n, q_{n}=q, r_{n}=r, \operatorname{gcd}\left(p_{n}, q\right)=$ $\operatorname{gcd}\left(t_{n}, r\right)=1$ and $g_{n}=\left[\begin{array}{c}p_{n}\left(p_{n} c_{n+1}+\alpha_{n} r-c_{n} t_{n}\right) q^{-1} \\ 0\end{array} t_{n}\right.$.

Proof. By the assumption $\operatorname{Im}\left(h_{n}\right)+\operatorname{Im}\left(f_{n}\right)=\mathbb{Z} \oplus \mathbb{Z}$, we have $\operatorname{gcd}\left(t_{n}, r_{n}\right)=\operatorname{gcd}\left(p_{n}, q_{n}, c_{n} t_{n}-\right.$ $\left.r_{n} \alpha_{n}\right)=1$. We remark that $\operatorname{gcd}\left(d, c_{n} t_{n}-r_{n} \alpha_{n}\right)=1$. By the other assumption $\operatorname{Im}\left(h_{n}\right) \cap \operatorname{Im}\left(f_{n}\right)=$ $\operatorname{Im}\left(f_{n} h_{n+1}\right)=\operatorname{Im}\left(h_{n} g_{n}\right)$, we have $\mathbb{Z} \oplus \mathbb{Z} / \operatorname{Im}\left(h_{n}\right) \simeq \operatorname{Im}\left(f_{n}\right) / \operatorname{Im}\left(f_{n} h_{n+1}\right) \simeq \mathbb{Z} \oplus \mathbb{Z} / \operatorname{Im}\left(h_{n+1}\right)$ and hence $q_{n} r_{n}=q_{n+1} r_{n+1}$. Since

$$
\begin{aligned}
g_{n} & =h_{n}^{-1} f_{n} h_{n+1} \\
& =\left[\begin{array}{cc}
q_{n}^{-1} & -c_{n} q_{n}^{-1} r_{n}^{-1} \\
0 & r_{n}^{-1}
\end{array}\right]\left[\begin{array}{cc}
p_{n} q_{n+1} & p_{n} c_{n+1}+\alpha_{n} r_{n+1} \\
0 & t_{n} r_{n+1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
p_{n} q_{n}^{-1} q_{n+1} & \left(p_{n} c_{n}+\alpha_{n} r_{n+1}-c_{n} r_{n}^{-1} r_{n+1} t_{n}\right) q_{n}^{-1} \\
0 & t_{n} r_{n}^{-1} r_{n+1}
\end{array}\right] \in M_{2}(\mathbb{Z}),
\end{aligned}
$$

we have $r_{n}\left|r_{n+1} t_{n}, q_{n}\right| q_{n+1} p_{n}$ and $\left(p_{n} c_{n}+\alpha_{n} r_{n+1}-c_{n} r_{n}^{-1} r_{n+1} t_{n}\right) q_{n}^{-1} \in \mathbb{Z}$. Since $\operatorname{gcd}\left(r_{n}, t_{n}\right)=1$ and $\operatorname{gcd}\left(p^{*}, q^{*}\right)=1$, there are positive integers k, k^{\prime} such that $r_{n} k=r_{n+1}$ and $q^{*} k^{\prime}=q_{n+1}$. We have $q^{*} d r_{n}=q_{n} r_{n}=q_{n+1} r_{n+1}=q^{*} k^{\prime} k r_{n}$ and consequently $d=k k^{\prime}$. We have

$$
\begin{aligned}
\left(p_{n} c_{n}+\alpha_{n} r_{n+1}-c_{n} r_{n}^{-1} r_{n+1} t_{n}\right) q_{n}^{-1} & =\left(p_{n} c_{n}+\alpha_{n} r_{n} k-c_{n} t_{n} k\right) q_{n}^{-1} \\
& =\left(p_{n} c_{n}+\left(\alpha_{n} r_{n}-c_{n} t_{n}\right) k\right) q_{n}^{-1}
\end{aligned}
$$

Since $d \mid q_{n}$ and $d\left|p_{n}, d\right|\left(\alpha_{n} r_{n}-c_{n} t_{n}\right) k$. Hence $\operatorname{gcd}\left(d, c_{n} t_{n}-r_{n} \alpha_{n}\right)=1$. This implies $d \mid k$, which implies $d=k$ and $k^{\prime}=1$. Now we have $q_{n}=q_{n+1} d, r_{n} d=r_{n+1}$ and $q^{*}=q_{n+1}$.

Since $q_{n} \geqslant q_{n+1}>0$, there exists n_{0} such that $d=\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$ for each $n \geqslant n_{0}$. That is $q_{n}=q_{n+1}=q$ and $r_{n}=r_{n+1}=r$. This completes the proof.

In Lemma 2.10 we are interested in finite index supergroups. We use Lemma 2.7 to analyze finite index subgroups.

Lemma 2.12. Let A be the direct limit $\xrightarrow{\lim }\left(A_{n}, f_{n}: n<\omega\right)$ given in Lemma 2.9. If C is a finite index subgroup of A, then there exist $n_{0}<\omega$ and lower diagonal matrices $e_{n}=\left[\begin{array}{cc}p_{n}^{\prime} & 0 \\ \beta_{n} & t_{n}^{\prime}\end{array}\right] \in M_{2}(\mathbb{Z})$ and $h_{n}=\left[\begin{array}{cc}q_{n} & 0 \\ c_{n} & r_{n}\end{array}\right]$ for $n \geqslant n_{0}$ which satisfy the following:
(1) $p_{n}^{\prime}, t_{n}^{\prime}, q_{n}, r_{n}>0$ and $0 \leqslant c_{n}<r_{n}$;
(2) the direct limit $\xrightarrow{\lim }\left(C_{n}, e_{n}: n<\omega\right)$ is isomorphic to C where C_{n} 's are copies of $\mathbb{Z} \oplus \mathbb{Z}$;
(3) the diagram

commutes and $\operatorname{Im}\left(f_{n}\right)+\operatorname{Im}\left(h_{n+1}\right)=A_{n+1}$ and $\operatorname{Im}\left(f_{n}\right) \cap \operatorname{Im}\left(h_{n+1}\right)=\operatorname{Im}\left(h_{n+1} \cdot e_{n}\right)=$ $\operatorname{Im}\left(f_{n} \cdot h_{n}\right)$;
(4) $A / C \simeq A_{n} / \operatorname{Im}\left(h_{n}\right)$ for every $n \leqslant n_{0}$.

Proof. Since f_{n} 's are injective, we may assume that A_{n} 's are subgroups of A. Then we have $n_{0}<\omega$ and subgroups C_{n}^{\prime} of C such that $A_{n} / C_{n}^{\prime} \simeq A / C$ for $n \geqslant n_{0}$, by Lemma 2.7(2). Since C_{n}^{\prime} 's are isomorphic to $\mathbb{Z} \oplus \mathbb{Z}$, we fix a base for each C_{n}^{\prime} and express the inclusion map from C_{n}^{\prime} to A_{n} by a matrix $h_{n}^{\prime} \in M_{2}(\mathbb{Z})$. For each h_{n}^{\prime} there exist an invertible matrix $i_{n} \in M_{2}(\mathbb{Z})$, integers $q_{n}, r_{n}>0$, and $0 \leqslant c_{n}<r_{n}$ such that for $n \geqslant n_{0}, h_{n}^{\prime} i_{n}=\left[\begin{array}{cc}q_{n} & 0 \\ c_{n} & r_{n}\end{array}\right]$. We denote the inclusion map from C_{n}^{\prime} to C_{n+1}^{\prime} by e_{n}^{\prime}. Let C_{n} be a copy of $\mathbb{Z} \oplus \mathbb{Z}$ which is the domain of i_{n} and $h_{n}=h_{n}^{\prime} i_{n}$ and $e_{n}=i_{n+1} e_{n}^{\prime} i_{n}^{-1}$. Since i_{n} 's are invertible in $M_{2}(\mathbb{Z}), e_{n} \in M_{2}(\mathbb{Z})$ and $\xrightarrow{\lim }\left(C_{n}, e_{n}: n<\omega\right)$ is isomorphic to $\xrightarrow{\lim }\left(C_{n}^{\prime}, e_{n}^{\prime}: n<\omega\right)=C$.

Lemma 2.13. Let $f_{n}, e_{n}, h_{n}, h_{n+1} \in M_{2}(\mathbb{Z})$ be given as $f_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \alpha_{n} & t_{n}\end{array}\right], h_{n}=\left[\begin{array}{cc}q_{n} & 0 \\ c_{n} & r_{n}\end{array}\right]$ and $h_{n+1}=$ $\left[\begin{array}{cc}q_{n+1} & 0 \\ c_{n+1} & r_{n+1}\end{array}\right]$ such that

- $p_{n}, t_{n}, q_{n}, r_{n}, q_{n+1}, r_{n+1}>0$;
- $0 \leqslant \alpha_{n}$ and $h_{n}, h_{n+1} \in C M_{2}^{*}(\mathbb{Z})$;
- $\operatorname{Im}\left(h_{n+1}\right)+\operatorname{Im}\left(f_{n}\right)=\mathbb{Z} \oplus \mathbb{Z}$ and $\operatorname{Im}\left(h_{n+1}\right) \cap \operatorname{Im}\left(f_{n}\right)=\operatorname{Im}\left(f_{n} h_{n}\right)=\operatorname{Im}\left(h_{n+1} e_{n}\right)$.

