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a b s t r a c t

Finding a low-interference connected topology is a fundamental problem in wireless sen-
sor networks (WSNs). The problem of reducing interference through adjusting the nodes’
transmission radii in a connected network is one of themost well-known open algorithmic
problems in wireless sensor network optimization. In this paper, we study minimization
of the average interference and the maximum interference for the highway model, where
all the nodes are arbitrarily distributed on a line. First, we prove that there is always an
optimal topology with minimum interference that is planar. Then, two exact algorithms
are proposed. The first one is an exact algorithm to minimize the average interference in
polynomial time, O(n3∆), where n is the number of nodes and ∆ is the maximum node
degree. The second one is an exact algorithm to minimize the maximum interference in
sub-exponential time, O(n3∆O(k)), where k = O(

√
∆) is the minimum maximum interfer-

ence. All the optimal topologies constructed are planar.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Wireless sensor networks (WSNs) consist of a set of nodes deployed inside a region of interest. Each node has limited
processing ability and is equipped with a wireless radio for communication. Unlike traditional wired networks, they do not
have a fixed infrastructure. The nodes can adjust their transmission powers to achieve the desired transmission rangeswhich
would then form amulti-hop network. Wireless sensor networks have many applications in real life such as environmental
monitoring, intrusion detection, and health care. It is regarded as one of the most popular networking paradigms of today.

Due to the nature of the environments in which WSNs are typically deployed, wireless nodes can only be powered
with relatively weak batteries. Energy is scarce which however is critical for extending the network’s lifetime. One way
to conserve energy is to reduce interference due to concurrent transmissions of close-by nodes. Different models have been
proposed and defined to capture the phenomenon of interference. One is called the sender-centric model, where interference
of each edge is by counting [2,4,7,14,16,19]. The interference of an edge (u, v) is the number of other nodes that are covered
by the disk centered at u or v with radius |uv|, which is to say that interference is considered at the sender but not at
the receiver. However, interference actually prevents correct data reception in real networks. Thus, the authors of [20,21]
proposed the receiver-centric model, where the interference on a node v is the number of other nodes whose transmission
ranges cover v. In Fig. 1, the interference on the node v is 3 as all the other nodes can cover it. In this paper, unless specified
otherwise, the receiver-centric model is assumed.

✩ This is an extended version with improved results of the preliminary version which appeared in Proceedings of SOFSEM 2011 [18].
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Fig. 1. The receiver-centric interference: the numbers are interference on each node.

a

c

b

Fig. 2. Low node degree, sparse distribution or connecting each node to the nearest node cannot guarantee low interference: nodes are all distributed along
a line and the figures next to the nodes are the node interference. (a) The 6 nodes are evenly distributed and linearly connected; (b) the 6-node exponential
chain and nodes are linearly connected; (c) another connected topology for the 6-node exponential chain.

Topology control is about selecting only a subset of the available communication links for data transmission, which
has been widely used to construct networks having certain specific properties such as planarity, bounded node degree,
the spanner property, or low interference [1,5,10–12,17]. Researchers are not only interested in minimizing the average
interference on the nodes, but also themaximum interference, because the maximum interference determines when the first
node will run out of energy, which could mean termination or partial termination of the network operation. Minimizing
the maximum interference while maintaining connectivity is one of the most well-known open algorithmic problems in
wireless sensor network optimization2. The problem is hard because it has an unusual combinatorial structure which is
complicated, and intuitions do not seem to always apply.

Example 1. The even distribution of nodeswhich are linearly connected in Fig. 2(a) has an average interference of 10
6 and the

maximum interference of 2. However, for the linearly connected exponential chain, which means the node distances grow
exponentially, the average interference is 16

6 and the maximum is 4 although it is more sparse than the even distribution
(Fig. 2(b)). Fig. 2(c) gives another connected topology for the 6-node exponential chain, where the node degrees are larger
than those of the linear connection. However, its average interference is 14

6 and the maximum is only 3.

