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The challenges of applying benefit transfer models to policy sites are often underestimated. Analysts commonly
need to estimate site-specific effects for areas that lack data on the number of people who use the resource, in-
tensity of use, and other relevant variables. Here, we address issues of applying transfer functions to sites that
have sparse or missing data. We present options for estimating data to apply meta-regression models (MRMs)
in ways that are scale-appropriate and sensitive to local conditions. Using a case study of the potential lost wel-
fare to freshwater anglers as a result of mountain top coal mining within West Virginia, we integrate: 1) an em-
pirical ecological model of fish community changes; 2) an MRM that relates changes in catch rates to changes in
anglers' utility; and 3) a spatial participation analysis that maps trip distribution using multiple survey datasets.
We evaluate two scenarios: partial (20%) and full use of existingmine permits. Our conservative estimates of an-
nual welfare loss are $120,500 for the partial scenario and $627,800 for the full scenario, due to changes in rec-
reational fishing catches. These results are sensitive to catch rate assumptions and socio-demographic
characteristics that varied widely depending on the spatial scale of measurement.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Benefit transfer (BT) is often considered to be a straightforward val-
uation method that is relatively easy and inexpensive to apply, as com-
pared to conducting primary studies (Iovanna and Griffiths, 2006;
Ready and Navrud, 2005; Richardson et al., 2015; Wilson and Hoehn,
2006). The current state of the art in benefit transfer is the use of
meta-analysis approaches to develop a transfer function, and meta-
regression models (MRMs) are increasingly being estimated with the
intention of providing the best possible transfer functions (Bergstrom
and Taylor, 2006; Johnston and Rosenberger, 2010; Richardson et al.,
2015; Shrestha et al., 2007; U.S. EPA, 2010). While issues remain with
MRM techniques, generally accepted standards for conducting and test-
ingMRMs have been developed to promote the rigor and consistency of
applications (Bergstrom and Taylor, 2006; Boyle et al., 2010; Boyle et al.,
2013; Nelson and Kennedy, 2009; Rosenberger and Loomis, 2001;
Stanley et al., 2013).

Given a well-conducted and robust MRM with policy-relevant pa-
rameters, additional complications arise from the sparse to nonexistent
data available to fit the model to a novel location. In order to apply an
ta).
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MRM to a policy scenario, various types of site-specific information
are needed, and it is typically assumed that such information is readily
available. In the ideal world, all the necessary policy-relevant data
would be available to allow practitioners to follow the most rigorous
standards when conducting a benefit transfer. However, managers
commonly need to estimate site-specific effects for areas that lack
data on the number of people who use the resource, total participation,
and other relevant variables needed to transfer benefits.

In the literature, most studies that address issues related to applying
meta-analysis focus on out of sample transferability and other method-
ological andmodel robustness issues. Here, we focus on issues related to
data needs and approaches to dealing with sparse or missing data for
policy sites; these issues have been less widely discussed in the litera-
ture, though there are various examples of policy evaluations using
MRM for benefit transfer (Iovanna and Griffiths, 2006; Johnston et al.,
2005; Mazzotta et al., 2014; Van Houtven et al., 2007). In this paper,
we describe the integration of ecological and economic models and
present approaches to addressing data limitations. In particular, we
present an approach to modeling recreation participation by location
through spatial modeling of existing national databases. We illustrate
model estimation challenges and approaches to dealingwith those chal-
lenges by presenting a specific policy application— evaluating potential
lost fisheries ecosystem service (ES) values caused by surface coal min-
ing in theAppalachian region of theU.S., focusing on recreationalfishing
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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values. Section 2 describes the policy context and case study; Section 3
describes ourmethods; Section 4 presents results of themodels and the
policy application; and Section 5 contains a discussion and conclusions.

2. Policy Context and Case Study Description

Mountaintop coal mining is a surface mining practice involving the
removal of mountaintops to expose coal seams, and disposing the asso-
ciated mining overburden in adjacent valleys, termed “valley fills.” Val-
ley fills occur in steep terrain where disposal alternatives are limited.
Mountaintop coal mining operations are concentrated in eastern Ken-
tucky, southern West Virginia, southwestern Virginia, southeastern
Ohio, and scattered areas in Tennessee (U.S. EPA, 2011) (Fig. 1).
Bernhardt and Palmer (2011) note that, to date, about 1.1 million hect-
ares of forest in this region have been converted to surface mines and
more than 2000 km of stream channel have been buried beneath min-
ing overburden as a result of these activities.

Several environmental issues are associatedwithmountaintopmin-
ing and valley fills, including forest fragmentation, altered hydrology,
degraded water quality, and possible negative impacts on macroinver-
tebrates, fish, and drinking water (Freund and Petty, 2007; Merriam
et al., 2013; Palmer et al., 2010; Petty et al., 2010; U.S. EPA, 2011). As a
result, regional policy-makers and environmental managers are inter-
ested in quantifying the effects of mining on ecosystem services to sup-
port environmental decision making associated with managing
mountaintop removal-valley fill (MTR-VF) mining (e.g., permit deci-
sions or remediation requirements) and long-term strategic planning
by communities. Because mountaintop mining impacts vary spatially,
depending on affected systems and populations, managers can benefit
from spatially-explicit analysis of potential economic impacts from sce-
narios of mining intensity to inform their decisions.
Fig. 1. Study area and the encompassing Appalachian mountaintop removal a
Our study area includes a portion ofWest Virginia that encompasses
most of the area in the state where MTR-VF mining occurs (Fig. 1). The
study area includes the watersheds of the Elk, Gauley, Upper Kanawha,
Coal, Upper Guyandotte, and Lower Guyandotte Rivers, Tug Fork, and
Twelvepole Creek, which drain a total of 20,795 km2. The area is about
80% forested, and the primary developed land uses are coal mining
and residential. MTR-VF mining currently accounts for around 3% and
residential development accounts for around 6% of the total land area
in the study area. We limited our analysis to effects on wadeable
streams and large rivers (8.0 km2 to 4354 km2 drainage area) within
the mining region, and did not include headwater streams or great
rivers.

Recreational fishing is highly relevant to policy discussions, because
it is potentially adversely affected by MTR-VF mining and it is a popular
activity for Appalachian residents and visitors. In addition, fishing pro-
vides a supplemental food source for some food insecure populations
in the region (Gorimani and Holben, 1999). However, creel survey
data are not collected locally, so little site-specific data exist on the num-
ber of anglers, days spent fishing, catch rates, and other angler charac-
teristics (e.g., income, age, avidity) that are relevant to assessing value
of recreational fishing changes. The best available data on participation
and angler characteristics are from the U.S. Fish and Wildlife Service's
(USFWS) National Survey of Fishing, Hunting, and Wildlife-Associated
Recreation (FHWAR) (U.S. Fish and Wildlife Service (USFWS), 2011a),
which, given sampling density, cannot be robustly disaggregated to spa-
tial scales finer than the state (U.S. Fish and Wildlife Service (USFWS),
2011b).