Let $d=\operatorname{gcd}\left(t_{n}, r_{n+1}\right)$ and $t_{n}=t^{*} d$ and $r_{n+1}=r^{*} d$.
Then $\operatorname{gcd}\left(p_{n}, q_{n+1}\right)=\operatorname{gcd}\left(t_{n}, r_{n+1}, c_{n+1} p_{n}-q_{n+1} \alpha_{n}\right)=1, q_{n+1} d=q_{n}, r_{n+1}=r_{n} d$ and $r^{*}=r_{n}$. Consequently, there exist q and r such that for sufficiently large n we have $q_{n}=q$, $r_{n}=r, \operatorname{gcd}\left(p_{n}, q\right)=\operatorname{gcd}\left(t_{n}, r\right)=1$ and $e_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \left(-p_{n} c_{n+1}+\alpha_{n} q+c_{n} t_{n}\right) r^{-1} & t_{n}\end{array}\right]$.

Proof. Since the proof is similar to that of Lemma 2.11, we omit the reasoning and only indicate the changes for e_{n}, k, and k^{\prime}. By the fact

$$
\begin{aligned}
e_{n} & =h_{n+1}^{-1} f_{n} h_{n} \\
& =\left[\begin{array}{cc}
q_{n+1}^{-1} & 0 \\
-c_{n+1} q_{n+1}^{-1} r_{n+1}^{-1} & r_{n+1}^{-1}
\end{array}\right]\left[\begin{array}{cc}
p_{n} q_{n} & 0 \\
q_{n} \alpha_{n}+c_{n} t_{n} & t_{n} r_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
p_{n} q_{n} q_{n+1}^{-1} \\
\left(-p_{n} c_{n+1} q_{n} q_{n+1}+q_{n} \alpha_{n}+c_{n} t_{n}\right) r_{n+1}^{-1} & t_{n} r_{n} r_{n+1}^{-1}
\end{array}\right] \in M_{2}(\mathbb{Z}),
\end{aligned}
$$

we have $q_{n+1} \mid q_{n}$ and $r^{*} \mid r_{n}$. Let $q_{n+1} k=q_{n}$ and $r^{*} k^{\prime}=r_{n}$. The equation $q_{n} r_{n}=q_{n+1} r_{n+1}$ implies $d=k k^{\prime}$ as before. The fact $r_{n+1} \mid-p_{n} c_{n+1} q_{n} q_{n+1}+q_{n} \alpha_{n}+c_{n} t_{n}$ implies $d \mid k$ and $k^{\prime}=1$ also as before .

3. Classification of finite index supergroups and subgroups

Using results in the previous section we classify finite index supergroups and subgroups of a torsionfree abelian group of rank two.

Definition 3.1. Let A be a torsionfree abelian group of rank two which is expressed as in Lemma 2.9, that is, $A=\underline{\longrightarrow}\left(A_{n}, f_{n}: n<\omega\right), A_{n}$'s are copies of $\mathbb{Z} \oplus \mathbb{Z}$ and $f_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \alpha_{n} & t_{n}\end{array}\right] \in M_{2}(\mathbb{Z})$ such that $p_{n}, t_{n}>0$ and $\overrightarrow{0 \leqslant} \alpha_{n}<p_{n}$.

Assume $\operatorname{gcd}\left(p_{n}, q\right)=\operatorname{gcd}\left(t_{n}, r\right)=1$ for sufficiently large n. A sequence $\mathbf{c}_{q r}$ is super-admissible, if

- $\mathbf{c}_{q r}:\left[n_{0}, \omega\right) \rightarrow\{0,1, \ldots, q-1\}$ for some $n_{0}<\omega$;
- $p_{n} \mathbf{c}_{q r}(n+1) \equiv t_{n} \mathbf{c}_{q r}(n)-r \alpha_{n} \bmod q$.

A sequence $\mathbf{c}_{q r}$ is sub-admissible, if

- $\mathbf{c}_{q r}:\left[n_{0}, \omega\right) \rightarrow\{0,1, \ldots, r-1\}$ for some $n_{0}<\omega$;
- $p_{n} \mathbf{c}_{q r}(n+1) \equiv t_{n} \mathbf{c}_{q r}(n)+q \alpha_{n} \bmod r$.

Two super-admissible sequences $\mathbf{c}_{q r}$ and $\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}$ are equivalent, if $q=q^{\prime}, r=r^{\prime}$ and $\mathbf{c}_{q r}(n)=$ $\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}(n)$ for sufficiently large n. For sub-admissible sequences the equivalence is defined in the same way.

When we try to construct a super-admissible sequence, we can start from arbitrary $\mathbf{c}_{q r}(0) \in$ $\{0,1, \ldots, q-1\}$ and can inductively define $\mathbf{c}_{q r}(n+1)$ from $\mathbf{c}_{q r}(n)$, because the given equation concerns $\bmod q$ and $\operatorname{gcd}\left(p_{n}, q\right)=1$. However in the case of sub-admissible sequences to define
$\mathbf{c}_{q r}(n)$'s for all n the choice of $\mathbf{c}_{q r}(0) \in\{0,1, \ldots, r-1\}$ may be restricted. In spite of this, many things still go parallel with super-admissible and sub-admissible sequences. We will state definitions and statements in pairs.

Definition 3.2. For a super-admissible sequence $\mathbf{c}_{q r}$ defined, define a sequence $\mathbf{g}_{q r}:\left[n_{0}, \omega\right) \rightarrow \mathbb{Z}$ by $\mathbf{g}_{q r}(n)=\left(p_{n} \mathbf{c}_{q r}(n+1)-t_{n} \mathbf{c}_{q r}(n)+r \alpha_{n}\right) / q$. For a sub-admissible sequence $\mathbf{c}_{q r}$ defined, define a sequence $\mathbf{e}_{q r}:\left[n_{0}, \omega\right) \rightarrow \mathbb{Z}$ by $\mathbf{e}_{q r}(n)=\left(-p_{n} \mathbf{c}_{q r}(n+1)+t_{n} \mathbf{c}_{q r}(n)+q \alpha_{n}\right) / r$.

In the sequel an abelian group A always denotes a torsionfree abelian group of rank two embedded into $\mathbb{Q} \oplus \mathbb{Q}$ and expressed as $\xrightarrow{\lim }\left(A_{n}, f_{n}: n<\omega\right)$ as in Lemma 2.9. Since the proof of the next lemma is straightforward we omit the proof.

Lemma 3.3. (1) Let $\mathbf{c}_{q r}$ be a super-admissible sequence and $\mathbf{g}_{q r}$ be a sequence defined in Definition 3.2. For each $n \geqslant n_{0}$ let $g_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \mathbf{g}_{q r}(n) & t_{n}\end{array}\right]$ and, for each n, B_{n} be a copy of $\mathbb{Z} \oplus \mathbb{Z}$. Let $h_{n}=\left[\begin{array}{cc}q & 0 \\ \mathbf{c}_{q r}(n) & r\end{array}\right]$.
 $\xrightarrow{\lim }\left(h_{n}: n<\omega\right)$ is a finite index subgroup of $\xrightarrow{\lim }\left(B_{n}, g_{n}: n<\omega\right)$.
(2) Let $\mathbf{c}_{q r}$ be a sub-admissible sequence and $\mathbf{e}_{q r}$ be a sequence defined in Definition 3.2. For each $n \geqslant n_{0}$ let $e_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \mathbf{e}_{q r}(n) & t_{n}\end{array}\right]$ and let C_{n} be a copy of $\mathbb{Z} \oplus \mathbb{Z}$. Let $h_{n}=\left[\begin{array}{cc}q & 0 \\ \mathbf{c}_{q r}(n) & r\end{array}\right]$. Then $f_{n} h_{n}=h_{n+1} e_{n}$ for $n \geqslant n_{0}$. The homomorphic image of $\xrightarrow{\lim }\left(C_{n}, e_{n}: n<\omega\right)$ by $\xrightarrow{\lim }\left(h_{n}: n<\omega\right)$ is a finite index subgroup of $\xrightarrow{\lim }\left(A_{n}, f_{n}: n<\omega\right)$.

Lemma 3.4. Let B be a subgroup of $\mathbb{Q} \oplus \mathbb{Q}$ which is a finite index supergroup of A. If $\mathbf{c}_{q r}$ and $\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}$ be super-admissible sequences constructed from B, then $\mathbf{c}_{q r}$ and $\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}$ are equivalent.

Proof. We have subgroups B_{n} of B and subgroups B_{n}^{\prime} of B^{\prime} where each B_{n} and B_{n}^{\prime} are free abelian groups and $B_{n} / A_{n} \simeq B / A$ and $B_{n}^{\prime} / A_{n} \simeq B^{\prime} / A$ for sufficiently large n. Choose $b_{1}, \ldots, b_{s} \in B$ and $b_{1}^{\prime}, \ldots, b_{s}^{\prime} \in B$ so that $\bigcup_{k=1}^{s}\left(b_{k}+A\right)=B$ and $\bigcup_{k=1}^{s}\left(b_{k}^{\prime}+A\right)=B$. Take n_{0} so large that $B_{n} / A_{n} \simeq B / A$ and $B_{n}^{\prime} / A_{n} \simeq B^{\prime} / A$ for every $n \geqslant n_{0}$ and $b_{1}, \ldots, b_{s} \in B_{n_{0}}$ and $b_{1}^{\prime}, \ldots, b_{s}^{\prime} \in B_{n_{0}}^{\prime}$. We have $n_{1} \geqslant n_{0}$ such that $b_{1}, \ldots, b_{s} \in B_{n_{1}}^{\prime}$ and $b_{1}^{\prime}, \ldots, b_{s}^{\prime} \in B_{n_{1}}$. Since $\bigcup_{k=1}^{s} b_{k}+A_{n}=B_{n}$ and $\bigcup_{k=1}^{s} b_{k}^{\prime}+A_{n}=B_{n}^{\prime}$ for every $n \geqslant n_{0}, B_{n}=B_{n}^{\prime}$ for $n \geqslant n_{1}$. By Lemma 2.3 $\mathbf{c}_{q r}(n)=\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}(n)$ for $n \geqslant n_{1}$ and $q=q^{\prime}$ and $r=r^{\prime}$.