Despite some significant efforts, known results are few and not all that satisfactory. The authors of paper [3] proved that it
is NP-hard to compute the minimummaximum interference (MMI) while preserving connectivity in two-dimensional (2D)
networks. The authors of paper [6] proposed an algorithm that could bound the maximum interference by O(

√
∆) using

ideas from the ε − net theory and computational geometry. Here, n is the number of nodes and ∆ is the maximum node
degree when each node is set to the maximum transmission radius and connected to all the other nodes in its range (as all
the nodes have the samemaximum transmission radius, the topology is actually a unit-disk-graph). In contrast, the problem
of computing the minimum average interference (MAI) is structurally simpler. For minimizing average interference in 2D
networks, the authors of paper [15] developed an asymptotically optimal algorithmwith an approximation ratio of O(logn).
Given the lack of progress on the 2D version of the problem, researchers started investigating the one-dimensional (1D)
networks (all nodes located on a line), but the problem did not become easier. For minimizing the maximum interference
on the exponential chain, the authors of [20,21] proposed an asymptotically optimal algorithm and proved a tight lower
bound of Ω(

√
∆). Furthermore, for the general case in which the nodes are arbitrarily distributed on a line, the so called

highway model, they bounded MMI by O(
√

∆) and presented an approximation with ratio O(
4√
∆).

In this paper, we study minimization of the average and the maximum interference for the highway model. We prove
that there is always an optimal topology with minimum interference that is planar (i.e., its edges intersect only at their
endpoints when drawing on a 2D plane). Two exact algorithms are proposed. The first one is an exact algorithm that can
minimize the average interference in polynomial time–O(n3∆), where n is the number of nodes and ∆ is the maximum
node degree. The other one minimizes the maximum interference in sub-exponential time–O(n3∆O(k)), where k = O(

√
∆)

is the minimummaximum interference. All the optimal topologies constructed are planar.
The rest of the paper is organized as follows. In Section 2, we give the formal definitions of the interference model and

the problem. Section 3 describes the no-cross property and the algorithm to minimize the average interference for the
highwaymodel. Section 4 describes how tominimize themaximum interference. Section 5 gives some discussions. Section 6
concludes the paper and points out some open problems and possible future work.

2 It is one of the five open algorithm problems in wireless sensor networking proposed in [13].
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a b c

Fig. 3. a, b, c and d are four nodes distributed on a line, where l1 = c− a, l2 = b− c , and l3 = d− b, and (a, b) and (c, d) are two edges: (a) (a, b) and (c, d)
have a cross; (b) remove the cross when l1 ≤ l2 + l3; (c) remove the cross when l1 > l2 + l3 .

2. Models and problem definitions

We assume a wireless sensor network in which the nodes are stationary after being placed in a region. If at some point
they need to be moved, we could re-run the proposed algorithms using the new coordinates. The maximum transmission
radius of the nodes is denoted as rmax. Each node can self-adjust its transmission radius from 0 to rmax. We assume there are
no obstacles to block the communications. Therefore, the maximum transmission range of a node v is a disk centered at v
with radius rmax. For the highway model, we assume rmax is not shorter than the longest distance between two consecutive
nodes, or else there is no connected topology. If rmax is set to or longer than the distance from the first to the last node on
the line, it means any node can potentially directly connect to any other nodes.

The network ismodeled as an undirected graph G = (V , E), where V is the set of nodes and E is the set of communication
links. For the highway model, the n nodes in V = {v0, v1, . . . , vn−1} are arbitrarily deployed along a line from left to right.
We can regard the line as an x-axis, and v0 = 0. Then, each node u is denoted as its x-coordinate. An edge (u, v) ∈ E exists
only if both their transmission radii, ru and rv , are not shorter than their Euclidean distance |u − v|. Therefore, in G, the
transmission radius of a node is equal to the distance to its farthest neighbor (two nodes are neighbors means there is an
edge incident on them). In addition, we introduce the following terms. For a segment vsvt on the line, where s ≤ t , the nodes
located on vsvt are {vs, vs+1, . . . , vt−1, vt}; the nodes outside vsvt are the other nodes not including the ones that are on it;
the nodes inside vsvt are {vs+1, . . . , vt−1}.

The receiver-centric interference model is adopted. The interference of a node v, denoted as RI(v), is defined as the
number of other nodes whose transmission ranges can cover v:

RI(v) = |{u|u ∈ V/{v}, |u− v| ≤ ru}|. (1)

The average node interference in G, RIavg(G), can be defined as:

RIavg(G) =

∑
v∈V RI(v)

|V |
. (2)

The maximum node interference, RImax(G), can be defined as:

RImax(G) = max
v∈V

RI(v). (3)

Besides minimizing interference, we also need to preserve the network connectivity. Therefore, the optimal topology with
the minimum interference should be a spanning tree on V . Our problems can then be defined as:

Given n nodes arbitrarily distributed on a 1D line, construct a spanning tree, G = (V , E), to connect all the nodes with edges
no longer than rmax. The minimization of the average interference problem is to construct a spanning tree that minimizes RIavg(G),
and the minimization of the maximum interference problem is to construct a spanning tree that minimizes RImax(G).