To examine the influence of surface coal mining on the economic
values associated with recreational fishing, we developed integrated
ecological and economic models and applied them to the case study
area. We first developed and refined ecological models to relate mining
nd surface coal mining region (mines were mapped by Skytruth (2009)).
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activities to changes in the abundance of recreational fish (Petty et al.,
2014).We then combined anMRM and participationmodeling analysis
to estimate the potential loss of recreational fishing benefits from min-
ing. The integrated models provide a means to examine the changes in
freshwater recreational fishing opportunities within the context of
other stressors in the case study watersheds, such as existing land
uses and water quality stressors. In our study area, bass and other
warm water species are the most abundant species; therefore we fo-
cused our recreational fishing analysis on these species groups. Howev-
er, the MRMwe developed can be used to examine welfare changes for
a range of freshwater species.

To evaluate thepotentialmagnitude of change in recreationalfishing
values, we evaluated two hypothetical mining scenarios: 20% of current
leases mined (randomly distributed) and 100% of current leases mined.
As shown in Fig. 1, MTR-VFmining covers themajority of the study area
but is concentrated in some regions. As the actual projected mining is
unknown, these two scenarios bracket the potential magnitude of min-
ing effects in the region.

3. Methods

We integrated three models to relate surface mining impacts to
changes in social welfare (Fig. 2). The first was an empirical ecological
model that evaluated surface mining impacts on fish communities as a
function of changes in land cover characteristics, including amount of
mining,within thewatersheds. The secondmodelwas theMRM, an em-
pirical model that related changes in catch rates to changes in anglers'
utility. The third model was a spatial participation analysis, which
used GIS tools, national databases, and empirically-based dispersal
functions to estimate angler usage by location. The third model was
used to apply the MRM to the case study area.

The ecologicalmodel used to project changes infisheries due tomin-
ing used boosted regression trees to evaluate a wide variety of stream
monitoring data that included water quality and fish community vari-
ables (Petty et al., 2014). Boosted regression trees are a particular type
of classification and regression tree that is useful when relationships be-
tween independent and dependent variables are non-linear (Elith et al.,
2008). Once the trees were built, the scenario effects were estimated
from the empirical model by converting forest cover to mined land in
appropriate proportions and generating new predictions of fish assem-
blages and abundance using the fitted decision trees. The land use
changes were the main drivers of stream condition because they
reflected a host of processes that occurred to influence fish habitat
and abundance including the quality, magnitude and timing of water
moving into streams (Petty et al., 2014).

To integrate the ecological and economic (MRM) models, we evalu-
ated how changes in fish abundancewere likely to translate into chang-
es in catch rates. In addition, we used the spatial participation model to
model the spatially variable degree of impact to the population of
Fig. 2. Relationships between model
affected anglers by considering population distribution, angling partici-
pation rates, and travel behavior. This spatial participation model was
then used to estimate the sumof utility losses across all affected anglers,
using theMRM. In this paper, we describe theMRMand the spatial par-
ticipation model; details of the ecological model are described else-
where (Petty et al. 2014).

3.1. Meta-regression Model

Our MRM built on past work that developed an MRM to estimate
changes in saltwater and freshwater recreational fishing values
(Johnston et al., 2006; U.S. EPA, 2006). We tailored this general model
to our study site. First, we filtered the studies from the original database
used to fit the model to include only freshwater, non-anadromous spe-
cies — the species most appropriate for this policy context. Second, we
added studies to the database by conducting a literature search for stud-
ies published after 2004, the date of the original analysis. Third, we fit a
newMRM tailored to freshwater fishing sites. In selecting variables and
fitting the model, we used the previous MRM study (Johnston et al.,
2006; U.S. EPA, 2006) as a guide, following generally accepted practices
(Bateman and Jones, 2003; Bergstrom and Taylor, 2006; Nelson and
Kennedy, 2009; Rosenberger and Loomis, 2001; Stanley et al., 2013).
After model fitting, the new model contained many of the same vari-
ables as the previous model, with some changes relevant to the revised
data set. Besides eliminating salt water and anadromous species, the
most notable changes are that our model includes only one methodo-
logical variable and does not include regional variables, while the earlier
study included a set of methodological variables and some regional var-
iables. These changes reflect the smaller data set, which has less varia-
tion in methods; and the fact that regional variations were highly
correlated with fresh water species, as discussed below.

To update the database, we searched the literature (following the
procedures used by Johnston et al., 2006) and identified 179 potentially
relevant studies published between 2004 and 2012. After screening, we
found four new studies (providing 15 observations) that were relevant
to our analysis and included the data necessary for estimating the
model. The criteria for inclusion in the database were: (1) to assure
commodity consistency, the study estimated willingness to pay (WTP)
by recreational anglers for catching an additional fish, or provided suffi-
cient information to estimateWTPper fish; (2) to assurewelfare consis-
tency, the study estimated Hicksian welfare measures; and (3) to
control for policy and social context factors, the study was conducted
in the United States.

Our final database included 19 studies and 108 observations
(Table 1). The 19 studies include 9 journal articles, 3 reports, 2 working
papers, 1 conference proceedings paper, and 4 dissertations. Data for
the studies were collected between 1986 and 2011. Studies provided
from 1 to 19 observations. Eleven of the studies used stated preference
methods (9 contingent valuation and 2 conjoint analysis), and 8 used
s and data used in the analysis.



Table 1
Studies included in the meta-analysis.

Author(s) and year Type of publication Number of
observations

State(s) Study methodology Species Marginal value per fish
(2012$)

Besedin et al. (2004) Conference proceedings 10 MI RUM Bass
Perch (other)

No target (other)
Walleye–pike

$16.34 to $21.30
$2.22 to $3.67
$1.97 to $4.16

$12.66 to $26.55
Bingham et al. (2011) Journal article 8 NJ RUM Bass

Panfish (other)
No target (other)

trout

$5.06 to $8.86
$4.12 to $8.86
$3.80 to $4.43
$9.49 to $17.17

Breffle et al. (1999) Report 6 WI Conjoint analysis Perch (other)
Walleye
Bass

$0.98 to $1.95
$5.13 to $10.38
$17.04 to $34.18

Dalton et al. (1998) Journal article 2 WY Contingent valuation Trout $34.99 to $63.95
Douglas and Harpman (2004) Journal article 2 UT, AZ Contingent valuation No target (other) $22.53 to $26.99
Johnson (1989) Dissertation 5 CO Contingent valuation Trout

Rainbow trout
$1.08 to $2.14

$3.21
Johnson et al. (1995) Journal article 19 CO Contingent valuation Trout $0.68 to $3.65
Lee (1996) Dissertation 5 WA Conjoint analysis Trout $1.40 to $4.76
Loomis (2005) Report 3 ID, WY Contingent valuation No target (other) $15.22 to $28.23
Lupi (1997) Dissertation 9 MI RUM Lake trout $7.45 to $13.85
Lupi and Hoehn (1998) Working paper 3 MI RUM Lake trout $12.58 to $17.28
Lupi et al. (1997) Report 7 MI RUM Bass

Catfish/carp (other)
Pike

Lake trout rainbow
trout

Walleye

$10.62
$1.74
$2.91
$8.22

$12.58 to $19.61
$4.55

Milliman et al. (1992) Journal article 1 WI Contingent valuation Perch (other) $0.41
Morey et al. (2002) Journal article 2 MT RUM Trout $14.44 to $246.33
Murdock (2001) Dissertation 7 WI RUM Bass

Muskie (pike)
Pike
Trout

$5.26 to $24.21
$201.81
$19.50
$40.65

Pendleton and Mendelsohn (1998) Journal article 3 ME, NH, VT,
NY

RUM Trout
Rainbow trout

$5.37 to $32.89
$29.07

Rosenberger (2004) Journal article 2 WV Contingent valuation Rainbow trout $1.66 to $2.24
Whitehead and Aiken (2000) Working paper 6 USA Contingent valuation Bass $5.72 to $12.90
Williams and Bettoli (2003) Report 8 TN Contingent valuation Trout $0.77 to $11.73
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revealed preference Random Utility Model (RUM) methods. Thirty-six
observations, from six studies, are values for stocked species.

