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Abstract cGMP kinase I (cGKI) signaling modulates multiple
physiological processes including smooth muscle relaxation. The
expression of cGKI and its substrate IRAG (Inositol 1,4,5-
trisphosphate receptor associated cGMP kinase substrate) was
studied. IRAG and cGKI were colocalized in the smooth muscle
of aorta and colon. IRAG was present in the thalamus and in
most of the myenteric plexus in the absence of cGKI.
Coexpression of IRAG and cGKIb or cGKIa in COS-7 cells
revealed that IRAG recruits cGKIb but not cGKIa to the
endoplasmic reticulum. These results suggest that IRAG may be
involved in cGKI-dependent and -independent pathways.
� 2004 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Signal transduction via NO/cGMP/cGKI is involved in a

variety of physiological mechanisms including smooth muscle

relaxation, platelet aggregation and synaptic plasticity [1].

Smooth muscle tone is mainly regulated by the rise and fall of

intracellular calcium concentration. Activation of cGKI via

cGMP lowers cytosolic Ca2þ concentration and thus leads to

smooth muscle relaxation [2,3]. The crucial role of cGKI for

smooth muscle function became apparent in cGKI-deficient

mice which showed hypertension and severe gastrointestinal

dysfunction [4]. However, the molecular mechanisms of cGMP

signaling distal to cGKI are not yet fully understood. The two

existing isoforms of cGKI, cGKIa and cGKIb, which differ

only in their amino termini, are expressed in vascular and non-

vascular smooth muscles [5]. These amino termini are involved

in homodimerization and target protein recognition [6,1]. For

the versatility of signaling, different cGKI substrates are nee-

ded. The amino terminus of cGKIa interacts specifically with

the myosin-binding subunit of myosin phosphatase [7],

whereas the amino terminus of cGKIb interacts specifically

with IRAG [8]. In contrast to this detailed information on the
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biochemistry of the cGKI isoforms, their specific cellular

functions are unclear.

An important member of the cGKI-mediated intracellular

calcium regulation is IRAG, a cGKIb substrate, which was

identified in tracheal smooth muscle membranes [9]. Phos-

phorylation of IRAG by cGKI inhibits IP3-induced calcium

release after coexpression of both proteins in COS-7 cells [8,9].

Furthermore, the inhibitory effect on calcium release from IP3-

sensitive stores was abolished in human colonic smooth muscle

cells when IRAG expression was substantially diminished [10].

So far, the expression pattern of IRAG in murine tissues is

widely unknown. Also, no systematical analysis of cGKI iso-

forms in murine tissues was performed yet. In the present

study, we determined the expression profile of IRAG and

cGKI to obtain additional insights in the functional role of

IRAG and cGKI isoforms.
2. Material and methods

2.1. Western blot analysis
Protein was isolated from different mouse organs. The tissues were

homogenized with extraction buffer (20 mM Tris–HCl; 100 mM NaCl,
pH 8.0, with 2.5 mM DTT; 2.5 mM EDTA; 2.5 mM Benzamidine; 2.5
mM PMSF and 1 lg/ll Leupeptin; 4 �C) in an Ultra Turrax homog-
enizer at �26 000 rpm. The homogenates were centrifuged at
13 000· g, 4 �C for 10 min and the supernatants were stored at )80 �C.
The proteins were separated by SDS–PAGE and blotted onto PVDF
membranes. The blots were probed with selective antibodies for
IRAG, cGKI (cGKIcommon which recognizes both isoforms, cGKIa
and cGKIb with identical affinity), cGKIa and cGKIb (raised against
the NH2-terminal domain of the corresponding enzyme expressed in
E. coli), and MAPK (Cell Signaling) at a dilution of 1:500, 1:200, 1:80,
1:1000 and 1:1000, respectively. Immunoblots were visualized by in-
cubation with an anti-rabbit IgG antibody coupled to horseradish
peroxidase (Dianova) followed by enhanced chemiluminescence (ECL
system, Perkin Elmer).