3. Minimizing the average interference

3.1. No-cross property

For a spanning tree G = (V , E) constructed on the nodes along a line, we can draw all the edges on one side of the line.
A cross means there are two edges that share at least a common point excluding their endpoints (Fig. 3(a)). By adding and
deleting edges, we show below that a cross can be removed without increasing interference on any node while preserving
the network connectivity.

Theorem 2 (No-cross Property). For a spanning tree connecting the nodes on a linewith crosses, there is always another spanning
tree to remove the crosses without increasing interference on any node.

Proof. Weprove this theoremby showing how to remove a cross.Without loss of generality, we handle the cross in Fig. 3(a).
Note that there can be other nodes distributed at any other places on the line and the four nodes need not be consecutive.
For the case l1 ≤ l2 + l3, we remove the cross by replacing the edge (a, b) with (a, c) and adding (c, b) (Fig. 3(b)). Firstly,
we check whether the newly added edges, (a, c) and (c, b), are valid which means their lengths do not exceed rmax. Since
|a− c| = l1 < l1 + l2 = |a− b| and (a, b) is valid, (a, c) is also valid. Similarly, (c, b) is also valid. Secondly, there are three
nodes, a, b and c , whose edges are changed. We check whether the changes potentially would make them interfere with
any new nodes. For a, one of its longer edges (a, b) is replaced with a shorter one (a, c), so a cannot interfere with more
nodes in the new topology. A similar conclusion can be arrived at for b. As for node c , we add a new edge (a, c) of length
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l1 and (b, c) of length l2. However, in both topologies, c already has an edge (c, d) of length l2 + l3. Since l2 + l3 > l2 and
l2+ l3 ≥ l1, the new edges will not cause c interfere with any new nodes. Therefore, the topology in Fig. 3(b) would not add
to the interference on any nodes. Thirdly, since there are still paths to connect the nodes a, b and the nodes c, d, the new
topology is connected as long as the topology in Fig. 3(a) is connected. Furthermore, since deleting an edge will not increase
any interference, we can remove any cycles in the new topology by deleting edges to form a spanning tree. Therefore, for the
case l1 ≤ l2 + l3, we can remove the cross to construct a new spanning tree without increasing interference on any nodes.
Similarly, we can prove that the above is also true when l1 > l2+ l3 as illustrated in Fig. 3(c), and the theorem is proved. �

The no-cross property is stronger than planarity. Therefore, there is always an optimal topology with minimum
interference that is planar. Moreover, according to the no-cross property, if there is already an edge (vs, vt), all the nodes
inside the segment vsvt can be only adjacent to nodes located on the segment, but not to any other nodes on the line. (Two
nodes are adjacent means they are neighbors.) However, it does not mean that interference of the nodes inside the segment
is independent of the nodes outside. The nodes inside vsvt can interfere with the ones outside, and vice versa. This gives us
an important clue in designing algorithms to minimize the average or the maximum interference.

3.2. Algorithms to compute MAI

3.2.1. General ideas
Based on the no-cross property, in the optimal spanning tree with MAI, the nodes can be separated into segments. The

nodes inside each segment are only adjacent to the other nodes on the same segment. However, as mentioned above,
interference of the nodes inside a segment is still independent of those outside. Therefore, we do not compute the total
interference by summing up the interference on each individual node, but the interference created by each node. Here,
interference created by a node v with transmission radius rv , CI(v, rv), is defined as the number of the other nodes covered
by the transmission range of v:

CI(v, rv) = |{u|u ∈ V/{v}, |uv| ≤ rv}|, (4)

so that
∑

v∈V CI(v, rv) =
∑

v∈V RI(v). CI(v, rv) is only influenced by rv , which is determined by the neighbors of v, and the
locations of the other nodes. If all the nodes inside vsvt can only be adjacent to the nodes on it, the total interference created
by the inside nodes will be independent of the topology of the outside nodes; and vice versa. Therefore, we can construct
the optimal spanning tree based on dynamic programming, as follows.