Table 2 presents descriptive statistics for variables included in the
final model. The dependent variable is the natural log of WTP per fish,
converted to 2012$ using the Consumer Price Index (U.S. Bureau of
Labor Statistics). Values per fish in the original studies included in our
MRM ranged from $0.41 to $246.33, with a mean of $13.70 and median
of $5.91, resulting in log values ranging from−0.88 to 5.51,with amean
of 1.76. The age and number of trips variableswere included as categor-
ical rather than continuous variables, as in U.S. EPA (2006), because
there was not enough variation in the continuous measure to estimate
parameters at that level of precision. The mean angler age in the data
was 44.5 (based on 27 observations with data); based on this finding,
we created two age categories: 45 and up and less than 45. The mean
sample number of trips per year (based on 58 observations with data)
was 20; we thus categorized trips into less than 20 and 20 and up. The
variable less than 20 was not significant and not retained in the final
model, so was not included in the tables. The catch rate variable was
measured as fish caught per day. For studies that estimated fish per
hour, estimates were converted to fish per day using average hours
fished per day from the original study, or 4 h (the overall daily average)
if not reported in the original study.

To specify and test the model, we first checked the data for influen-
tial observations, using tests of residuals and stem and leaf plots of the
residuals. These tests did not identify any observations with undue in-
fluence on the estimates. Next, as recommended by Nelson and
Kennedy (2009), we estimated the weighted mean WTP per fish,
using sample sizes from the original studies as weights. The preferred
weight is the inverse variance of the estimate, but since this was not
reported for most of the studies, we used the sample size, again, as rec-
ommended by Nelson and Kennedy (2009). The weighted mean value
was slightly lower ($12.34 vs. $13.70), and the confidence interval
was tighter than for the unweighted mean. Based on this result, we
used the weighted form in the meta-regression.

In early tests of explanatory variables, we found that certain vari-
ableswere highly correlated. Species distributions are not geographical-
ly random and studies tend to be concentrated in certain water bodies.
For example, all lake trout studies were conducted in the Great Lakes.
Further, studies from theMidwest and in the Great Lakes are highly cor-
related, with most Midwest observations conducted in the Great Lakes.
As a result of these correlations, we were unable to account for regional
differences in value in the model. We tested various model specifica-
tions, including a random effects panel model, defining panels as all ob-
servations from a single dataset. The Breusch–Pagan test indicated that
random effects were not significant. A weighted OLS model without ro-
bust errors tested positive for heteroskedasticity, so we selected a
weighted OLS model, using sample size as weights, with clustered ro-
bust errors, clustered by study, as the best model fit.

We conducted a series of model robustness tests, as recommended
by Boyle et al. (2013), and found that model coefficients were robust
across various model specifications and tests. Following Hoehn (2006)
and Boyle et al. (2013), we tested for sample selection bias, by first esti-
mating a regression that explained the probability of at least one study
being conducted in each state, with the following regressors: percent of
the state in inland waters, state per capita income, number of fishing
licenses, population density, and fish and wildlife spending in the
state. From this equation we estimated the Inverse Mills Ratio, which
was then added to the WTP model, and found to be insignificant,



Table 2
Summary statistics for meta-regression variables.

Variable name Definition Mean (std. dev.) [range]

log_WTP Dependent variable. Natural log of willingness to pay to catch an additional fish (in 2012$). 1.761 (1.246)
[−0.88–5.51]

st_pref Binary (dummy) variable; =1 for stated preference studies, =0 otherwise. 0.546 (0.500) [0–1]
year_indx Index for the year a study was conducted, calculated as the study year minus 1985, the earliest year in the data set. 9.759 (5.394) [1–19]

inc_thou
Average household income of survey respondents in thousands of (2012) dollars. If the study does not list income values, this was
imputed from Census data for the appropriate geographic area.

58.422 (17.024)
[27.35–130.28]

age_lt45
Binary (dummy) variable; =1 if the mean age of sample respondents was less than 45 (the mean for all studies in our sample), =0
otherwise. 0.398 (0.492) [0–1]

age_45up Binary (dummy) variable; =1 if the mean age of sample respondents was 45 or greater, =0 otherwise. 0.130 (0.337) [0–1]

trp_20up
Binary (dummy) variable; =1 if the mean number of fishing trips for sample respondents was 20 or more per year (20 was the mean
trips per year for all studies in our sample), =0 otherwise. 0.204 (0.405) [0–1]

nonlocal Binary (dummy) variable, =1 if no respondents in the sample were local residents. 0.019 (0.135) [0–1]
bass_fw Binary (dummy) variable, =1 if target species was freshwater bass, =0 otherwise. 0.139 (0.347) [0–1]
pike_walleye Binary (dummy) variable, =1 if target species was pike or walleye, =0 otherwise. 0.093 (0.291) [0–1]
rainbw_trout Binary (dummy) variable, =1 if target species was rainbow trout, =0 otherwise. 0.056 (0.230) [0–1]
laketrout Binary (dummy) variable, =1 if target species was lake trout, =0 otherwise. 0.120 (0.327) [0–1]
unspec_trout Binary (dummy) variable, =1 if target species was an unspecified trout species, =0 otherwise. 0.417 (0.495) [0–1]

Other species
Other freshwater species not included in the above categories, including panfish, perch, catfish, carp, and “no target” (this is the
omitted base case in the model) 0.176 (0.383) [0–1]

lake_res Binary (dummy) variable, =1 if angling took place in a lake or reservoir (other than Great Lakes), =0 otherwise. 0.056 (0.230) [0–1]

catch
For studies that present catch rate on a per hour, per day, or per trip basis, this is the baseline catch rate for the target species,
converted to fish per day; otherwise this variable is set to zero. 2.298 (2.86) [0–14]

spec_catch Binary (dummy) variable, =1 if baseline catch rate was specified in the study, =0 otherwise. 0.861 (0.347) [0–1]
stock_yes Binary (dummy) variable, =1 if the study valued stocked fish, =0 otherwise. 0.333 (0.474) [0–1]
_cons Model intercept.

Table 3
Mean absolute deviations in parameter values.