2.2. Immunohistochemistry
After fixation (10% formalin, 4–12 h, 4 �C), the tissues were briefly

rinsed in phosphate-buffered saline (PBS; pH 7.4), dissected according
to anatomical borders and cleared of intraluminal material. After de-
hydration (graded series of ethanol, cleared with Roticlear [Roth]), the
tissues were paraffin-embedded. Sections were cut at 6–10 lm on a
sliding microtome (Microm), mounted on Superfrost Plus slides
(Menzel-Gl€aser) and dried at 37 �C overnight. The sections were
deparaffinized in Roticlear and rehydrated in a descending series of
ethanol. Immunoperoxidase staining: After a rinse in PBS, the activity
of endogenous peroxidase was blocked with 10% methanol and 3%
hydrogen peroxide in PBS. The sections were rinsed in PBS and in-
cubated with 10% normal goat serum (NGS; Vectastain, Vector Lab-
oratories, Burlingame, CA) for 1 h at room temperature in a humid
chamber. After a 5 min rinse in PBS, the incubation was continued
overnight with the primary antibody (IRAG, cGKIcommon, cGKIa
or b; raised in rabbit) at 4 �C, diluted in PBS containing 3% NGS (1:50,
blished by Elsevier B.V. All rights reserved.
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1:50, 1:50 or 1:100, respectively) and was terminated by three rinses of
5 min each. The following steps were performed as described in Vec-
tastain Elite ABC Kit (Vector). Stained sections were rinsed in PBS,
coverslipped in Aquatex (Merck) and photographed. Immunofluores-
cence staining: Colocalization of proteins was investigated by a se-
quential double immunostaining protocol. Following a 5 min rinse in
TBST (Tris buffered saline with Tween), sections were incubated for 1
h in TBST containing 10% normal donkey serum (NDS, Dianova). All
incubations, besides the overnight step with the cGKI antibody (4 �C),
were performed at room temperature. Antibodies employed were di-
luted in TBST with 3% bovine serum albumin (Dianova). The rinsed
sections were incubated with a specific antibody against IRAG (1:50;
raised in guinea pig) for 3.5 h. After three rinses with TBST, each 5
min, the incubation was continued overnight with cGKIcommon an-
tibody (1:50; raised in rabbit) and terminated by several rinses in
TBST. Immunoreactivity was detected with a mixture of indocarbo-
cyanin (Cy3)- and carbocyanin (Cy2)-conjugated secondary antibodies
(donkey anti-guinea pig 1:50 and donkey anti-rabbit 1:500, respec-
tively; 1 h; Dianova). The fluorescence-labeled sections were cover-
slipped with ProLong antifade kit (Molecular Probes). Controls
included omission of the primary antibody, antibodies preadsorbed
with the respective antigen or, in the case of cGKI, cGKI-deficient
tissue.

2.3. Expression of IRAG-eGFP, cGKIa-dsRed and cGKIb-dsRed in
COS-7 cells

For construction of IRAG-eGFP and cGKI-dsRed fusions, appro-
priate PCR products were cloned into pEGFP-N3 (Clontech) and
pDsRed1 (Clontech), respectively. COS-7 cells grown in DMEM
(Gibco) were transiently transfected by using the calcium phosphate
method. Te following transfection procedures were used: IRAG-
eGFP, cGKIa-dsRed or cGKIb-dsRed alone and IRAG-eGFP to-
gether with cGKIa-dsRed or cGKIb-dsRed. After 48 h of incubation
at 37 �C, expression of fusion proteins was visualized using a confocal
laser scanning microscope LSM510 (Zeiss).

2.4. Confocal laser scanning microscopy
Sections and COS-7 cells were analyzed by confocal laser scanning

microscopyonanLSM510 (Zeiss).Fluorochromeswere excitedwith 488
and 543 nm lines, respectively, by aKrypton–Argon laser and aHelium–
Neon laser. Single optical sections and extended focus imageswere taken
with 20·dryor 40· immersionobjective lenses andvarious zoomfactors.
When controls were compared, care was taken to keep the pinhole and
gain of the photomultiplier constant. Double staining (colocalization)
was visualized with ‘‘multitrack’’ to eliminate emission crosstalk.

2.5. In situ hybridization
Adult C57BL/6 mice were killed by cervical dislocation, the brain

was removed and frozen in isopentane cooled in a dry ice/ethanol bath.
Cryostat sections (16 lm) were thaw-mounted onto poly-LL-lysine
coated slides, fixed with 4% paraformaldehyde and dehydrated in a
graded series of ethanol. Sections were pretreated for hybridization as
described previously [11] and then prehybridized for 2 h at 42 �C in
hybridization buffer (10 mM Tris–HCl, pH 8.0, 1 mM EDTA, 0.3 M
NaCl, 50 mM DTT, 1· Denhardt’ solution, 10% Dextran, and 50%
deionized formamide). Hybridization was performed as described by
Moosmang et al. [12]. Subsequently, the sections were dehydrated and
exposed to Biomax MR film (Kodak) for 6–20 days. [35S] UTP-labeled
RNA probes were transcribed in vitro corresponding to amino acids
531–652 of IRAGb, 1–89 of cGKIa, 1–104 of cGKIb, 507–674 of
cGKIcommon and 320–580 of cGKII (Accession Nos. U63407,
X16086, X54289, X16086 and L12460). In situ hybridizations were
always performed including the corresponding sense cRNA probes on
adjacent sections. These control hybridizations showed no signals.
Fig. 1. Protein expression of IRAG and cGKI in different tissues.
Western blot of different murine tissues (50 lg each lane) and human
platelet membranes (20 lg) probed with specific antibodies for IRAG
(A), cGKIcommon, cGKIa or cGKIb, respectively (B). As control for
(A) the tissue expression of the mitogen-activated protein kinase
(MAPK) is shown. n.d.: not detected. (C) IRAG and cGKII expression
in the thalamus region. (D) Specificity of cGKIa and cGKIb isoform
selective antibodies.
3. Results