3.2.2. Algorithms
To compute the optimal spanning tree, we need to determine (1) how to divide the line into segments and (2) how to

connect the nodes on each segment. Two auxiliary functions are defined. The function F(s, t),3 where s < t , is to compute the
topology on vsvt so that the total interference created by the nodes inside vsvt is minimized with the following conditions
satisfied:

1. the transmission radius of vs is rvs ;
2. the transmission radius of vt is rvt ;
3. all the nodes inside vsvt can be only adjacent to the ones on the segment vsvt ;
4. each node inside vsvt has a path either to vs or to vt .

The function G(s, t), where s < t , is to compute the topology on vsvt so that the total interference created by the nodes
inside vsvt is minimized with the following conditions satisfied:

1. the transmission radius of vs is rvs ;
2. the transmission radius of vt is rvt ;
3. all the nodes inside vsvt can be only adjacent to the ones on the segment vsvt ;
4. all the nodes on vsvt are connected to each other directly or by nodes on vsvt .

Both the functions F and G return the minimum total interference created by the nodes inside vsvt . If+∞ is returned, it
means there is no such a topology to satisfy all the conditions. Comparing the fourth conditions, for function F , to achieve
connectivity among all the nodes, we actually assume there is already a path from vs to vt before adding any edges to the
nodes inside vsvt . For G, there is no such a path.

For a node v, the set of its potential neighbors, N(v), are the nodes covered by v’s maximum transmission range:

N(v) = {u|u ∈ V/{v}, |uv| ≤ rmax}. (5)

3 For conciseness, we use F(s, t) and recF(s, t) to stand for F(vs, vt , s, t, rvs , rvt ) and recF(vs, vt , s, t, rvs , rvt ) respectively, and G(s, t) and recG(s, t) to
stand for G(vs, vt , s, t, rvs , rvt ) and recG(vs, vt , s, t, rvs , rvt ) respectively.
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Fig. 4. There is already a path from vs to vt before adding any edges inside vsvt , and vm is adjacent to vs when vp = vs . F(s, t) is composed of three parts:
F(s,m), F(m, t) and CI(vm, rvm ).

Recall that the transmission radius of v is the distance to its farthest neighbors. So, the set of its potential transmission radii,
R(v), is

R(v) = {|uv||u ∈ N(v)}, (6)

and |R(v)| ≤ |N(v)| ≤ ∆. If v can only be adjacent to a subset nodes S, its potential neighbors N(v, S) and its potential
transmission radii R(v, S) are N(v, S) = N(v)


S and R(v, S) = {|uv||u ∈ N(v, S)} respectively.

To compute the functions F and G, we calculate and store each CI(v, rv) in an n × ∆ array. For F(s, t), the boundary
condition is there is no node inside vsvt . For the other cases, to satisfy the condition 4), there must be at least one node
vm inside vsvt that is adjacent to vp, where vp = vs or vt . Without loss of generality, we set vp = vs. Since vs and vm are
connected as well as vs and vt in the assumption, there is already a path from vm to vt . Therefore, F(s, t) consists of three
parts, F(s,m), F(m, t) and CI(vm, rvm) (Fig. 4). We can enumerate the node vm and its transmission radius rvm , so that the
function F can be computed in Algorithm 1:

• In lines 1–2, we first check the boundary condition.
• The set S is defined and store the nodes on vsvt in line 4.
• Lines 5–13 are to compute theminimum interference created by thenodes inside vsvt recursivelywith the four conditions

satisfied.
• As vm can only be adjacent to the nodes on vsvt , its potential transmission radii are defined as R(vm, S) in line 6.
• In line 9 we assume adding an edge (vm, vp).
• Line 10 divides and computes F(m, t) in three parts.
• For constructing the optimal spanning tree, we define the variable recF(s, t) to record the necessary information for

traceback in line 13.

Algorithm 1: Compute F(s, t)
1 if s+ 1 = t then /* the boundary condition */
2 return F = 0;
3 F ←+∞;
4 S ← {vs, vs+1, . . . , vt};
5 foreach vm ∈ S/{vs, vt} do
6 R(vm, S) = {|u− vm||u ∈ N(vm)


S};

7 foreach vp ∈ {vs, vt} do
8 foreach rvm ∈ R(vm, S) do
9 if |vp − vm| ≤ min(rvm , rvp) then /* assume adding (vm, vp) */

10 tmp← F(s,m)+ F(m, t)+ CI(vm, rvm);
11 if tmp < F then
12 F ← tmp;
13 recF(s, t)← {vm, vp, rvm};

14 return F ;

As for the function G(s, t), in order to satisfy the condition (4), there are two alternative choices. One is that vs is directly
connected to vt , such that G(s, t) = F(s, t). The other is vs and vt are connected by some other nodes inside vsvt . Then, there
must be at least one node vm inside vsvt which is adjacent to vs, and G(s, t) can consist of F(s,m), G(m, t), and CI(vm, rvm).
Similar to Algorithm 1, G(s, t) can be computed in Algorithm 2. Some information for traceback is also recorded.