Coefficient MAD Min Max

lake_res 0.34 0.01 1.15
age_45up 0.26 0.01 0.54
st_pref 0.21 0.00 0.46
trp_19up 0.21 0.05 0.45
stock_yes 0.17 0.02 0.35
ln_year 0.11 0.01 0.21
spec_catch 0.11 0.02 0.21
_cons 0.10 0.02 0.18
catch 0.09 0.01 0.26
unspec_trout 0.09 0.01 0.18
inc_thou 0.07 0.02 0.17
nonlocal 0.06 0.03 0.09
age_lt45 0.05 0.00 0.11
rainbw_trout 0.05 0.00 0.11
laketrout 0.04 0.00 0.08
bass_fw 0.03 0.00 0.09
pike_walleye 0.02 0.00 0.04
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indicating no evidence of sample selection bias. This finding is consis-
tent with the results found in Boyle et al. (2013).

Model coefficients and significance were generally robust to tests of
horizontal (omitting studies) and vertical (omittingmodel parameters)
robustness. In the horizontal robustness tests, no studies were found to
have single influential observations, based on the Cook's D statistic; and
five of the 19 studies were found to be influential, based on F-tests of all
parameters as a group. Each of these influential studies was removed in
turn from the model, and effects on parameters were tested. The mean
absolute deviations (MADs) in parameter values, which are estimated
by removing each individual influential study from the database, one
at a time, are shown in Table 3, and range from 0.02 to 0.34. In the ver-
tical robustness tests, we estimated the regression with each possible
linear combination of variables, and examined whether individual coef-
ficients remained statistically significant and whether their estimates
crossed zero. Only the catch rate and income variables passed these
stringent tests; however, all but four of the coefficients (the intercept,
age_45up, stock_yes, and unspec_trout) passed the less stringent test
using the interdecile range (which tests whether the 10th and 90th per-
centile of values cross zero). The catch rate variable was robust to all
specifications.

3.2. Spatial Trip Demand Analysis

We developed a model to estimate angler activity by location using
available national survey datasets. In doing the estimation, we focused
on local day trips (as opposed to overnight trips), because we expect
that these trips provide the bulk of visits to sites in the study area,
which is not a major tourist destination. This assumption is consistent
with survey data that estimate that 94% of all fishing days in WV are
fished by state residents (U.S. Fish and Wildlife Service (USFWS),
2011b, Table 3).

Our model of trip-taking behavior used an approach commonly ap-
plied in biological and geographic sciences for distributing organisms
spatially as a function of initial densities (by location) and movement
patterns. Suchmodels use a dispersal kernel to represent the probability
of organism dispersion as a function of distance from the origin point.
An alternative approach, travel time along networks (e.g., roads,
streams) is likely to be a more accurate means to estimate human
movement (Xie and Yan, 2008), but creates large computational
burdens in cases such as ours in which users have large numbers of po-
tential origin and destination points.

Spatial dispersionmodels have been used inmany applications, par-
ticularly estimating spread of disease (Mundt et al., 2009) and invasive
species (Shigesada et al., 1995).While thesemodels commonly attempt
to incorporate complex effects such as rare events of long-distance dis-
persal (Nathan, 2006), stochasticity (Keeling et al., 2001), and feedbacks
(Baker et al., 2012), recent work has suggested that the predictive abil-
ity of these models is limited (Clark et al., 2003; Hastings et al., 2005).
Thus, although it is obvious that simple models have high error, it is
not clear that increasedmodel complexity leads to generalizablemodels
with reduced error (Robinet et al., 2012).

Since we needed a model to apply across a large geographic region,
we used a relatively simple method to generate a dispersal kernel to
generally characterize angler trip-taking behavior. Our approach
consisted of three main steps: (1) estimate number of days demanded
by origin (DDO) (i.e., residences); (2) generate a probability density
function (PDF) representing the expected distribution of anglers as a
function of distance from home; and (3) apply the PDF to the DDO
map to distribute angler days across the landscape and provide esti-
mates of days demanded by location (DD). Steps 1 and 2 used local,
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state and national survey data as inputs to these models. Step 3 created
a map of estimated demand for recreational fishing by map pixel. We
summed demand estimates by 10-digit Hydrologic Unit (HUC-10 wa-
tershed) before use in the economic value estimation.

3.2.1. Developing the Days Demanded by Origin (DDO) Map
The DDO map represents the number of recreational angler days

that would be generated by location (30-m map pixel) based on popu-
lation distribution, demographic-specific participation rates, and aver-
age days per participant, using the steps described below.

3.2.1.1. Population Distribution. The US Census Bureau population census
provides relatively detailed population distribution data; however, the
spatial detail is often low in rural areas. In rural areas, blocks and
block groups (the smallest census reporting unit) can be large (100 s
of mi2), even though people may be concentrated in a few areas. To cre-
ate more precise locations of population, dasymetric mapping can be
used. In this technique, landscape features that are likely to indicate
the presence of residences (e.g., roads, developed land use) are used
to map population to its most likely location within a block group
(Eicher and Brewer, 2001; Fisher and Langford, 1995; Langford and
Unwin, 1994; Mennis, 2003).

We used a dasymetric dataset based on the 2010 US Census data,
created by U.S. EPA for the contiguous U.S. (U.S. EPA, 2013), which
used roads, land cover, and other data indicating presence of residences
to distribute population and socio-demographic characteristics from
census block groups to 30-m map pixels. We defined the source area
for anglers as the study area plus a 100 mile buffer. The 100 mile buffer
was set to capture anglers who would be likely to travel to the study
area based on observed travel distances for anglers in this region of
the country (data are described in the 2-D PDF estimation methods).

3.2.1.2. Freshwater Fishing Participation Rates.Many demographic factors
have been shown to influence outdoor recreation participation rates in-
cluding gender, age, race, ethnicity, income, and population density
(Bockstael et al., 1987; Bockstael et al., 1989; Bowker and Leeworthy,
1998; Bowker et al., 2006; U.S. Fish and Wildlife Service (USFWS),
2011a). As a result, spatial variation in demographic characteristics
(i.e., age distribution, ethnicity) can generate locational differences in
recreational demand. However, when a given demographic factor is
spatially homogeneous, it does not contribute to differences in spatial
distribution of recreational demand. For example, if the proportion of
males to females in the population is relatively constant spatially, then
using the average participation rate across both genders will generate
the same demand by location as if the participation rate per gender
were estimated and then applied to the population. Therefore, we esti-
mated participation rates using demographic factors that varied spatial-
ly at the scale of our analysis.

To estimate participation rates, we used the raw data from the U.S.
Fish andWildlife Service's (USFWS)National Survey of Fishing, Hunting,
and Wildlife-Associated Recreation (FHWAR), which is a national
phone survey (U.S. Fish and Wildlife Service (USFWS), 2011a, 2011b).
Rather than use average participation rates by state, which is the finest
scale appropriate for the sampling density, we used the survey data to
estimate participation rates for four demographic groups that exhibit
spatial variability: (1) urban white non-Hispanic, (2) urban non-white
and Hispanic, (3) rural white non-Hispanic, and (4) rural non-white
and Hispanic. We omitted highly correlated demographic variables to
create a parsimonious model of participation rates that could be readily
transferred across regions.