For a subgroup B of $\mathbb{Q} \oplus \mathbb{Q}$ which is a finite index supergroup of A, we have a superadmissible sequence $\mathbf{c}_{q r}$ by Lemmas 2.10 and 2.11. Let $\left[\mathbf{c}_{q r}\right.$] denote the equivalence class containing the one containing $\mathbf{c}_{q r}$ respectively. By $\Phi(B)$, we denote the equivalence class [$\mathbf{c}_{q r}$].

Theorem 3.5. Let $\underline{\lim }\left(A_{n}, f_{n}: n<\omega\right)$ be a subgroup of $\mathbb{Q} \oplus \mathbb{Q}$ expressed as in Lemma 2.9. Then Φ defines a one to one correspondence between the class of subgroups of $\mathbb{Q} \oplus \mathbb{Q}$ which are finite index supergroups of A and the equivalence classes of super-admissible sequences.

Proof. Lemma 3.4 implies the well-definedness of Φ as a map from the class of subgroups of $\mathbb{Q} \oplus \mathbb{Q}$ which are finite index supergroups of A. To see that Φ is injective, suppose that B and B^{\prime} induce $\mathbf{c}_{q r}$ and $\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}$, respectively, and $\left[\mathbf{c}_{q r}\right]=\left[\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}\right]$. Then $q=q^{\prime}$ and $r=r^{\prime}$ and there exists n_{0} such that $\mathbf{c}_{q r}(n)=\mathbf{c}_{q^{\prime} r^{\prime}}^{\prime}(n)$ for all $n \geqslant n_{0}$, which implies B and B^{\prime} are equivalent as supergroups
of A and hence $B=B^{\prime}$. For a given super-admissible sequence $\mathbf{c}_{q r}$ which is defined on $\left[n_{1}, \omega\right)$, let $h_{n}=\left[\begin{array}{cc}q & 0 \\ \mathbf{c}_{q r}(n) & r\end{array}\right]$ and $g_{n}=\left[\begin{array}{cc}p_{n} & 0 \\ \mathbf{g}_{q r}(n) & t_{n}\end{array}\right]$ for each $n \geqslant n_{1}$. Since $g_{n} h_{n}=f_{n} h_{n+1}$ for each $n \geqslant n_{1}$, we have a supergroup B such that $\Phi([B])=\left[\mathbf{c}_{q r}\right]$, that is, Φ is surjective.

We have the similar statement for finite index subgroups. For a finite index subgroup C of A, we have a sub-admissible sequence $\mathbf{c}_{q r}$ by Lemmas 2.12 and 2.13. By $\Psi(C)$, we denote the sub-admissible sequence $\left[\mathbf{c}_{q r}\right.$]. Since the proof is similar to that of Theorem 3.5, we omit it.

Theorem 3.6. Let $\underline{\lim }\left(A_{n}, f_{n}: n<\omega\right)$ be a subgroup of $\mathbb{Q} \oplus \mathbb{Q}$ expressed as in Lemma 2.9. Then Ψ defines a one to one correspondence between the class of finite index subgroups of A and the equivalence classes of sub-admissible sequences.

As we mentioned before, there is a difference between super-admissible sequences and subadmissible ones. The following four results show both the similarities and also the differences between them.

Lemma 3.7. Let $r=u r_{0}$ such that $u \mid \prod_{k=0}^{n-1} p_{k}$ and $\operatorname{gcd}\left(r_{0}, p_{k}\right)=1$ and $\operatorname{gcd}\left(r, t_{k}\right)=1$ for every $0 \leqslant k \leqslant n-1$ and ($\alpha_{k}: 0 \leqslant k<n$) be a finite sequence of integers.

Then there exist exactly r_{0} integers $0 \leqslant a<r$ such that $a=c_{0}$ for some sequence $\left(c_{k}: 0 \leqslant\right.$ $k<n)$ such that $p_{k} c_{k+1} \equiv c_{k} t_{k}+q \alpha_{k} \bmod r$.

Proof. First we show the number of such integers a is at most r_{0}. Let $p_{k} c_{k+1} \equiv c_{k} t_{k}+q \alpha_{k} \bmod r$ and $p_{k} c_{k+1}^{\prime} \equiv c_{k}^{\prime} t_{k}+q \alpha_{k} \bmod r$.

Multiplying $\prod_{k=0}^{i-1} p_{k} \prod_{k=i+1}^{n} t_{k}$ to the equation $p_{i} c_{i+1} \equiv c_{i} t_{i}+q \alpha_{i} \bmod r$ we have

$$
\prod_{k=0}^{i} p_{k} \prod_{k=i+1}^{n} t_{k} c_{i+1} \equiv \prod_{k=0}^{i-1} p_{k} \prod_{k=i}^{n-1} t_{k} c_{i}+\prod_{k=0}^{i-1} p_{k} \prod_{k=i+1}^{n-1} t_{k} q \alpha_{k} \quad \bmod r
$$

for $0 \leqslant i \leqslant n-1$.
Adding the left-hand terms and the right ones respectively, we have
(1) $\prod_{k=0}^{n-1} p_{k} c_{n} \equiv \prod_{k=0}^{n-1} t_{k} c_{0}+\sum_{i=0}^{n-1} \prod_{k=0}^{i-1} p_{k} \prod_{k=i+1}^{n-1} t_{k} q \alpha_{i} \quad \bmod r$
and similarly
(2) $\prod_{k=0}^{n-1} p_{k} c_{n}^{\prime} \equiv \prod_{k=0}^{n-1} t_{k} c_{0}^{\prime}+\sum_{i=0}^{n-1} \prod_{k=0}^{i-1} p_{k} \prod_{k=i+1}^{n-1} t_{k} q \alpha_{i} \quad \bmod r$.

Hence we have

$$
\prod_{k=0}^{n-1} t_{k}\left(c_{0}-c_{0}^{\prime}\right) \equiv 0 \quad \bmod u
$$

which implies $c_{0}-c_{0}^{\prime} \equiv 0 \bmod u$, because $\operatorname{gcd}\left(t_{k}, r\right)=1$ and so $\operatorname{gcd}\left(t_{k}, u\right)=1$ for every $0 \leqslant k \leqslant$ $n-1$.

To see that there exist r_{0} such a 's, take $0 \leqslant b, b^{\prime}<r$ so that $b \not \equiv b^{\prime} \bmod r_{0}$. Then we have sequences $\left(c_{k}: 0 \leqslant k \leqslant n\right)$ and ($\left.c_{k}^{\prime}: 0 \leqslant k \leqslant n\right)$ such that $c_{n}=b, c_{n}^{\prime}=b^{\prime}, p_{k} c_{k+1} \equiv c_{k} t_{k}+$ $q \alpha_{k}(\bmod r)$ and $p_{k} c_{k+1}^{\prime} \equiv c_{k}^{\prime} t_{k}+q \alpha_{k}(\bmod r)$ and $0 \leqslant c_{k}, c_{k}^{\prime}<r$ for every $0 \leqslant k \leqslant n$. Since $\operatorname{gcd}\left(p_{k}, r_{0}\right)=1$ for $0 \leqslant k \leqslant n-1, c_{k} \not \equiv c_{k}^{\prime} \bmod r_{0}$ and particularly $c_{0} \not \equiv c_{0}^{\prime} \bmod r_{0}$. These imply the conclusion.

Lemma 3.8. We assume the setting of Definition 3.1.
(1) Let $r=s_{0}^{n_{0}} \cdots s_{k}^{n_{k}} r_{0}$ such that each s_{i} is a prime and $\left\{n: s_{i} \mid p_{n}\right\}$ is infinite for each s_{i} and $\operatorname{gcd}\left(r_{0}, p_{n}\right)=1$ for almost all n. Then there exist exactly r_{0} equivalence classes of subadmissible sequences $\mathbf{c}_{q r}$.
(2) Similarly, let $q=s_{0}^{n_{0}} \cdots s_{k}^{n_{k}} q_{0}$ such that each s_{i} is a prime and $\left\{n: s_{i} \mid t_{n}\right\}$ is infinite for each s_{i} and $\operatorname{gcd}\left(q_{0}, t_{n}\right)=1$ for almost all n. Then there exist exactly q_{0} equivalence classes of super-admissible sequences $\mathbf{c}_{q r}$.

Proof. (1) There exists a positive integer m_{0} so that $\operatorname{gcd}\left(r_{0}, p_{n}\right)=1$ for all $n \geqslant m_{0}$. It suffices to show that there exist exactly r_{0} sub-admissible sequences $\mathbf{c}_{q r}$ whose domain is $\left[m_{0}, \omega\right)$.

Let $m_{1} \geqslant m_{0}$ be such that $s_{0}^{n_{0}} \cdots s_{k}^{n_{k}} \mid \prod_{k=m_{0}}^{m_{1}} p_{k}$. Then we apply Lemma 3.7 to $u=s_{0}^{n_{0}} \cdots s_{k}^{n_{k}}$ and a sequence ($\alpha_{k}: m_{0} \leqslant i \leqslant n-1$) for $n>m_{1}$. Let $n^{\prime}>n>m_{1}$. Since each sequence obtained by Lemma 3.7 for n has a unique extension for n^{\prime}, we can see that there exist exactly r_{0} subadmissible sequences $\mathbf{c}_{q r}$ whose domain is [m_{0}, ω).
(2) Let $u=s_{0}^{n_{0}} \cdots s_{k}^{n_{k}}$. We have m_{0} and $m_{1} \geqslant m_{0}$ so that $\operatorname{gcd}\left(q_{0}, t_{n}\right)=1$ for all $n \geqslant m_{0}$ and $u \mid \prod_{k=m_{0}}^{m_{1}-1} t_{k}$. Suppose that $p_{k} c_{k+1} \equiv c_{k} t_{k}-r \alpha_{k} \bmod q$ and $p_{k} c_{k+1}^{\prime} \equiv c_{k}^{\prime} t_{k}-r \alpha_{k} \bmod q$.