With F and G, MAI can be computed in Algorithm 3 by calling G(0, n− 1). Here, for traceback, we also need to record rv0
and rvn−1 in the optimal spanning tree.

When computingMAI, we record vm and rvm for each functionG(s, t), and vp, vm and rvm for each function F(s, t). Through
tracing backwards, we can construct a connected topology of n − 1 edges with the minimum average interference, which
is the optimal spanning tree. Algorithm 4 describes the process of traceback in linear time. All the edges of the optimal
spanning tree are stored in the setMinAvgTree. The correctness of the above algorithms has been verified through comparing
our results with the outputs generated by the brute-force search which runs slowly in the exponential time O(n∆). Fig. 5
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Algorithm 2: Compute G(s, t)
1 G←+∞;
2 if |vs − vt | ≤ min(rvs , rvt ) then /* assume adding (vs, vt) */
3 G← F(vs, vt , s, t, rvs , rvt );
4 recG(s, t)← ∅;
5 S ← {vs, vs+1, . . . , vt};
6 foreach vm ∈ S/{vs, vt} do
7 R(vm, S) = {|u− vm||u ∈ N(vm)


S};

8 foreach rvm ∈ R(vm, S) do
9 if |vs − vm| ≤ min(rvm , rvs) then /* assume adding (vs, vm) */

10 tmp← F(s,m)+ G(m, t)+ CI(vm, rvm);
11 if tmp < G then
12 G← tmp;
13 recG(s, t)← {vm, rvm};

14 return G;

Algorithm 3: Compute MAI in 1D networks
1 total←+∞;
2 foreach rv0 ∈ R(v0) do
3 foreach rvn−1 ∈ R(vn−1) do
4 tmp = CI(v0, rv0)+ CI(vn−1, rvn−1)+ G(0, n− 1);
5 if tmp < total then
6 total← tmp;
7 record rv0 and rvn−1 ;

8 return total
n

Fig. 5. The spanning tree for the 6-node exponential chain with MAI 13
6 : the numbers next to each node are the interference it creates.

gives an example of an optimal spanning tree for the 6-node exponential chain. In our algorithms, the main time spent
is on computing functions F and G. Since the number of possible transmission radii of a node cannot exceed ∆, the time
complexity to compute the optimal spanning tree with MAI is O(n3∆3).

3.3. Speeding up the computation

In this section, we exploit the properties of the function F(s, t, rvs , rvt )
4 in order to speed up the computation of MAI.

When calculating the optimal value of F(s, t), we assume recF(s, t, rvs .rvt ) = {vm, vp, rvm}, and denote m, rvm and p as
m(s, t, rvs , rvt ), mr(s, t, rvs , rvt ) and p(s, t, rvs , rvt ) respectively.

Theorem 3 (Radius Properties). For any two nodes vs, vt and their possible transmission radii {rvs , s1, s2} ⊆ R(vs) and
{rvt , t1, t2} ⊆ R(vt), we have

1. if s1 > s2, then F(s, t, s1, rvt ) ≤ F(s, t, s2, rvt );
2. if t1 > t2, then F(s, t, rvs , t1) ≤ F(s, t, rvs , t2);
3. if rvs ≥ |vs − vt |, then F(s, t, rvs , rvt ) = F(s, t, |vs − vt |, rvt );
4. if rvt ≥ |vs − vt |, then F(s, t, rvs , rvt ) = F(s, t, rvs , |vs − vt |).

Proof. We prove property (1) through mathematical induction:
Basis:when s+ 1 = t , it holds as F(s, t, s1, rvt ) = F(s, t, s2, rvt ) = 0.
Inductive step: We assume the property holds for all the cases t − s < i when i ≥ 2. When t − s = i, we assume
recF(s, t, s2, rvt ) = {vm, vp, rvm} after F(s, t, s2, rvt ) is calculated. During computing F(s, t, s1, rvt ), we must also consider

4 F(s, t, a, b) and recF(s, t, a, b) stand for F(vs, vt , s, t, rvs = a, rvt = b) and recF(vs, vt , s, t, rvs = a, rvt = b) respectively, which are the same as F(s, t)
and recF(s, t) but explicitly include the parameters of the two transmission radii.