We used different data sets to estimate participation rates for white
and non-white groups. Forwhites, we usedweighted observations from
the Appalachian region including the states of VA, WV, KY, TN, and NC.
For non-whites, we used weighted observations from the continental
US data, because too few observations were available for the case
study region. These regional or national estimated participation rates
were then available to use at scales finer than the state because they
could be linked to locally variable demographics.We applied the partic-
ipation rates to the dasymetric population data to generate a map of
total anglers based on location of residences. The dasymetric data pro-
vided total population. To estimate the adult population (18 and
over), we reduced the total population in the dasymetric pixel data by
the proportion of the state-level population that was under age 18.

3.2.1.3. Days per Angler. The average number offishingdays per freshwa-
ter fishing participant per year was derived from the FHWAR data (U.S.
Fish andWildlife Service (USFWS), 2011a) using the same demographic
groups used for assessing number of participants. We multiplied the
survey-derived weighted average days per participant by number of
participants to generate estimates of total days per year of freshwater
fishing in our study region.We produced a 30-m grid of days demanded
and aggregated cells to 480-m cells to enhance processing efficiency.

3.2.2. Fitting the Probability Density Function
Once the DDO map was developed, the next step was to estimate

how the recreation days identified in that map would be distributed
across the landscape. A PDF was fit to data and then used to estimate
the dispersion of anglers across the landscape. We used three steps:

1. Create the 1-dimensional (1-D) PDF showing probability density as a
function of distance from the origin point;

2. Create the 2-D probability surface— Amatrix inwhich the 1-D PDF is
integrated over individual map cells in eight directions (8 nearest
neighbor cells) to create a 2-D estimator;

3. Apply the 2-D probability surface to the DDOmap (as a moving win-
dow) to generate the days demanded (DD) by location (map cell)
map.

These three steps were applied separately to urban and rural
recreator data due to different travel behavior between groups. Once
the DD maps were created for urban and rural anglers, the data were
added together to create a single DD map for the study region.

3.2.2.1. Develop the 1-D PDF. The 1-D PDF represents the probability that
a recreator will travel a given distance from her origin point and can be
applied to represent the behavior of a population of recreators. To gen-
erate the PDF, we used survey data from the National Visitor Use Mon-
itoring (NVUM) program (USDA Forest Service, 2011). The survey is
conducted onsite at all National Forest and Grassland sites on a four-
year cycle and provides a national data set representing travel distances
by recreation type among other variables. We selected observations
from the NVUM in which respondents identified freshwater fishing as
the main purpose of their trip (fiscal years 2005–2009), separated ob-
servations into urban and rural dwellers, and excluded travel distances
greater than 500 miles. We used observations from the nation because
we did not have enough observations to represent travel distances for
each recreation type for our study area or localized region.

A gamma distribution provided the best fit to the data (Fig. 3). The
major distinction between the urban and rural anglers was that fewer
urban dwellers fish close to home, presumably because of lower avail-
ability or lower quality of sites, compared to rural dwellers. In the
PDFs, this effect translates into a peak in the PDF that is farther from
the origin for urban dwellers, relative to rural dwellers.

We corrected the urban and rural PDFs to account for the fact that
distances measured on a network of roads are not equivalent to
straight-line Euclidian distances. A “detour index” (Boscoe et al., 2012)
has been developed to characterize the difference between these two
measurements for US road density (excluding Alaska). We divided the
travel distances provided in the survey by the detour index of 1.417,
so that the numberswere scaled down to represent their equivalent Eu-
clidian distance. The PDF was fit to these scaled numbers to avoid
overestimating distance traveled.



Fig. 3. Histograms of distance traveled to recreate for rural (a) and urban (b) recreational freshwater anglers and fitted gamma probability density functions.
Source data: USDA Forest Service (2011).
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3.2.2.2. Develop the 2-DModel. The urban and rural 1-D PDFswere trans-
lated into 2-D probability surfaces that represent the probability of trav-
el in all directions from a given origin point. R code was used to create a
matrix of PDF values by calculating a distance from the origin and calcu-
lating the probability of travel to that cell, using the gamma dispersal
function. The resulting surface was sized at 150 miles (240 km),
which is consistent with the 1-D PDF results but truncates the distribu-
tion by removing the tails. Because the probabilities of travel outside
this window are extremely small, aminimal number of long trips are ig-
nored to improve processing time. After all cell values were calculated,
the probability surface was normalized so that the probabilities in all
cells sum to 1. The resulting probability surfaces show generalized trav-
el patterns that are suggested by the survey data on travel distances of
urban and rural anglers (Fig. 4).
Fig. 4. Two dimensional probability surface for rural (a) and urban (b) freshwater anglers. These
based on survey data of travel distances, under assumptions of spatial isotropy (identical condi
described in text). Urban and rural freshwater anglers exhibit different travel patterns since ur
3.2.3. Apply the 2-D Kernel Density Estimator to the DDOMap to Generate
the Days Demanded (DD) Map

The final step in estimating the distribution of freshwater angler days
demanded in our case study area was to apply the 2-D probability sur-
face to the DDO map to estimate demand for fishing by location. In this
step, the 2-D model was used as a moving window and its center was
placed, one-by-one, on each cell of the DDO map. The population count
at the center of the moving window was distributed according to the
2D probability surface. In other words, if 50 days were demanded at a
given cell (based on participation rates of the population present in
that cell), those days were spread outward to the adjacent cells within
the window according to the probabilities of the 2-D probability surface.
The processwas repeated at each cell of the DDOmap. Finally, the results
of each instance of spreading days outward fromeach cell to the entire 2-
surfaces represent the probability of travel from any given point of origin, in any direction,
tions in all directions) but correcting for non-linear travel time using the detour index (as
ban dwellers travel farther than their rural counterparts to engage in fishing.
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Dwindowwere summed together to generate the days demanded (DD)
maps for urban and rural anglers. This entire process was automated in
Python using the NumPy library (van der Walt et al., 2011).

The days demanded for rural and urban anglers (Fig. 5) were added
together to create the final DD surface. The surface represents the total
number of angler days demanded by location. The figure shows the
broad patterns in trip density that develop, such as concentric circles,
Fig. 5. Distribution of freshwater fishing days dema
that reflect effects of cities or other population concentrations. The
data in this DD surface were summed by HUC-10 watershed to reduce
error associated with cell-specific calculations (e.g., that might be intro-
duced by assuming spatial isotropy) and tomatch the scale of other data
used in the benefit transfer function.

We verified the resulting estimated angler days at the scale of the en-
tire case study area by comparing the total days demanded in theDDmap
nded (DD) for rural (A) and urban (B) anglers.
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to the total days in the DDO. This confirmed that the total number of days
was consistent before and after the probability surface was applied. We
also compared the number of fishing days to survey totals for the State
of WV. According to the U.S. Fish and Wildlife Service (USFWS)
(2011b), p. 7), anglers (from in and out of state) fished 4.5 million days
within West Virginia in 2011 (305,000 people). In comparison, the total
fishing days that we estimated for this region is 1.18 million days or
26% of annual days for WV. The study area represents about one quarter
of the state area and population, which is consistent with our estimate
that 26% of all fishing days occur in the case study region.

3.3. Model Integration

We aggregated both the ecological and spatial demand results to
HUC-10 watersheds which created a final set of 45 HUC-10 watersheds
with average size 460 km2. We used this scale of analysis because it
maintains the connections of the stream network and is a reasonable
range for representing a set of nearby sites that an individual angler
might use (USDA Forest Service, 2011). We then applied the ecological
and spatial demand results to estimate potential welfare effects on rec-
reational anglers from mountaintop removal mining, for the two sce-
narios (20% and 100% of available mine permits become active).