3.1. Expression of IRAG and cGKI in different tissues

The protein expression of IRAG in tissues has not been

elucidated yet. As a first step into this issue, we determined the

expression pattern of IRAG in different mouse tissues.

Western blot analysis showed that IRAG is predominantly
expressed in smooth muscle tissues, including aorta, stomach,

colon, urinary bladder, uterus, lung and trachea (Fig. 1A).

IRAG was additionally highly abundant in human platelets

(Fig. 1A). cGKI was ubiquitary distributed in peripheral tis-

sues and in distinct regions of the brain, e.g. cerebellum

(Fig. 1B). The expression profile of the cGKI isoforms, Ia and

Ib, was investigated with specific antibodies (Fig. 1D). cGKIa
showed strong signals in lung, heart and cerebellum, whereas

cGKIb was the dominate isoform in most smooth muscle tis-

sues and platelets. Approximately equal amounts of both

isoforms were found in small intestinal tissues (Fig. 1B).

We examined neuronal expression of IRAG and cGK in

mouse brain with in situ hybridization. A strikingly restricted

pattern was observed for IRAG transcripts. IRAG mRNA

was detected only in thalamic relay nuclei (Fig. 2A). In con-

trast, cGKI was not found in thalamus, but in cerebellum,

olfactory bulb, cortex and hippocampus (Fig. 2D). cGKI

isoform specific probes revealed different expression profiles.

cGKIa was strongly present in cerebellar cortex (Fig. 2E),

whereas intense signals of cGKIb were detected in olfactory

bulb and hippocampus (Fig. 2F). Interestingly, the distribution

of cGKII was partly similar to that of IRAG. We observed

signals in cortex, olfactory bulb and thalamus (Fig. 2C).

Western blot analysis confirmed the expression of IRAG and



Fig. 3. Localization of IRAG and cGKI in aorta and colon. Paraffin-
sections of mouse aorta (A) and colon (B). (A) Both IRAG and cGKI
are expressed in myocytes of the media. No staining was observed at
the control section (cGKI�=� aorta). (B) IRAG and cGKI were present
in the muscularis, muscularis mucosae and in the myenteric plexus
(MP). Control sections showed no signal besides unspecific staining of
the epithelium (Control 1). Cross-sections with a magnification of 400·
(A) and 100· (B) were 6 lm or 10 lm thick, respectively. 1, muscularis;
2, submucosa; 3, muscularis mucosae; 4, mucosa; 5, lumen. Control 1:
preadsorbed IRAG antibody; Control 2: cGKI�=� colon stained with
cGKI antibody.

Fig. 4. Colocalization of IRAG and cGKI in aorta and colon. Con-
focal laser scanning images of aortic cross-sections (6 lm) (A) and
colonic longitudinal sections (10 lm) (B) showed colocalization of
IRAG and cGKI in smooth muscle cells of the aortic media (A) and
the colonic muscularis (B). (B) Additionally, IRAG was expressed in
the myenteric plexus (MP) between longitudinal and circular muscle-
layer (LM, CM). A weak colocalization of IRAG with cGKI was
observed in MP, marked with +. Scale bar: 10 or 20 lm, as indicated.

Fig. 2. CNS distribution of IRAG and cGK mRNAs in mouse brain.
Autoradiographic film images of sagittal sections hybridized with an-
tisense riboprobes specific for IRAG (A), cGKII (C), cGKIcommon
(D), cGKIa (E) and cGKIb (F). (B) Corresponding sense riboprobe
for IRAG. Cbx, cerebellar cortex; Cx, cortex; Hi, hippocampus; Ob,
olfactory bulb; Th, thalamus.
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cGKII in the thalamus region (Fig. 1C). A similar distribution

of the cGKI and II has been reported for rat [13,14].

3.2. Tissue localization of IRAG and cGKI

The immunohistochemical localization of IRAG, cGKIa
and cGKIb was examined in different peripheral tissues.

Staining of aortic sections with specific antibodies against

IRAG, cGKIcommon, cGKIa and cGKIb revealed strong

signals in myocytes of the media (Fig. 3A). Furthermore,

IRAG and cGKI were colocalized in aortic smooth muscle

cells (Fig. 4A). Immunohistochemical analysis of the gastro-

intestinal tract revealed ubiquitary expression of cGKIa and

cGKIb in contractile cells with strong staining for cGKIb.
cGKI was found in colonic muscularis mucosae, which rep-

resents the boundary between the mucosa and the submucosa.