H. Tan et al. / Theoretical Computer Science 412 (2011) 6913–6925 6919

Algorithm 4: Construct the optimal spanning tree with MAI through traceback in 1D networks
1 Main Function
2 retrieve rv0 , rvn−1 , and

total
n set in the Algorithm 3;

3 if total
n = +∞ then

4 returnMinAvgTree← ∅
5 TracebackG(v0, vn−1, 0, n− 1, rv0 , rvn−1);
6 returnMinAvgTree;
7 End Main Function
8 Function TracebackF(vs, vt , s, t, rvs , rvt )
9 if s+ 1 = t then

10 return ;
11 retrieve {vm, vp, rvm} from recF(m, t);
12 MinAvgTree← MinAvgTree


(vm, vp) /* add an edge (vm, vp) */;

13 TracebackF(vs, vm, s,m, rvs , rvm);
14 TracebackF(vm, vt ,m, t, rvm , rvt );
15 End Function TracebackF(vs, vt , s, t, rvs , rvt )

16 Function TracebackG(vs, vt , s, t, rvs , rvt )
17 if recG(m, t) = ∅ then
18 MinAvgTree← MinAvgTree


(vs, vt) /* add an edge (vs, vt) */;

19 TracebackF(vs, vt , s, t, rvs , rvt );
20 else
21 retrieve {vm, rvm} from recG(m, t);
22 MinAvgTree← MinAvgTree


(vs, vm) /* add an edge (vs, vm) */;

23 TracebackF(vs, vm, s,m, rvs , rvm);
24 TracebackG(vm, vt ,m, t, rvm , rvt );
25 End Function TracebackG(vs, vt , s, t, rvs , rvt )

the case when the segment vsvt is divided into three parts by the node vm with a radius of rvm from line 7 to line 10 in
Algorithm 1. The check in line 7, as
|vp − vm| = |vs − vm| ≤ min(s2, rvm) ≤ min(s1, rvm) if vp = vs, and
|vp − vm| = |vt − vm| ≤ min(rvt , rvm) if vp = vt ,
will return true. As for the calculation, we have

F(s, t, s1, rvt ) ≤ F(s,m, s1, rvm)+ F(m, t, rvm , rvt )+ CI(vm, rvm)

≤ F(s,m, s2, rvm)+ F(m, t, rvm , rvt )+ CI(vm, rvm)

= F(s, t, s2, rvt ). (7)

Property (1) is proved.
Similarly, we can prove the other three properties through mathematical inductions. �

When computing F(s, t, rvs , rvt ), there can bemultiple optimal topologies. If there are some topologies inwhich the node
vm, which divides F(s, t, rvs , rvt ) into three parts, is adjacent to vs, we choose one of these topologies as the optimal one and
define p′(s, t, rvs , rvt ) = s; otherwise, we define p′(s, t, rvs , rvt ) = t . Then, we find if vm for F(s, t, rvs , rvt ) is adjacent to the
rightmost node vt , then v′m for F(s,m, rvs , rvm) will also be adjacent to the rightmost node vm in its segment. We call it the
inertia property.

Theorem 4 (Inertia Property). For any s, t, rvs ∈ R(vs), rvt ∈ R(vt), if p′(s, t, rvs , rvt ) = t, m = m(s, t, rvs , rvt ), rvm =
mr(s, t, rvs , rvt ), and s+ 1 < m, then

p′(s,m, rvs , rvm) = m.

Proof. We denote m(s,m, rvs , rvm) = m1 and rm(s,m, rvs , rvm) = rvm1
.

If p′(s,m, rvs , rvm) = s, we have

F(s, t, rvs , rvt ) = F(s,m, rvs , rvm)+ F(m, t, rvm , rvt )+ CI(vm, rvm)

= F(s,m1, rvs , rvm1
)+ F(m1,m, rvm1

, rvm)+ CI(vm1 , rvm1
)+ F(m, t, rvm , rvt )+ CI(vm, rvm). (8)

As F(m1, t, rvm1
, rvt ) returns the minimal total interference, we can get

F(m1, t, rvm1
, rvt ) ≤ F(m1,m, rvm1

, rvm)+ F(m, t, rvm , rvt )+ CI(vm, rvm). (9)