To evaluate the aggregate economic effects of changes in recreation-
al fishing for the twomining scenarios, we required the following infor-
mation for each watershed in the study area:

1. proportion of total angler catch made up of each of the affected rec-
reational species

2. baseline catch rates per day fished
3. change in catch rates under each scenario
4. number of days fished
5. WTP per marginal fish.

As further described below, each of these data sources had to be de-
veloped from the existing models and available data. The proportion of
total catch represented by each affected species was developed using
proportions in the fish monitoring data. Baseline catch rates were de-
rived from the literature and local data sources and the two sources
were compared in sensitivity analyses. Change in catch rates by scenario
was estimated by assuming that the changes in catch by species were
proportional to the changes in species abundance estimated by the eco-
logical model. Number of days fished came fromUSFWS survey data. Fi-
nally, themarginalWTP per fishwas estimated by applying theMRM in
combination with all the other data.

Ideally, we would estimate the net present value of changes over
time, as mines come online and are reclaimed. However, the fisheries
model was not dynamic, so we present a static snapshot of maximum
annual impacts for each scenario.

Baseline total benefits from recreational angling in the study area
were calculated as:

$WTP=yearð Þb ¼ ðWTP=fishÞb � fish catch=dayð Þb � days fished=yearð Þb:

Policy losses from each mining scenario were calculated as:

$WTP=yearð Þp
¼ ðWTP=fishÞp � Δ fish catch=dayð Þp � days fished=yearð Þp

where the change in catch per day is calculated as:

Δ fish catch=dayð Þp ¼ Δ catch rate=dayð Þp � fish catch=dayð Þb

and the change in catch rate per day is calculated as:

Δ catch rate=dayð Þp
¼ fish abundanceð Þp− fish abundanceð Þb

� �
= fish abundanceð Þb:
The b subscript signifies the baseline (current status), and the p sub-
script signifies the policy scenario, with either 20% or 100% of existing
leases mined.
4. Results: Integrated Policy Application

4.1. Ecological Model Results

The predicted changes in fish abundance due tomining activities for
HUC-10watersheds in the study area for the two scenarios are shown in
Fig. 6 and Fig. 7. Details may be found in Petty et al. (2014). Across the
study area (45 HUC-10 watersheds), the ecological model predicted
that for the partial mining scenario, gamefish abundance would de-
crease by an average of 0.87%, ranging from0 to 3.7%. For the full mining
scenario, themodel predicted that abundancewould decrease by an av-
erage of 4.24%, ranging from 0.14% to 10.47%.
4.2. MRM Results

Table 4 shows the final model results including all retained variables
and their coefficients. Because the dependent variable is the natural log
of WTP, the coefficients are interpreted as the approximate percent
change in WTP per fish for a one-unit change in the explanatory vari-
able. The log-linear form allows for non-linearity of effects, and also im-
plies multiplicative rather than additive effects of the independent
variables on WTP. The model R-squared is 0.71, and most coefficients
are statistically significant at the 5% level or better.

The dummy variable for stated preference studies is negative and
significant at the 5% level, indicating that revealed preference studies
tend to produce higher values. The year index coefficient is positive
and significant, indicating an upward trend in real value over time,
which may be a result of increasing scarcity of recreational fish, or
may reflect other factors that have changed systematically over time,
such as changes in preferences or in study methods. As expected, an-
glers with higher incomes are willing to pay more per additional fish.
The age variable coefficients indicate that willingness to pay is generally
higher for anglers with lower than the sample average age. Anglers who
takemore trips per year are predicted aswilling to pay less per addition-
al fish than thosewho take fewer trips. Values for fish caught on trips to
nonlocal areas are significantly higher than those caught locally. Values
by species indicate that rainbow trout is the highest valued freshwater
species, followed by lake trout, bass, pike and walleye, and other trout.
All of the included species are valued more than the base case “other”
species group. Higher catch rates result in lower values per fish, which
is consistent with diminishing marginal returns to catch. Stocked fish
are valued less than fish that are not stocked.

These results are similar to those in U.S. EPA (2006), although the
comparison is complicated because, unlike this study, the earlier study
includes saltwater and anadromous species. Another difference is that
we include only two methodological variables—a dummy for stated
preference approaches, and the year index, while U.S. EPA (2006) in-
cluded multiple variables. Both studies found that stated preference
studies produce smaller values per fish than RUM studies. However, in
U.S. EPA (2006), the researchers interacted the year_index with the
method, making comparisons difficult. We did not find a significant in-
teraction among the method term and the year_index. Further, our re-
sults indicate an increasing trend in values over time, while the U.S.
EPA (2006) results indicate that trendsmay vary bymethod. Our results
suggest declining WTP per fish with age, while the U.S. EPA (2006) re-
sults indicate the opposite effect of age. However, the coefficient on
the higher age group is not significant in our model. Both models find
declining value with more trips taken; both find that nonlocal anglers
have much higher values; and both find decreasing value per fish as
catch rate increases.



Fig. 6. Ecological model results: percent change in game fish abundance for the partial mining scenario by HUC-10 watershed.
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4.2.1. Willingness to Pay per Fish
We calculated the WTP/fish with parameters appropriate to the

study area (Table 5 and Table 7), using the following formula:

WTP ¼ e x′βþσ2=2ð Þ

whereWTP is the predicted willingness to pay per fish under the policy
scenario; x′β is the sum of coefficients times policy parameters; and σ2

is the mean squared error, or residual variance, from the regression
equation (Cameron and Trivedi, 2010).
Fig. 7. Ecological model results: percent change in game fish abu
The income estimates were derived from the US Census Bureau data
for West Virginia, by choosing the median income for the county that
enclosed the majority of each watershed. Results for county-level in-
comewere compared to statemedian income to demonstrate the sensi-
tivity of results to this variable.
4.2.1.1. Estimates of Fish Caught.Akey variable that determines economic
effects of afishery change is the baseline average catch rate, since reduc-
tions where current catch rates are high will generally have lower eco-
nomic impacts than reductions where catch rates are low, all else equal.
Since we did not find a systematic survey to provide catch rates for the
ndance for the full mining scenario by HUC-10 watershed.



Table 4
Meta-regression model results.
Dependent variable: ln(WTP/fish— $2012).