Furthermore, cGKI was abundant in the longitudinal and

circular muscle layer (Fig. 3B) of the muscularis. IRAG was

also expressed in the muscularis (longitudinal plus circular

muscle) and muscularis mucosae. As shown by confocal laser

scanning microscopy, IRAG and cGKI were colocalized in

these smooth muscle layers (Fig. 4B). In addition, IRAG

showed clear signals in the myenteric plexus (Fig. 3B), which is

a part of the enteric nervous system. However, colocalization

with cGKI in this region was rare and weak (Fig. 4B).

3.3. Intracellular localization of coexpressed IRAG and cGKI in

COS-7 cells

It is well established that IRAG is a membrane protein,

whereas cGKIb is a soluble enzyme and these proteins are

assembled in a ternary complex with InsP3RI [9]. As identified

by yeast two-hybrid system, IRAG interacts with the leucine

zipper of cGKIb but not of cGKIa [8]. The question whether

the interaction between IRAG and cGKIb causes an intra-

cellular translocation of cGKIb was studied with fusion

proteins. COS-7 cells which expressed IRAG-eGFP, cGKIb-
dsRed or cGKIa-dsRed were analyzed by confocal laser

scanning microscopy. cGKIa and cGKIb revealed a distinct

cytosolic distribution, whereas IRAG was found at the
network of the endoplasmic reticulum (Fig. 5A). Coexpression

of cGKIa with IRAG showed an unchanged cytosolic locali-

zation of cGKIa (Fig. 5B). In contrast, when cGKIb was co-

expressed with IRAG, both proteins were present at the

network of the endoplasmic reticulum and a strong colocal-

ization was observed (Fig. 5B). This effect confirms the specific

in vivo interaction of IRAG with cGKIb.



Fig. 5. Localization of IRAG-eGFP, cGKIa-dsRed and cGKIb-dsRed
in COS-7 cells. (A) cGKI fusion proteins (cGKIa- and cGKIb-dsRed)
are distributed cytosolically (left and middle image), whereas IRAG-
eGFP is located at the endoplasmic reticulum (right image). (B) Co-
expression of IRAG-eGFP with cGKIa-dsRed showed no local change
of cGKIa. In contrast, cGKIb was recruited through IRAG to the
endoplasmic reticulum. Magnification 400·.
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4. Discussion

This manuscript provides convincing evidence that IRAG is

a major smooth muscle protein. Immunoblot analysis and

immunohistochemistry suggest that cGKIb and IRAG colo-

calize together in most smooth muscle tissues. Furthermore,

cell expression studies in COS-7 cells revealed that both pro-

teins are colocalized at the endoplasmic reticulum supporting

the previous finding that the two proteins form a macrocom-

plex with the IP3RI [9]. In contrast to cGKIb, cGKIa was

unable to colocalize with IRAG in the cell expression experi-

ments. With the exception of lung, the distribution of cGKIa
did not accord much with that of IRAG in the Western blot

analysis. Human platelets express exclusively IRAG and

cGKIb and the concentration of cGKIb exceeds that of cGKIa
in most smooth muscle rich tissues such as aorta and colon.

However, it is possible that IRAG colocalizes in some cells

with other proteins, since we found IRAG expression without

the corresponding cGKIb protein in the thalamus and some

cells of the myenteric plexus. On the other hand, cGKIb can

activate substrates distinct from IRAG, since cGKIb is ex-

pressed in the hippocampus and the olfactory bulb without

IRAG. These findings support the notion that IRAG is the

substrate for cGKIb in smooth muscle. Previous experiments

showed that cGMP-dependent phosphorylation of IRAG de-

creased the IP3 induced Ca2þ release in COS cells [8,9]. Re-

constitution of cGKI isozymes into cGKI�=� aortic smooth
muscle cells suggested that the Ca2þ lowering effect of cGMP

was only reconstituted by cGKIa [15]. The reasons for this

discrepancy are not clear. The mechanism by which cGKIa
lowered the Ca2þ transients is unknown and may not involve

the IRAG protein but inhibition of IP3 synthesis as observed

previously [16].

There is excellent evidence that cGKI regulates the tonus of

various smooth muscles [4,17,18]. The mechanisms behind this

regulation are not solved at the present time. Relaxation may

be the result of multiple regulatory pathways. Furthermore,

different mechanisms may prevail in different smooth muscle.

However, the strong expression of cGKIb and IRAG makes it

very likely that interaction between both proteins constitutes

one important mechanism present in all smooth muscles

leading to relaxation.
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