6920 H. Tan et al. / Theoretical Computer Science 412 (2011) 6913–6925

According to Eqs. (8) and (9), if setting p′(s, t, rvs , rvt ) = s, we calculate

F(s, t, rvs , rvt ) ≤ F(s,m1, rvs , rvm1
)+ F(m1, t, rvm1

, rvt )+ CI(vm1 , rvm1
)

≤ F(s,m1, rvs , rvm1
)+ F(m1,m, rvm1

, rvm)+ F(m, t, rvm , rvt )+ CI(vm, rvm)+ CI(vm1 , rvm1
), (10)

which means we can also get the optimal value of F(s, t, rvs , rvt ) in case that the node vm1 is adjacent to vs. Thus, if
p′(s,m, rvs , rvm) = s, we have p′(s, t, rvs , rvt ) = s, which is a contradiction with p′(s, t, rvs , rvt ) = t . The inertia property is
proved. �

According to the inertia property, we can rewrite Algorithm 1 as Algorithm 5 to compute F(s, t).

Algorithm 5: Compute F(s, t) based on the inertia property
1 call Fs(s, t, rvs , rvt );
2 FunctionFs(s, t, rvs , rvt ) /* always set vp = vs */
3 if s+ 1 = t then /* the boundary condition */
4 return Fs ← 0;
5 Fs ← Ft(s, t, rvs , rvt );
6 S ← {vs, vs+1, . . . , vt};
7 foreach vm ∈ S/{vs, vt} do
8 R(vm, S) = {|u− vm||u ∈ N(vm)


S};

9 foreach rvm ∈ R(vm, S) do
10 if |vs − vm| ≤ min(rvm , rvs) then /* assume adding (vm, vs) */
11 tmp← Fs(s,m)+ Fs(m, t)+ CI(vm, rvm);
12 if tmp < Fs then
13 Fs ← tmp;

14 return Fs;

15 FunctionFt(s, t, rvs , rvt ) /* always set vp = vt */
16 if s+ 1 = t then /* the boundary condition */
17 return Ft = 0;
18 Ft ←+∞;
19 S ← {vs, vs+1, . . . , vt};
20 foreach vm ∈ S/{vs, vt} do
21 R(vm, S) = {|u− vm||u ∈ N(vm)


S};

22 foreach rvm ∈ R(vm, S) do
23 if |vt − vm| ≤ min(rvm , rvt ) then /* assume adding (vm, vt) */
24 tmp← Ft(s,m)+ Ft(m, t)+ CI(vm, rvm);
25 if tmp < Ft then
26 Ft ← tmp;

27 return Ft ;

In the function Fs(s, t, rvs , rvt ), after the check in line 10, we have rvm ≥ |vs − vm|. According to the radius property,
line 11 can be written as

tmp = Fs(s,m, rvs , |vs − vm|)+ Fs(m, t)+ CI(vm, rvm). (11)

Now, the first element is independent from rvm . We take the two elements on the right as a whole, and we have

min{Fs(m, t)+ CI(vm, rvm)|rvm ≥ |vm − vs| and rvm ∈ R(vm)}

= min{Fs(m, t, r ′vm , rvt )+ CI(vm, r ′vm), Fs(m, t)+ CI(vm, |vm − vs|)},

where r ′vm is the shortest radius in R(vm) that is longer than |vm − vs|. When computing Fs(s, t) in decreasing order of rvm ,
we need not enumerate rvm anymore. A similar conclusion applies for Ft(s, t). Therefore, the time complexity for computing
MAI is reduced to O(n3∆2).

Furthermore, for the functions Fs(s, t) and Ft(s, t), we have the following two conclusions.

Theorem 5. For any s, t, when calling Fs(s, t) in the process of computing MAI, we always have rvt ≥ |vs − vt |.
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a b

Fig. 6. The skeleton c(vs, vt , 3) = {(vs, rvs = |vs − vs+2|), (vs+2, rvs+2 = |vt − vs+2|), (vt , rvt = |vt − vs+2|)} on the segment vsvt . (a) and (b) are two
possible topologies computed according to c(vs, vt , 3).

Proof. The function Fs is called in lines 1 and 11 of Algorithm 5. The checks in line 8 of Algorithm 2 and in line 10 of
Algorithm 5 guarantee that the theorem is correct. �

Thus, according to the radius property, we have Fs(s, t) = Fs(s, t, rvs , |vs − vt |).

Theorem 6. For any s, t, Ft(s, t) = Ft(s, t,+∞, rvt ).