By a similar argument as in the proof of Lemma 3.7 we have

$$
\prod_{k=m_{0}}^{m_{1}-1} p_{k} c_{m_{1}} \equiv \prod_{k=m_{0}}^{m_{1}-1} t_{k} c_{0}-\sum_{i=m_{0}}^{m_{1}-1} \prod_{k=m_{0}}^{i-1} p_{k} \prod_{k=i+1}^{m_{1}-1} t_{k} r \alpha_{i} \quad \bmod q
$$

and

$$
\prod_{k=m_{0}}^{m_{1}-1} p_{k} c_{m_{1}}^{\prime} \equiv \prod_{k=m_{0}}^{m_{1}-1} t_{k} c_{0}^{\prime}-\sum_{i=m_{0}}^{m_{1}-1} \prod_{k=m_{0}}^{i-1} p_{k} \prod_{k=i+1}^{m_{1}-1} t_{k} r \alpha_{i} \quad \bmod q
$$

We have

$$
\prod_{k=m_{0}}^{m_{1}-1} p_{k}\left(c_{m_{1}}-c_{m_{1}}^{\prime}\right) \equiv 0 \quad \bmod u
$$

and hence $c_{m_{1}}-c_{m_{1}}^{\prime} \equiv 0 \bmod u$. This implies that there exist at most q_{0} equivalence classes of super-admissible sequences $\mathbf{c}_{q r}$. On the other hand, for given $c_{k} \not \equiv c_{k}^{\prime} \bmod q_{0}$, we have $t_{k} c_{k} \not \equiv$ $t_{k} c_{k}^{\prime} \bmod q_{0}$, since $\operatorname{gcd}\left(t_{k}, q_{0}\right)=1$. Since $\operatorname{gcd}\left(p_{k}, q\right)=1$, there exist unique c_{k+1} and c_{k+1}^{\prime} such that $p_{k} c_{k+1} \equiv c_{k} t_{k}-r \alpha_{k} \bmod q$ and $p_{k} c_{k+1}^{\prime} \equiv c_{k}^{\prime} t_{k}-r \alpha_{k} \bmod q$. Since $t_{k} c_{k} \equiv t_{k} c_{k}^{\prime} \bmod q_{0}$, we have $p_{k} c_{k+1} \not \equiv p_{k} c_{k+1}^{\prime} \bmod q_{0}$ and hence $c_{k+1} \not \equiv c_{k+1}^{\prime} \bmod q_{0}$.

These imply the conclusion.

Now we can count the number of equivalence classes of index s supergroups of A and also the number of index s subgroups of A by Theorems 3.5 and 3.6 and Lemma 3.8.

Corollary 3.9. Let a torsionfree abelian group A of rank 2 be presented as in Definition 3.1. For each natural number s, the number of s-index subgroups of A is equal to the number of equivalence classes of s-index supergroups of A, which is equal to $\sum_{q \in F_{s}}$ q in Section 1.

Proof. Let $s=s_{0}^{n_{0}} \cdots s_{k}^{n_{k}}$ such that each s_{i} is a prime and let $I=\left\{i: \operatorname{gcd}\left(s_{i}, p_{n}\right)=1\right.$ for almost all $n\}, J=\left\{i: \operatorname{gcd}\left(s_{i}, t_{n}\right)=1\right.$ for almost all $\left.n\right\}$ and $K=I \cap J$. There exists a super-admissible sequence $\mathbf{c}_{q r}$ with $s=q r$ if and only if there exists a sub-admissible sequence $\mathbf{c}_{q r}$ with $s=q r$ if and only if $I \cup J=\{0, \ldots, k\}$. Let $q_{*}=\prod_{i \in I} s_{i}^{n_{i}}, r_{*}=\prod_{i \in J} s_{i}^{n_{i}}$ and $s_{*}=\prod_{i \in I \cap J} s_{i}^{n_{i}}$. Let $q r=s$. There exists a super-admissible sequence $\mathbf{c}_{q r}$, if and only if $q \mid q_{*}$ and $r \mid r_{*}$. This condition is also equivalent to the existence of a sub-admissible sequence $\mathbf{c}_{q r}$. Let $q_{0} r_{0}=q_{1} r_{1}=s$ so that
(1) $q_{0}\left|q_{*}, r_{0}\right| r_{*}, q_{1} \mid q_{*}$ and $r_{1} \mid r_{*}$;
(2) $q_{0}=q_{1} u$ and $r_{1}=r_{0} u$ for some u with $u \mid s_{*}, \operatorname{gcd}\left(q_{1}, s_{*}\right)=\operatorname{gcd}\left(r_{0}, s_{*}\right)=1$.

The numbers of equivalence classes of super-admissible sequences $\mathbf{c}_{q_{0} r_{0}}$ and those of subadmissible sequences $\mathbf{c}_{q_{1} r_{1}}$ are the same as the numbers of u with $u \mid s_{*}$. Now we have the conclusion.

The next corollary follows from Corollary 3.9 straightforwardly.

Corollary 3.10. Let p be a natural number and A be a torsionfree abelian group of rank 2 presented as the canonical form in Lemma 2.9, where $p_{n}=p$ and $t_{n}=1$ for every n. For a natural number s the number of s-index subgroups of A and the number of equivalence classes of s-index supergroups of A are equal to $\sum_{q \mid s, \operatorname{gcd}(p, q)=1} q$.

Remark 3.11. (1) Wickless has informed to the first author that Corollary 3.9 holds for every torsionfree abelian group A of finite rank. We thank him for this information with its simple proof. Here, we outline his short proof of this fact. Let A be a subgroup of \mathbb{Q}^{m}. For a prime p, let r_{p} be a non-negative integer such that $A / p A \simeq(\mathbb{Z} / p \mathbb{Z})^{r_{p}}$. We have $A / p^{i} A \simeq\left(\mathbb{Z} / p^{i} \mathbb{Z}\right)^{r_{p}}$ for every positive integer i. For a positive integer s, let $s=\prod_{i=0}^{k} s_{i}^{n_{i}}$ where s_{i} is a prime. Then $A / s A \simeq \bigoplus_{i=0}^{k}\left(\mathbb{Z} / s_{i}^{n_{i}} \mathbb{Z}\right)^{r_{s_{i}}}$.

We denote the cardinality of a set X by $|X|$. Every s-index subgroup of A contains $s A$ and hence $|\{S \leqslant A:|A / S|=s\}|=|\{S \leqslant A: s A \leqslant S,|S|=s\}|$. On the other hand, every s-index supergroup of A is a subgroup of $(1 / s) A$. Since $(1 / s) A$ is isomorphic to A and this isomorphism induces the isomorphism from A to $s A,\left|\left\{S \leqslant \mathbb{Q}^{m}: A \leqslant S,|S / A|=s\right\}\right|=\mid\{S \leqslant A: s A \leqslant S$, $|S|=s\}|=|\{S \leqslant A:|A / S|=s\}|$ and this cardinality is equal to $|\left\{S \leqslant \bigoplus_{i=0}^{k}\left(\mathbb{Z} / s_{i}^{n_{i}} \mathbb{Z}\right)^{r_{s}}\right.$: $|S|=s\} \mid$. When A is presented as in Definition 3.1, the last cardinality is equal to $\sum_{q \in F_{s}} q$.
(2) We remark that Lemma 2.11 and Theorem 3.5 were firstly proved for covers on toroidal spaces, the correspondence of them will appear in [4].

4. When are groups \boldsymbol{A}_{α} not isomorphic?

In this section we introduce groups A_{α} for p-adic integer α and state some basic facts about these groups. First we recall how the p-adic integers relate to the direct product of countably many copies of the integers \mathbb{Z}, i.e., \mathbb{Z}^{ω}. A p-adic integer is presented as a formal sum $\alpha=\sum_{n=0}^{\infty} \alpha(n) p^{n}$ [5]. When $0 \leqslant \alpha(n)<p$, we call $\sum_{n=0}^{\infty} \alpha(n) p^{n}$ a canonical presentation. We regard α as a p-adic integer and call $\alpha(n)$ its nth digit.

Let p be a prime. For $x \in \mathbb{Z}^{\omega}$ let $f(x)_{n}: \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ be a homomorphism represented by a matrix $\left[\begin{array}{cc}p & 0 \\ x(n) & 1\end{array}\right]$ for each $n \in \omega$, where $x(n) \in \mathbb{Z}$.

The direct limit $\underset{\longrightarrow}{\lim }\left(\mathbb{Z} \oplus \mathbb{Z}, f(x)_{n}: n<\omega\right)$ is isomorphic to a subgroup of $\mathbb{Q} \oplus \mathbb{Q}$, i.e.

$$
A_{x}=\left\{u p^{-n}\left[\begin{array}{c}
1 \\
-\sum_{i=0}^{n-1} x(i) p^{i}
\end{array}\right]+v\left[\begin{array}{l}
0 \\
1
\end{array}\right]: u, v \in \mathbb{Z}, n<\omega\right\} .
$$

By the next lemma we see that in the investigation of A_{α} we may use any presentation of a p-adic integer α.