Coef. Robust
std. err.

t P N t 95% conf. interval

st_pref −0.4933⁎ 0.2137 −2.3100 0.0330 −0.9423 −0.0442
year_indx 0.0933⁎⁎ 0.0236 3.9500 0.0010 0.0436 0.1430
inc_thou 0.0288⁎⁎ 0.0080 3.5800 0.0020 0.0119 0.0457
age_lt45 0.9478⁎⁎ 0.2458 3.8600 0.0010 0.4314 1.4643
age_45up −0.2853 0.4933 −0.5800 0.5700 −1.3216 0.7510
trp_20up −0.6143 0.2973 −2.0700 0.0530 −1.2390 0.0103
nonlocal 3.7319⁎⁎⁎ 0.4391 8.5000 0.0000 2.8094 4.6545
bass_fw 1.2070⁎ 0.5036 2.4000 0.0280 0.1491 2.2650
pike_walleye 1.1625⁎⁎ 0.3435 3.3800 0.0030 0.4410 1.8841
rainbw_trout 1.9668⁎⁎⁎ 0.4406 4.4600 0.0000 1.0412 2.8925
laketrout 1.6815⁎⁎⁎ 0.2786 6.0400 0.0000 1.0962 2.2668
unspec_trout 1.0151⁎⁎ 0.2440 4.1600 0.0010 0.5026 1.5277
lake_res 1.2952⁎ 0.5577 2.3200 0.0320 0.1236 2.4669
catch −0.1024⁎⁎ 0.0334 −3.0700 0.0070 −0.1725 −0.0322
spec_catch 0.6916⁎⁎ 0.2003 3.4500 0.0030 0.2708 1.1124
stock_yes −0.5793⁎ 0.2036 −2.8500 0.0110 −1.0070 −0.1516
_cons −2.0281⁎ 0.7528 −2.6900 0.0150 −3.6096 −0.4465

Number of obs = 108.
F(16, 18) = 204.8; Prob N F = 0.0000.
R-squared = 0.71.
Root MSE = 0.5498.
⁎ Significant at the 5% level (p b 0.05).
⁎⁎ Significant at the 1% level (p b 0.01).
⁎⁎⁎ Significant at the 0.1% level (p b 0.001).
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study area, we applied the average catch rates derived from our litera-
ture database. Average catch rates were 0.58 fish per day for bass, 4.4
fish per day for other species and 3.2 fish per day for trout, for inland
freshwater fishing.

To test the reliability of applying these numbers locally, we gathered
available, but limited, data from local government officials and govern-
ment reports. The WV Department of Natural Resources tracks bass
tournament catch rates and found that in 2011, the hourly catch rates
for rivers was 0.21 bass/h and for lakes and rivers combined was 0.20
bass/h (Jernejcic, 2012, pers comm). Over the past decade, the combined
catch rate for lakes and riverswas 0.15 bass/h. SeveralWVDNRpersonnel
suggested that tournament catch rates were likely to be about 3–4 times
lower than catch rates for anglers outside of competition because tourna-
ment anglers report only the largest fish they are catching, and release
many fish that are not reported.
Table 5
Independent variable assignments for meta-regression model application.

Variable Assigned value

st_pref 0

year_indx 19
inc_thou Varies by county; or 41.51 for state median
age_lt45 .53
age_45up .47
trp_20up .323
nonlocal 0
bass_fw 0 or 1

pike_walleye 0
rainbw_trout 0
laketrout 0
unspec_trout 0
lake_res 0
catch Varies
spec_catch 1
stock_yes 0
_cons 1

a Source: 2011 American Community Survey 2007–2011, U.S. Census.
b Source: 2006 National Survey of Fishing Hunting and Wildlife-Associated Recreation data.
Therefore, if we assume a 4 h fishing day and a 3.5multiplier to rep-
resent non-tournament anglers, the 2011 rate for non-tournament bass
anglers would be 2.8 fish per day if using 2011 numbers and 2.1 fish per
day using the decadal average. This estimate is significantly higher than
the catch rates found in the literature andmaybebiased by thehigh skill
level of tournament anglers, relative to the average angler. Therefore, if
we ignore the 3.5 multiplier, the mean daily rate (0.6 fish/day to 0.84
fish/day) is similar to those found in our data. In the only other applicable
data set that we found, Caudill (2007) estimated daily catch rates in the
Southeast region for the years 2002–2005 using a mix of data and best
professional judgment to arrive at the following estimates: largemouth
bass = 1.58 fish per day; all other species = 2.0 fish per day (based on
a 4-h day). Again, the catch rate for bass is significantly higher than that
of our data set, while the catch rate for other species falls within the
range of our data. We tested the highest estimate for bass catch rate of
2.8 fish/day in sensitivity analysis of WTP values.

Table 7 presents the estimated baseline willingness to pay (WTP)
per fish, in 2012$, using the mean catch rate from the meta-analysis
data and the local WV catch estimates (which are available for bass
only). Values for freshwater bass species range from around $15 to
around $22 per additional fish caught, depending on assumptions
about baseline catch rates and income. In contrast, other species (pan-
fish, perch, catfish, carp, and “no target”) range from around $3.80 to
around $4.50 per additional fish caught.

4.3. Total Recreational Angler Demand

Using the DD map, we aggregated the total days demanded for
freshwater fishing per HUC-10 watershed. The annual recreational fish-
ing days range from 6490 to 51,900 per watershed (Fig. 8). Watersheds
that are closer to urban ormore populous areas showedhigher demand,
as would be expected.

4.4. Change in Catch

Assuming current conditions are representative of a no-action base-
line, we applied themodel using expected changes in catch rates for the
two scenarios. To do so, we assumed that catch rates will change by the
same proportion as the changes in fish abundance predicted by the eco-
logical model. These changes were applied to the catch rates shown in
Table 6, and WTP/fish was re-estimated using the new catch rates to
represent the marginal value of a fish caught given average baseline
catch rates.
Explanation

Assume revealed preference study (accepted standard practice for use
values for recreational fishing)
Sample maximum from the data
West Virginia median county or state income (thousands of 2012$)a

Average for W VA anglersb

Average for W VA anglersb

Average for W VA anglersb

Assume trips are local (within 150 miles)
1 to evaluate values for bass;
0 to evaluate values for “other” species
Species not affected in the study region
Species not affected in the study region
Species not affected in the study region
Species not affected in the study region
All water bodies in study region are rivers or streams
See Table 6
To represent studies that included catch rates in their analysis
Affected species are not stocked
Intercept



Fig. 8. Total estimated freshwater fishing days demanded by HUC-10watershed. Spatial variability in days demanded is due to spatial distribution of residences (origin points)within and
adjacent to the case study area, demographic characteristics that influence participation rates by location, and different willingness to travel for fishing on the part of urban and rural
participants.

Table 7
Estimated willingness to pay per fish for West Virginia with alternative trip catch rates
(2012$).
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4.5. Estimates of Total Value

To estimate total annual social value for the baseline (current condi-
tions), we multiplied the value per fish (Table 7) times catch per day
(Table 6) times the total days demanded, for each 10-digit HUC in the
study area. These values were then weighted by the proportion of bass
and other species in each watershed and summed to get total values
for each catch rate and income level. The total baseline willingness to
pay for recreational angling in the study area is shown in Table 8. The
current total value for recreational angling in the study area is estimated
as $5.5 million to $46.9 million per year, depending on the annual num-
ber of fish caught in the region and income. Amore accurate estimate of
catch would greatly improve the precision of these estimates.