Lemma 4.1. If $\sum_{n=0}^{\infty} x(n) p^{n}=\sum_{n=0}^{\infty} y(n) p^{n}$ for $x, y \in \mathbb{Z}^{\omega}$, then groups A_{x} and A_{y} are equal.
Proof. Since $\sum_{i=0}^{n-1} x(i) p^{i} \equiv \sum_{i=0}^{n-1} y(i) p^{i} \bmod p^{n}$, we define a_{n} 's by $a_{0}=0$ and $p^{n} a_{n}=$ $\sum_{i=0}^{n-1} x(i) p^{i}-\sum_{i=0}^{n-1} y(i) p^{i}$ for $n \geqslant 1$. Then $x(n)+a_{n}=y(n)+p a_{n+1}$ and hence

$$
\left[\begin{array}{cc}
p & 0 \\
x(n) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
a_{n} & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
a_{n+1} & 1
\end{array}\right]\left[\begin{array}{cc}
p & 0 \\
y(n) & 1
\end{array}\right] .
$$

Since $\left[\begin{array}{cc}1 & 0 \\ a_{n} & 1\end{array}\right] \in G L_{2}(\mathbb{Z})$, the direct limits are isomorphic. Since groups A_{x} and A_{y} are defined from these direct systems by embedding the first copy of $\mathbb{Z} \oplus \mathbb{Z}$ into $\mathbb{Q} \oplus \mathbb{Q}$ canonically, A_{x} and A_{y} are equal.

This lemma is generalized as follows. Since the proof is similar, we omit it.
Lemma 4.2. Let $0 \neq u_{n} \in \mathbb{Z}$. If $\sum_{i=0}^{n-1} x(i)\left(\prod_{j=0}^{i} u_{j}\right) \equiv \sum_{i=0}^{n-1} y(i)\left(\prod_{j=0}^{i} u_{j}\right) \bmod \prod_{i=0}^{n-1} u_{i}$, then the direct limit groups obtained by using $\left[\begin{array}{cc}u_{i} & 0 \\ x(i) & 1\end{array}\right]$ and $\left[\begin{array}{cc}u_{i} & 0 \\ y(i) & 1\end{array}\right]$ as bonding maps are isomorphic.

Lemma 4.3. For $x \in \mathbb{Z}^{\omega}$, let $-x$ be the inverse element in the abelian group \mathbb{Z}^{ω}, i.e. $(-x)(n)=$ $-x(n)$. Then, A_{-x} is isomorphic to A_{x}.

Proof. We have

$$
\begin{aligned}
A_{-x} & =\left\{u p^{-n}\left[\begin{array}{c}
1 \\
\sum_{i=0}^{n-1} x(i) p^{i}
\end{array}\right]+v\left[\begin{array}{l}
0 \\
1
\end{array}\right]: u, v \in \mathbb{Z}, n<\omega\right\} \\
& =\left\{u p^{-n}\left[\begin{array}{c}
1 \\
\sum_{i=0}^{n-1} x(i) p^{i}
\end{array}\right]+v\left[\begin{array}{c}
0 \\
-1
\end{array}\right]: u, v \in \mathbb{Z}, n<\omega\right\} .
\end{aligned}
$$

Hence an isomorphism between A_{x} and A_{-x} is given by $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

Here we show trivial cases of limits.
Proposition 4.4. Let $x, y \in \mathbb{Z}^{\omega}$. The direct limit group obtained by $\left[\begin{array}{cc}1 & 0 \\ y(n) & x(n)\end{array}\right]$ is isomorphic to the group obtained by $\left[\begin{array}{cc}1 & 0 \\ 0 & x(n)\end{array}\right]$ which is isomorphic to $\mathbb{Q}(x) \oplus \mathbb{Z}$, where $\mathbb{Q}(x)=\left\{a / \prod_{i=n_{0}}^{n} x(i)\right.$: $\left.a \in \mathbb{Z}, n \geqslant n_{0}\right\}$ if $x(n) \neq 0$ for almost all n, where $x(n) \neq 0$ for $n \geqslant n_{0}$, and $\mathbb{Q}(x)=\{0\}$ otherwise.

Proof. Define $z(n)$'s inductively as $z(0)=0$ and $z(n+1)=x(n) z(n)+y(n)$. Then we have

$$
\left[\begin{array}{cc}
1 & 0 \\
y(n) & x(n)
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
z(n) & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
z(n+1) & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & x(n)
\end{array}\right]
$$

and the conclusion holds.
Suppose that A_{α} and A_{β} are isomorphic. Then there exists a rational matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ which defines the isomorphism. It is easy to see that a, b, c, d belong to $\mathbb{Q}\left(p^{\infty}\right)=\left\{a p^{n}: a, n \in \mathbb{Z}\right\}=$ $\mathbb{Z}[1 / p]$. (When we are interested in the structure of abelian groups, we use $\mathbb{Q}\left(p^{\infty}\right)$ and otherwise $\mathbb{Z}[1 / p]$.) Since the inverse matrix is also of such a form, the determinant $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is of the form $\pm p^{n}$ for $n \in \mathbb{Z}$. By the same argument as in the Goodearl and Rushing paper [6] we have $a \alpha-b \alpha \beta+$ $c-d \beta=0$. Since this fact is crucial in the sequel we review a line of its proof here. Let $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, $\mathbf{e}_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Let

$$
\begin{gathered}
A_{x, n}=\left\{u p^{-n}\left[\begin{array}{c}
1 \\
-\sum_{i=0}^{n-1} x(i) p^{i}
\end{array}\right]+v\left[\begin{array}{l}
0 \\
1
\end{array}\right]: u, v \in \mathbb{Z}\right\}, \\
\mathbf{z}_{n}=p^{-n}\left[\begin{array}{c}
1 \\
-\sum_{i=0}^{n-1} \alpha(i) p^{i}
\end{array}\right] \text { and } \mathbf{w}_{n}=p^{-n}\left[\begin{array}{c}
1 \\
-\sum_{i=0}^{n-1} \beta(i) p^{i}
\end{array}\right] .
\end{gathered}
$$

Then $A_{\alpha, n}=\left\langle\mathbf{z}_{n}\right\rangle+\left\langle\mathbf{e}_{1}\right\rangle$ and $A_{\beta, n}=\left\langle\mathbf{w}_{n}\right\rangle+\left\langle\mathbf{e}_{1}\right\rangle$. We have m_{0} and the minimal $k(n)$ so that $g\left(\mathbf{e}_{1}\right) \in A_{\alpha, m_{0}}$ and $g\left(\mathbf{w}_{n}\right) \in A_{\alpha, k(n)}$. Then it is easy to see that $\lim _{n \rightarrow \infty} k(n)=\infty$. We have integers a_{n} and b_{n} such that $g\left(w_{n}\right)=a_{n} \mathbf{z}_{k(n)}+b_{n} \mathbf{e}_{1}$. Since $p \mathbf{z}_{k(n)} \in A_{\alpha, k(n)-1}, a_{n}$ and p are relatively prime by the minimality of $k(n)$, if $k(n)>m_{0}$. Hence we have

$$
\begin{gathered}
p^{-n}\left(a-b \sum_{i=0}^{n-1} \beta(i) p^{i}\right)=p^{-k(n)} a_{n} \\
p^{-n}\left(c-d \sum_{i=0}^{n-1} \beta(i) p^{i}\right)=p^{-k(n)}\left(-a_{n} \sum_{i=0}^{k(n)-1} \alpha(i) p^{i}+b_{n} p^{k(n)}\right)
\end{gathered}
$$

By cross-multiplication we have

$$
a_{n}\left(c-d \sum_{i=0}^{n-1} \beta(i) p^{i}\right)=\left(a-b \sum_{i=0}^{n-1} \beta(i) p^{i}\right)\left(-a_{n} \sum_{i=0}^{k(n)-1} \alpha(i) p^{i}+b_{n} p^{k(n)}\right)
$$

Since $a, b, c, d \in \mathbb{Z}[1 / p]$ and a_{n} and p are relatively prime for sufficiently large n, b_{n} is divided by a_{n} in the ring of p-adic integers and we have

$$
c-d \sum_{i=0}^{n-1} \beta(i) p^{i}=\left(a-b \sum_{i=0}^{n-1} \beta(i) p^{i}\right)\left(-\sum_{i=0}^{k(n)-1} \alpha(i) p^{i}+\left(b_{n} / a_{n}\right) p^{k(n)}\right)
$$

Taking the limit gives the conclusion.

5. Finite index supergroups and subgroups of \boldsymbol{A}_{α} for a non-quadratic α

Let α_{0} be a p-adic integer which is not quadratic, that is, α_{0} does not satisfy equations of form $\alpha_{0}^{2}+b \alpha_{0}+c=0$ for any rational numbers b, c. We recall Definition 3.2. For a super-admissible sequence $\mathbf{c}_{q r}:\left[n_{0}, \omega\right) \rightarrow\{0, \ldots, q-1\}$ such that $p \mathbf{c}_{q r}(n+1) \equiv \mathbf{c}_{q r}(n)-r \alpha_{0}(n) \bmod q$, define $\mathbf{g}_{q r}:\left[n_{0}, \omega\right) \rightarrow \mathbb{Z}$ by

$$
\mathbf{g}_{q r}(n)=\frac{p \mathbf{c}_{q r}(n+1)-\mathbf{c}_{q r}(n)+r \alpha_{0}(n)}{q} .
$$

Similarly for a sub-admissible sequence $\mathbf{c}_{q r}:\left[n_{0}, \omega\right) \rightarrow\{0, \ldots, r-1\}$ such that $p \mathbf{c}_{q r}(n+1) \equiv$ $\mathbf{c}_{q r}(n)+q \alpha_{0}(n) \bmod r$, define $\mathbf{e}_{q r}:\left[n_{0}, \omega\right) \rightarrow \mathbb{Z}$ by

$$
\mathbf{e}_{q r}(n)=\frac{-p \mathbf{c}_{q r}(n+1)+\mathbf{c}_{q r}(n)+q \alpha_{0}(n)}{r} .
$$

Lemma 5.1. Let $q_{0} r_{0}=q_{1} r_{1}$ and $\operatorname{gcd}\left(q_{0}, p\right)=\operatorname{gcd}\left(q_{1}, p\right)=1$. Suppose that $a \alpha+c-d \beta=0$ for some a, c, $d \in \mathbb{Z}[1 / p]$ and α and β in the following (1) and (2), respectively, and ad $= \pm p^{n}$ for some $n \in \mathbb{Z}$.
(1) If $\mathbf{c}_{q_{0} r_{0}}$ and $\mathbf{c}_{q_{1} r_{1}}$ are super-admissible sequences such that $\alpha=\sum_{n=n_{0}}^{\infty} \mathbf{g}_{q_{0} r_{0}}(n) p^{n}$ and $\beta=\sum_{n=n_{0}}^{\infty} \mathbf{g}_{q_{1} r_{1}}(n) p^{n}$, then $\left(q_{0}, \mathbf{c}_{q_{0} r_{0}}\left(n_{0}\right)\right)=\left(q_{1}, \mathbf{c}_{q_{1} r_{1}}\left(n_{0}\right)\right)$ holds.
(2) If $\mathbf{c}_{q_{0} r_{0}}$ and $\mathbf{c}_{q_{1} r_{1}}$ are sub-admissible sequences such that $\alpha=\sum_{n=n_{0}}^{\infty} \mathbf{e}_{q_{0} r_{0}}(n) p^{n}$ and $\beta=\sum_{n=n_{0}}^{\infty} \mathbf{e}_{q_{1} r_{1}}(n) p^{n}$, then $\left(r_{0}, \mathbf{c}_{q_{0} r_{0}}\left(n_{0}\right)\right)=\left(r_{1}, \mathbf{c}_{q_{1} r_{1}}\left(n_{0}\right)\right)$ holds.

Proof. For simplicity of notation, we abuse a map $x:\left[n_{0}, \omega\right) \rightarrow \mathbb{Z}$ with the p-adic integer $\sum_{n=n_{0}}^{\infty} x(n) p^{n}$. By multiplying a sufficiently large p^{m} we may assume $a, c, d \in \mathbb{Z}$ without any loss of generality.

Suppose that $a d= \pm p^{m}$ in case (1). Let $w_{0}=\sum_{n=0}^{n_{0}} \alpha_{0}(n)$. Multiplying p^{n} 's to the equations

$$
q \mathbf{g}_{q r}(n)=p \mathbf{c}_{q r}(n+1)-\mathbf{c}_{q r}(n)+r \alpha_{0}(n)
$$

and taking the sum, we have

$$
\begin{aligned}
q \mathbf{g}_{q r} & =p \sum_{n=n_{0}}^{\infty} p^{n} \mathbf{c}_{q r}(n+1)-\sum_{n=n_{0}}^{\infty} p^{n} \mathbf{c}_{q r}(n)+r\left(\alpha_{0}-w_{0}\right) \\
& =-p^{n_{0}} \mathbf{c}_{q r}\left(n_{0}\right)+r\left(\alpha_{0}-w_{0}\right)
\end{aligned}
$$

Let $c_{0}=\mathbf{c}_{q_{0} r_{0}}\left(n_{0}\right)$ and $c_{1}=\mathbf{c}_{q_{1} r_{1}}\left(n_{0}\right)$. Then we have $q_{0} \mathbf{g}_{q_{0} r_{0}}=-p^{n_{0}} c_{0}+r_{0}\left(\alpha_{0}-w_{0}\right)$ and $q_{1} \mathbf{g}_{q_{1} r_{1}}=-p^{n_{0}} c_{1}+r_{1}\left(\alpha_{0}-w_{0}\right)$. Since $a q_{0} q_{1} \alpha+c q_{0} q_{1}-d q_{0} q_{1} \beta=0$, we have

$$
\begin{aligned}
& \left(a q_{1} r_{0}-d q_{0} r_{1}\right) \alpha_{0}+c q_{0} q_{1}-a q_{1}\left(p^{n_{0}} c_{0}+r_{0} w_{0}\right)+d q_{0}\left(p^{n_{0}} c_{1}+r_{1} w_{0}\right) \\
& \quad=a q_{1}\left(-p^{n_{0}} c_{0}+r_{0} \alpha_{0}-r_{0} w_{0}\right)+c q_{0} q_{1}-d q_{0}\left(-p^{n_{0}} c_{1}+r_{1} \alpha_{0}-r_{1} w_{0}\right)=0
\end{aligned}
$$

Since α_{0} is not rational, we have $a q_{1} r_{0}-d q_{0} r_{1}=0$. Since $q_{0} r_{0}=q_{1} r_{1}>0$, we have $a q_{1}^{2}=d q_{0}^{2}$. Hence we have $a=d$ and $q_{0}=q_{1}$ and also $r_{0}=r_{1}$. Then we have $c q_{0}=a p^{n_{0}}\left(c_{0}-c_{1}\right)$. Since $\operatorname{gcd}\left(p, q_{0}\right)=1, \operatorname{gcd}\left(a, q_{0}\right)=1$, and $0 \leqslant c_{0}, c_{1}<q_{0}$, we have $c_{0}=c_{1}$.

Next, suppose that $a d= \pm p^{m}$ in case (2). The argument goes similarly. Let $c_{0}=\mathbf{c}_{q_{0} r_{0}}\left(n_{0}\right)$ and $c_{1}=\mathbf{c}_{q_{1} r_{1}}\left(n_{0}\right)$. Then, we have $r_{0} \mathbf{e}_{q_{0} r_{0}}=p^{n_{0}} c_{0}+q_{0}\left(\alpha_{0}-w_{0}\right)$ and $r_{1} \mathbf{e}_{q_{1} r_{1}}=p^{n_{0}} c_{1}+q_{1}\left(\alpha_{0}-w_{0}\right)$ and consequently

$$
\left(a r_{1} q_{0}-d r_{0} q_{1}\right) \alpha_{0}+r_{0} r_{1} c+a r_{1}\left(p^{n_{0}} c_{0}-q_{0} w_{0}\right)-d r_{0}\left(p^{n_{0}} c_{1}-q_{1} w_{0}\right) y=0
$$

By a similar argument as above, we have $a=d, q_{0}=q_{1}$ and $r_{0}=r_{1}$. Also we have $r_{0} c+$ $a p^{n_{0}}\left(c_{0}-c_{1}\right)=0$. Let $r_{0}=s_{0} p^{m}$ with $\operatorname{gcd}\left(p, s_{0}\right)=1$. Then $c_{0} \equiv c_{1} \bmod s_{0}$. We apply the proof of Lemma 3.7 to the case that r_{0} for r, p^{m} for $u, p_{k}=p, t_{k}=1$ and $\left(c_{k}: 0 \leqslant k<n\right)=$ $\left(\alpha_{0}(k): n_{0} \leqslant k<n_{0}+n\right)$ for a sufficiently large n, i.e. $n \geqslant m$. Then we have $c_{0} \equiv c_{1} \bmod p^{m}$. Since $0 \leqslant c_{0}, c_{1}<r_{0}=p^{m} s_{0}$, we conclude $c_{0}=c_{1}$.

The next theorem strengthens [3, Corollary 1] extensively.
Theorem 5.2. Let p be a prime and α_{0} be a p-adic integer which is not quadratic over a rational field. Let $\operatorname{gcd}\left(p, q_{0}\right)=\operatorname{gcd}\left(p, q_{1}\right)=1$ and $q_{0} r_{0}=q_{1} r_{1}$. Suppose one of the following holds:
(1) $\mathbf{c}_{q_{0} r_{0}}$ and $\mathbf{c}_{q_{1} r_{1}}$ are super-admissible sequences such that $\left(q_{0}, \mathbf{c}_{q_{0} r_{0}}\left(n_{0}\right)\right) \neq\left(q_{1}, \mathbf{c}_{q_{1} r_{1}}\left(n_{0}\right)\right)$ and $\alpha=\sum_{n=n_{0}}^{\infty} \mathbf{g}_{q_{0} r_{0}}(n) p^{n}$ and $\beta=\sum_{n=n_{0}}^{\infty} \mathbf{g}_{q_{1} r_{1}}(n) p^{n}$; and
(2) $\mathbf{c}_{q_{0} r_{0}}$ and $\mathbf{c}_{q_{1} r_{1}}$ are sub-admissible sequences such that $\left(r_{0}, \mathbf{c}_{q_{0} r_{0}}\left(n_{0}\right)\right) \neq\left(r_{1}, \mathbf{c}_{q_{1} r_{1}}\left(n_{0}\right)\right)$ and $\alpha=\sum_{n=n_{0}}^{\infty} \mathbf{e}_{q_{0} r_{0}}(n) p^{n}$ and $\beta=\sum_{n=n_{0}}^{\infty} \mathbf{e}_{q_{1} r_{1}}(n) p^{n}$.

Then A_{α} and A_{β} are not isomorphic. Consequently, for each natural number s distinct s-index supergroups of $A_{\alpha_{0}}$ are non-isomorphic and also distinct s-index subgroups of $A_{\alpha_{0}}$ are non-isomorphic.