For each of the two scenarios, we: (1) estimated the change in catch
rates per angler per year and the change in projected total catch rates
(across all anglers) for each watershed, (2) estimated WTP/fish using
the projected changes in catch rates, (3) estimated the change in
WTP/year by species, and (4) estimated the species-weighted total re-
duction in WTP/year for each scenario and combination of inputs.
From these calculations, we estimated that changes in value for the par-
tial (20%)mining scenario range from losses of $39.5 thousand to $377.9
thousand per year (Table 8). Estimated changes in value for the full
(100%) mining scenario ranged from losses of $209.6 thousand per
year to almost $2.1 million per year (Table 8). The spatial distribution
of WTP values showed that economic impacts tend to be greater in
the southern portion of the study area for both scenarios (Fig. 9 and
Fig. 10). This pattern can be largely explained by greater ecological im-
pacts in these streams and rivers (Fig. 6 and Fig. 7); however, part of the
Table 6
Baseline catch rates per day by species.

Catch rates from the meta-analysis data Local WV estimates

Species N Median Mean Min Max Mean

Bass 8 0.57 0.58 0.27 0.88 0.6–2.8
Other species 25 3.52 4.44 0.37 14 2.0
effect is also due to expected differences in fishing participation across
watersheds.

5. Discussion and Conclusions

The challenges of applying benefit transfer models to policy sites are
often underestimated. Data for MRM variables may not be available and
results can be sensitive to variables that are estimated with high uncer-
tainty. Although benefit transfer is generally considered to be a relative-
ly easy approach to generating a monetary value of a good or service,
practitioners often face severe data limitations. They not only lack the
values needed to develop the MRM, but lack local data for estimating
the policy-relevant variables needed to apply the model. We presented
some options for estimating the data needed to apply MRMs in ways
that were scale-appropriate and sensitive to local conditions. However,
overall, valuation results were sensitive to variables with high uncer-
tainty in the ecological and socio-demographic data. Therefore, improv-
ing the ability to characterize local conditionswith available data would
enhance the robustness of value estimates.

Through our comparison of median income calculated at two differ-
ent scales,we showed that valuation resultswere sensitive to the spatial
scale of socio-demographic measurements. Further, our comparison of
fish catch rates showed that values are sensitive to assumptions about
Species Using mean catch rate
from meta-analysis
data

Using high catch
rate from WV data

Bass, using median income by
county for the study area

$18.93 $15.09

Bass, using state median income $22.21 $17.71
Other species, using median income
by county for the study area

$3.82 N/A

Other species, using state median
income

$4.48 N/A



Table 8
TotalWTP for recreational fishing for the baseline and loss inWTP for partial and full min-
ing scenarios showing sensitivity to income and catch rate assumptions.

WTP (thousands 2012$)

Catch Low Medium High Extra high

Baseline (current level of mining)
Income County median $5,523 $15,400 $20,500 $39,700

State median $5,678 $18,100 $24,200 $46,900

Partial mining scenario
Income County median $(39.5) $(120.5) $(163.1) $(326.9)

State median $(45.7) $(139.0) $(188.3) $(377.9)

Full mining scenario
income County median $(209.6) $(627.8) $(864.7) $(1,761)

State median $(248.2) $(741.2) $(1,021) $(2,085)
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catch rate, one of the hardest variables to estimate precisely without
creel survey data.We expect that other variableswill be similarly sensi-
tivewhen landscapes exhibit high spatial diversity of important charac-
teristics. In particular, spatial variability in the magnitude of ecological
effects by location, number of affected users, and angler characteristics
will drive the magnitude of welfare losses for recreational fishing.

An important aspect of the analysis is the heterogeneity of ecological
impacts (Petty et al., 2014). If, as mining occurred, damages were con-
centrated in a few areas, anglers may be able to find substitute sites,
thereby minimizing welfare effects. However, our analysis showed
that within the mountain-top mining region, ecological impacts were
heterogeneous but showed net losses everywhere. This result of wide-
spread harm supports the benefit transfer assumption that substitution
effects areminimal. The result further suggests that cumulative impacts
to fisheries could be a future concern if species lose areas of high quality
habitat thatmay serve as source populations tomore degraded streams.

5.1. Sensitivity to Ecological Model

Our ability to capture the ecological production function that relates
water quality to fish abundance and fish quality had a large impact on
results. The boosted regression trees predicted relativelymodest effects
Fig. 9. Change in annual WTP (2012$) for freshwater fishing in partial mining scenar
on game fish abundance from the partial mining scenario (~1% average
and 4%maximum decline in game fish) and only slightly more substan-
tial effects from the full mining scenario (~4% average and 10% maxi-
mum decline). These results are consistent with other studies that
have showed declines in fish species in response to mountaintop min-
ing (e.g., Stauffer and Ferreri, 2002; Hopkins and Roush, 2013). A recent
targeted study of the effects of mountaintop mining on fish assemblages
in a West Virginia watershed found mixed effects on game species but
an overall decline in number of species and total abundance in mining-
affected sites, as compared to reference sites (Hitt and Chambers, 2014).
Although the statistical models relating mining and fish abundance used
in our analysis were based on all available data, the data have limitations
because they were not collected specifically to address the question of
mining impacts. Further, these data may be influenced by the timing of
sampling, or by metacommunity processes and dynamics (e.g., Freund
and Petty, 2007; Hitt and Angermeier, 2011). The use of our statistical
models to consider future mining scenarios is based on the assumption
that these relationshipswould be valid under future conditions. However,
it is possible that the cumulative effects of the impairment of many
stream segments could lead to a more significant regional response of
the fish assemblages (Freund and Petty, 2007).

5.2. Sensitivity to Local Conditions

Other sources of uncertainty stemmed from the assumptions of the
typical catch rate in these streams. We did not have data specific to
these systems, so we used averages from the literature, which seemed
to be a reasonable fit based on our conversations with local fisheries
managers. However, because the results depend heavily on expected
catch, we presented a range of values to test the sensitivity of this as-
sumption. The results are also sensitive to angler income. Because we
did not have sufficient data to estimate the mean income of anglers,
we conducted sensitivity analysis based on income, presenting values
calculated using both the county and state median incomes.

This analysis demonstrated approaches to capturing ecological
changes in terms of social welfare effects. Using the conservative as-
sumptions of median county income andmean catch rates, we estimate
a total welfare loss due to changes in freshwater fish abundance of
io by HUC-10 watershed (using median county income and medium catch rate).



Fig. 10. Change in annual WTP (2012$) for freshwater fishing in full mining scenario by HUC-10 watershed (using median county income and medium catch rate).
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$120,500 per year for the partial mining scenario and $627,800 per year
for the full mining scenario. Thesemodest estimates do not take into ac-
count reductions in participation thatmight occur if areas become unat-
tractive to some anglers because of a stigma that they are unsafe or if
they lose aesthetic appeal. Further, these numbers only begin to provide
an estimate of the ecosystem service effects ofmining since recreational
fishing is only one use of the area.

Changes in social welfare as a result of mining are a function of both
ecological change and how much users or beneficiaries are affected by
those changes. Here we have focused on recreational freshwater fishing
because it is a popular activity, it is impacted by the mining scenarios,
and we can measure the welfare effects of a change by building on avail-
able data and studies. The economic meta-analysis function that we de-
veloped here can be readily transferred to other regions as long as the
appropriate data on fishing use rates by location, average catch, and eco-
logical changes can be gathered or estimated using the techniques de-
scribed here or other approaches. For both the ecological and economic
models, we used national data sets, literature values, and transferable
modeling techniques in order to create a reusable process for transferring
the meta-analysis to any region in the U.S.
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