Proof. Suppose the negation of the conclusion. Then there exist $a, b, c, d \in \mathbb{Z}[1 / p]$ such that $a \alpha-b+c \alpha \beta-d \beta=0$ and $a d-b c= \pm p^{n}$ for some $n \in \mathbb{Z}$. When $c=0$ we have a contradiction by Lemma 5.1. Otherwise, using equations

$$
q \mathbf{g}_{q r}=-\mathbf{c}_{q r}\left(n_{0}\right)+r\left(\alpha_{0}-w_{0}\right)
$$

and

$$
r \mathbf{e}_{q r}=\mathbf{c}_{q r}\left(n_{0}\right)+q\left(\alpha_{0}-w_{0}\right),
$$

where $w_{0}=\sum_{n=0}^{n_{0}-1} p^{n} \alpha_{0}(n)$, we deduce a contradiction to the assumption that α_{0} is not quadratic over a rational field in each case.

6. More on groups A_{α} and on some other groups

Theorem 6.1. Let α be a p-adic integer which is not quadratic over \mathbb{Q}. Then for integers m and $n, A_{m \alpha} \simeq A_{n \alpha}$ if and only if $m= \pm n p^{i}$ for some integer i.

Proof. If $m= \pm n p^{i}$ for some integer i, we may assume i is non-negative. First we deal with the case $m=n p^{i}$. Let $x(k)=0$ for $k<i$ and $x(k)=n \alpha(k-i)$ for $k \geqslant i$. Then $A_{x} \simeq A_{m \alpha}$ by Lemma 4.1. On the other hand $A_{x} \simeq A_{n \alpha}$ by the property of the direct limit. In case $m=-n p^{i}$, we have $A_{m \alpha} \simeq A_{-n \alpha} \simeq A_{n \alpha}$ by Lemma 4.3.

To show the other direction of the statement, suppose that $A_{m \alpha} \simeq A_{n \alpha}$. Then we have $a, b, c, d \in \mathbb{Z}[1 / p]$ such that $a d-b c= \pm p^{i}$ for some integer i and $a m \alpha-b+c m n \alpha^{2}-d n \alpha=0$. If $m=0$, then $d n=b=0$ since α is not rational. Then $a d \neq 0$ and hence $n=0$. A similar statement for n holds and so we may assume $m n \neq 0$. Since α is not quadratic over \mathbb{Q}, we have $c=0$ and also $a m-d n=0$ and $b=0$. Then $a d= \pm p^{i}$, which implies $a= \pm p^{i_{0}}$ and $d= \pm p^{i_{1}}$ for some integers i_{0}, i_{1}. Hence we have $m= \pm n p^{i_{1}-i_{0}}$.

In [3, Theorem 1] the statement was restricted to the case $p>2$. Here we prove a more general statement.

Theorem 6.2.

(1) Let $G_{n}=\left[\begin{array}{cc}s & 0 \\ t & 1\end{array}\right]$ for every n. Then, the direct limit group A whose bonding maps are G_{n} 's is isomorphic to $\mathbb{Q}\left(s^{\infty}\right) \oplus \mathbb{Z}$.
(2) Let $G_{n}=\left[\begin{array}{cc}s & 0 \\ t s-1\end{array}\right]$ for every n. Then, the direct limit group A whose bonding maps are G_{n} 's is isomorphic to $\mathbb{Q}\left(s^{\infty}\right) \oplus \mathbb{Q}\left((s-1)^{\infty}\right)$.

Proof. (1) Let $d=\operatorname{gcd}(s-1, t)$ and $s-1=d s^{\prime}$ and $t=d t^{\prime}$. There exist integers x_{0}, y_{0} such that $s^{\prime} y_{0}-t^{\prime} x_{0}=1$. Since

$$
\left[\begin{array}{ll}
s & 0 \\
t & 1
\end{array}\right]^{n}=\left[\begin{array}{cc}
s^{n} & 0 \\
t \sum_{i=0}^{n-1} s^{i} & 1
\end{array}\right],
$$

A is isomorphic to

$$
\left\{u s^{-n}\left[\begin{array}{c}
1 \\
t \sum_{i=0}^{n-1} s^{i}
\end{array}\right]+v\left[\begin{array}{l}
0 \\
1
\end{array}\right]: u, v \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

We remark $t \sum_{i=0}^{n-1} s^{i}=\left(s^{n}-1\right) t /(s-1)=\left(s^{n}-1\right) t^{\prime} / s^{\prime}$.
We show $A=B_{1} \oplus B_{2}$ where $B_{1}=\left\{u s^{-n}\left[\begin{array}{l}s^{\prime} \\ t^{\prime}\end{array}\right]: u \in \mathbb{Z}, n \in \mathbb{N}\right\}$ and $B_{2}=\left\{v\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]: v \in \mathbb{Z}\right\}$. Since $s^{\prime} y_{0}-t^{\prime} x_{0}=1, B_{1} \cap B_{2}=\{0\}$. Since B_{2} is obviously a subgroup of A, we show $s^{-n}\left[\begin{array}{l}s^{\prime} \\ t^{\prime}\end{array}\right] \in A$. Since

$$
s^{-n} t^{\prime}+s^{\prime} s^{-n} t \sum_{i=0}^{n-1} s^{i}=s^{-n}\left(t^{\prime}+s^{\prime} t \sum_{i=0}^{n-1} s^{i}\right)
$$

$$
\begin{array}{r}
=s^{-n}\left(t^{\prime}+s^{\prime} t \frac{s^{n}-1}{s-1}\right) \\
=s^{-n} t^{\prime}\left(1+s^{n}-1\right)=t^{\prime}, \\
s^{-n}\left[\begin{array}{c}
s^{\prime} \\
t^{\prime}
\end{array}\right]=s^{\prime} s^{-n}\left[\begin{array}{c}
1 \\
-t \sum_{i=0}^{n-1} s^{i}
\end{array}\right]+t^{\prime}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \in A
\end{array}
$$

Hence we have $B_{1} \oplus B_{2} \leqslant A$. To see $A \leqslant B_{1} \oplus B_{2}$, it suffices to show $s^{-n}\left[\begin{array}{c}1 \\ -t \sum_{i=0}^{n-1} s^{i}\end{array}\right]$, $\left[\begin{array}{l}0 \\ 1\end{array}\right] \in$ $B_{1} \oplus B_{2}$,

$$
\begin{aligned}
&\left(y_{0}+x_{0} t \sum_{i=0}^{n-1} s^{i}\right) s^{-n}\left[\begin{array}{c}
s^{\prime} \\
t^{\prime}
\end{array}\right]-t^{\prime}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left(s^{\prime} y_{0}-t^{\prime} x_{0}+x_{0} t^{\prime} s^{n}\right) s^{-n} / s^{\prime}\left[\begin{array}{c}
s^{\prime} \\
t^{\prime}
\end{array}\right]-t^{\prime}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right] \\
&=\left[\begin{array}{c}
s^{-n}+x_{0} t^{\prime}-x_{0} t^{\prime} \\
t^{\prime}\left(1+x_{0} t^{\prime} s^{n}\right) s^{-n} / s^{\prime}-t^{\prime} y_{0}
\end{array}\right] \\
&=\left[\begin{array}{c}
s^{-n} \\
t^{\prime}\left(s^{-n}+t^{\prime} x_{0}-s^{\prime} y_{0}\right) / s^{\prime}
\end{array}\right] \\
&=\left[\begin{array}{c}
s^{-n} \\
-s^{-n} t^{\prime}\left(s^{n}-1\right) / s^{\prime}
\end{array}\right] \\
&=s^{-n}\left[\begin{array}{c}
1 \\
-\sum_{i=0}^{n-1} s^{i}
\end{array}\right] \\
&\left(-x_{0} s^{n}\right) s^{-n}\left[\begin{array}{c}
s^{\prime} \\
t^{\prime}
\end{array}\right]+s^{\prime}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]=\left[\begin{array}{c}
-x_{0} s^{\prime}+s^{\prime} x_{0} \\
-x_{0} t^{\prime}+s^{\prime} y_{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Now we have shown $A=B_{1} \oplus B_{2}$, which is isomorphic to $\mathbb{Q}\left(s^{\infty}\right) \oplus \mathbb{Z}$.
(2) Since $\left[\begin{array}{cc}s & 0 \\ t & s-1\end{array}\right]^{n}=\left[\begin{array}{cc}{ }_{t} \sum_{i=0}^{n-1} s^{i}(s-1)^{n-1-i} & 0 \\ (s-1)^{n}\end{array}\right]$ and $t \sum_{i=0}^{n-1} s^{i}(1-s)^{n-1-i}=t\left(s^{n}-(s-1)^{n}\right)$, A is isomorphic to

$$
\begin{aligned}
& \left\{u\left[\begin{array}{c}
s^{-n} \\
-t s^{-n}(s-1)^{-n}\left(s^{n}-(s-1)^{n}\right)
\end{array}\right]+v\left[\begin{array}{c}
0 \\
(s-1)^{-n}
\end{array}\right]: u, v \in \mathbb{Z}, n \in \mathbb{N}\right\} \\
& \quad=\left\{u s^{-n}\left[\begin{array}{l}
1 \\
t
\end{array}\right]+(-t u+v)(s-1)^{-n}\left[\begin{array}{l}
0 \\
1
\end{array}\right]: u, v \in \mathbb{Z}, n \in \mathbb{N}\right\} \\
& \quad \simeq \mathbb{Q}\left(s^{\infty}\right) \oplus \mathbb{Q}\left((s-1)^{\infty}\right) .
\end{aligned}
$$

A sequence $\left(x_{n}: n<\omega\right)$ is said to be semi-periodic, if there exist integers $m \geqslant 0$ and $k>0$ such that $x_{n}=x_{n+k}$ for every $n \geqslant m$, and to be periodic, if there exists an integer $k>0$ such that $x_{n}=x_{n+k}$ for every n.

Corollary 6.3. Let α be a p-adic integer. Then A_{α} is isomorphic to $\mathbb{Q}\left(p^{\infty}\right) \oplus \mathbb{Z}$, if and only if α is rational, i.e. semi-periodic.

Proof. The sufficiency follows from Theorem 6.2(1). Suppose that A_{α} is isomorphic to $\mathbb{Q}\left(p^{\infty}\right) \oplus \mathbb{Z}$. Since A_{0} is isomorphic to $\mathbb{Q}\left(p^{\infty}\right) \oplus \mathbb{Z}$, we have $a, b, c, d \in \mathbb{Z}[1 / p]$ such that $a \alpha+c=0$ and $a d-b c=p^{n}$ for some $n \in \mathbb{Z}$. Then a is non-zero and hence α is rational.

Now we have
Corollary 6.4. Let α and β be p-adic integers. Suppose that α is rational. Then, A_{β} is isomorphic to A_{α} if and only if β is rational, i.e. semi-periodic.

The following are complementary to Theorem 6.1.
Corollary 6.5. Let α be a p-adic integer. Then $A_{\alpha+m}$ and $A_{-\alpha+m}$ are isomorphic to A_{α} for every $m \in \mathbb{Z}$.

Proof. Let $\alpha=\sum_{n=0}^{\infty} \alpha(n) p^{n}$ is a canonical presentation. If α is rational, the conclusion follows from Corollary 6.3. So, we suppose that α is not rational. Then, for a non-negative $m \in \mathbb{Z}$ we have n_{0} such that $\sum_{n=0}^{n_{0}} \alpha(n) p^{n} \geqslant m$. Hence the direct systems related to α and $\sum_{n=0}^{n_{0}} \alpha(n) p^{n}-m$ are the same eventually and we have $A_{\alpha} \simeq A_{\alpha-m}$. We apply this fact to $-\alpha$, then by Lemma 4.3 we have $A_{\alpha} \simeq A_{-\alpha} \simeq A_{-\alpha-m} \simeq A_{\alpha+m}$. We have the other cases similarly.

To investigate solenoids Keesling and Mardesic [9] investigated a certain A_{α}. Now their following result is clear from Corollary 6.3.

Let (i_{n} : $n<\omega$) be a strictly increasing sequence of natural numbers such that $\lim _{n \rightarrow \infty} i_{n+1}-i_{n}=\infty$ and let α be the p-adic integer $\sum_{n=0}^{\infty} p^{i_{n}}$. Then A_{α} is not isomorphic to $\mathbb{Q}\left(p^{\infty}\right) \oplus \mathbb{Z}$.

Finally we prove results about finite index supergroups and subgroups of A_{α} 's for rational α and related results. The results contrast with Theorem 5.2.

Lemma 6.6. Letr be a positive integer, let s an integer, let $f:\{0,1, \ldots, r-1\} \rightarrow\{0,1, \ldots, r-1\}$ be a function, and let $x_{n} \in\{0,1, \ldots, r-1\}$ for $n<\omega$.
(1) If $x_{n+1}=f\left(x_{n}\right)$ for $n<\omega$, then the sequence $\left(x_{n}: n<\omega\right)$ is semi-periodic.
(2) If $x_{n}=f\left(x_{n+1}\right)$ for $n<\omega$, then the sequence $\left(x_{n}: n<\omega\right)$ is periodic.

Proof. (1) Since $x_{n} \in\{0,1, \ldots, r-1\}$, there are $0 \leqslant i_{0}<j_{0} \leqslant r$ such that $x_{i_{0}}=x_{j_{0}}$. Then $\left(x_{n}: n<\omega\right)$ is $\left(j_{0}-i_{0}\right)$-periodic on $\left[i_{0}, \omega\right)$.
(2) Fix n. There are $0 \leqslant i<j \leqslant r$ such that $x_{n+i}=x_{n+j}$. Then $x_{n}=x_{n+j-i}$. Let $k_{n}>0$ be the minimal $k>0$ such that $x_{n}=x_{n+k_{n}}$. We have $x_{n}=f\left(x_{n+1}\right)=f\left(x_{n+k_{n+1}+1}\right)=x_{n+k_{n+1}}$ and so $k_{n} \leqslant k_{n+1}$. We claim $k_{n}=k_{n+1}$ for every $n<\omega$. To show this by contradiction, suppose that $k_{n}<k_{n+1}$. Let $m=n+k_{n}$. Since $x_{m}=x_{n+k_{n}}=x_{n}=x_{n+k_{n+1}}, k_{m} \leqslant k_{n+1}-k_{n}<k_{n+1}$, which contradicts $m \geqslant n+1$.

Corollary 6.7. For each $n<\omega$, let B_{n} be a copy of $\mathbb{Z} \oplus \mathbb{Z}$ and $f_{n}=\left[\begin{array}{cc}s & 0 \\ \alpha_{n} & 1\end{array}\right]$ for all n. If $\left(f_{n}: n<\omega\right)$ is semi-periodic, all finite index supergroups and subgroups are isomorphic to
$\xrightarrow{\lim }\left(B_{n}, f_{n}: n<\omega\right)$ itself. Consequently, for a rational p-adic integer α all finite index supergroups and subgroups of A_{α} are isomorphic to A_{α} itself.

Proof. Let $\left(f_{n}: n<\omega\right)$ be k-periodic on $[m, \infty)$. Then we have $\left[\begin{array}{cc}s^{k} & 0 \\ t & 1\end{array}\right]=f_{m+k-1} \cdots f_{m+1} f_{m}$ for some t and let $g_{n}=\left[\begin{array}{c}s^{k} \\ t\end{array} 1\right]$ for every $n<\omega$. Then $\xrightarrow[\longrightarrow]{\lim }\left(B_{n}, g_{n}: n<\omega\right) \simeq \underline{\lim }\left(B_{n}, f_{n}: n<\omega\right)$. Super-admissible and sub-admissible sequences for $\left(g_{n}: n<\omega\right)$ are periodic by Lemma 6.6. Fix a periodic admissible sequence and let k be the period. The direct limit is isomorphic to the direct limit given by iterated use of a matrix of form $\left[\begin{array}{cc}s^{k} & 0 \\ u & 1\end{array}\right]$ for some u. Hence the direct limit is isomorphic to $\mathbb{Q}\left(\left(s^{k}\right)^{\infty}\right) \oplus \mathbb{Z} \simeq \mathbb{Q}\left(s^{\infty}\right) \oplus \mathbb{Z}$ by Theorem 6.2.

Proposition 6.8. Let $g_{n}=\left[\begin{array}{cc}s & 0 \\ \alpha_{n} & s\end{array}\right]$ for every n. Then, the direct limit group A whose bonding maps are g_{n} 's is isomorphic to $\mathbb{Q}\left(s^{\infty}\right) \oplus \mathbb{Q}\left(s^{\infty}\right)$ and every finite index supergroup or subgroup is isomorphic to A itself.

Proof. Since $g_{n-1} \cdots g_{0}=\left[\begin{array}{cc}s^{n} & 0 \\ \sum_{i=0}^{n-1} \alpha_{i} s^{n}\end{array}\right]$, A is isomorphic to

$$
\begin{aligned}
& \left\{u s^{-n}\left[\begin{array}{c}
1 \\
-s^{-1} \sum_{i=0}^{n-1} \alpha_{i}
\end{array}\right]+v s^{-n}\left[\begin{array}{l}
0 \\
1
\end{array}\right]: u, v \in \mathbb{Z}, n<\omega\right\} \\
& \quad=\left\{u s^{-n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+v s^{-n-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]: u, v \in \mathbb{Z}, n<\omega\right\} \\
& \quad \simeq \mathbb{Q}\left(s^{\infty}\right) \oplus \mathbb{Q}\left(s^{\infty}\right)
\end{aligned}
$$

Since α_{i} 's are arbitrary, every finite index supergroup or subgroup is isomorphic to A itself.

Remark 6.9. (1) There is a possibility of extending our result to the case of finite rank, but we have not done so.
(2) In Section 3 we introduced a necessary condition for the isomorphicness of A_{α} 's. We do not know whether the condition is sufficient.
(3) The existence of a torsionfree abelian group of rank two having a finite index supergroup which is not isomorphic to the original group had been proved in [1, Theorem 9.6(2)] before [3] in a different method.

References

[1] R.A. Beaumont, R.S. Pierce, Torsionfree groups of rank two, Mem. Amer. Math. Soc. 38 (1961) 1-41.
[2] V. Matijević, Classifying finite-sheeted coverings of paracompact spaces, Rev. Mat. Complut. 16 (2003) 311-327.
[3] K. Eda, J. Mandić, V. Matijević, Torus-like continua which are not self-covering spaces, Topology Appl. (2005) 359-369.
[4] K. Eda, V. Matijević, Finite sheeted covering maps over 2-dimensional compact abelian groups, Topology Appl. 153 (2006) 1033-1045.
[5] L. Fuchs, Infinite Abelian Groups, vols. 1, 2, Academic Press, 1970, 1973.
[6] K.R. Goodearl, T.B. Rushing, Direct limit groups and the Keesling-Mardešić shape fibration, Pacific J. Math. 86 (1980) 471-476.
[7] G. Hjorth, Around nonclassifiability for countable torsion free abelian groups, in: Abelian Groups and Modules, in: Trends Math., Birkhäuser, 1999, pp. 269-292.
[8] A.S. Kechris, On the classification problem for rank 2 torsion-free abelian groups, J. London Math. Soc. 62 (2000) 437-450.
[9] J. Keesling, S. Mardešić, A shape fibration with fibers of different shape, Pacific J. Math. 84 (1979) 319-331.
[10] S. Thomas, The classification problem for torsion-free abelian groups of finite rank, J. Amer. Math. Soc. 16 (2003) 233-258.

[^0]: * Corresponding author.

 E-mail addresses: eda@waseda.jp (K. Eda), vlasta@pmfst.hr (V. Matijević).