Proof. When computing Ft(s, t) in Algorithm 5, rvs is not used. �

Based the above two theorems, the time complexity for computing Fs(s, t, rvs , rvt ) and Ft(s, t, rvs , rvt ) is reduced by ∆.
Therefore, we can now compute MAI in time O(n3∆).

4. Minimizing the maximum interference

4.1. Basic ideas

For the n nodes, V = {v1, v2, . . . , vn−1}, the minimum maximum node interference in all the possible spanning trees
is denoted as k. We have k ≤ ∆ ≤ n − 1 because all the nodes have the same maximum transmission radius rmax. In this
section, firstly we design an algorithm to check whether there is a spanning tree with the maximum interference no larger
than a given k set from 1 to n− 1. After computing k, we can construct the optimal tree with such a maximum interference
by traceback.

For a segment vsvt , even when the nodes inside are not allowed to be adjacent to the ones outside, they still interfere
with the outside nodes, and vice versa. We record all the interference from the nodes on vsvt to the outside nodes as a
set C(vs, vt , k), where s ≤ k. Each element c(vs, vt , k) ∈ C(vs, vt , k), called a skeleton of the topologies on vsvt , stores the
following nodes and their transmission radii:
1. if s > 0 and t < n− 1: the nodes on vsvt that interfere with vs−1 or vt+1;
2. if s = 0 and t < n− 1: the nodes on vsvt that interfere with vt+1;
3. if s > 0 and t = n− 1: the nodes on vsvt that interfere with vs−1;
4. if s = 0 and t = n− 1: meaningless.

Specifically, C(v, v, k) has |R(v)| elements that store the node v and its potential transmission radii in R(v). Since there
must be no more than k nodes on vsvt that interfere with the left or the right nodes outside respectively, we call a skeleton
c(vs, vt , k) valid if and only if there are no more than k nodes in it that interfere with the first node that is on the left or right
of vsvt respectively. Fig. 6 gives an example of a valid skeleton c(vs, vt , 3) and two different topologies built according to the
skeleton on vsvt , where vs and vs+2 interfere with vs−1, and only vt interferes with vt+1. Note that a valid skeleton does not
guarantee that themaximum interference in thewhole topologywould not exceed themaximum, such as RI(vs+2) = 4 > 3
in Fig. 6(a).

Further, given c(v0, vs, k), c(vs, vt , k) and c(vt , vn−1, k), to compute the topology on vsvt , the following two requirements
need to be satisfied: (1) togetherwith the interference fromnodes in c(vs, vt , k), each node outside vsvt cannot be interfered
with more than k nodes; and (2), together with interference from nodes in c(v0, vs, k) and c(vt , vn−1, k), each node on vsvt
cannot be interfered with more than k nodes. Considering the mutual interference among the nodes on or outside each
segment, we can design an algorithm to check whether there is a spanning tree withmaximum interference no greater than
k by dynamic programming, as follows.

4.2. Algorithms to compute MMI

First of all, we define a functionMerge(c(vp1 , vp2 , k), c(vp2+1, vp3 , k), . . . , c(vpm−1 , vpm , k)), where 0 ≤ p1 ≤ p2 ≤ · · · ≤
pm ≤ n − 1, to merge the skeletons on the consecutive segments and return c(vp1 , vpm , k). The method is to check every
node in the skeletons whether to interfere with the first node left or right to vp1vpm . Note that after merging, the new
skeleton c(vp1 , vpm , k)maynot be valid. Similar to computing the average interference, herewe define two auxiliary boolean
functions. The function boolean F∗(s, t, k)5, where s < t , is to check whether there is a topology on vsvt that satisfies the
following conditions simultaneously:

5 For conciseness, we use F∗(s, t, k) to stand for F∗(vs, vt , s, t, rvs , rvt , c(v0, vs, k), c(vs+1, vt−1, k), c(vt , vn−1, k)), and G∗(s, t, k) to stand for
G∗(vs, vt , s, t, rvs , rvt , c(v0, vs, k), c(vs+1, vt−1, k), c(vt , vn−1, k)).
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1. the transmission radius of vs is rvs ;
2. the transmission radius of vt is rvt ;
3. all the nodes inside vsvt can be only adjacent to the ones on vsvt ;
4. the skeleton for vs+1vt−1 is c(vs+1, vt−1, k);
5. RI(v) ≤ k, for each v inside vs+1vt−1;
6. each node inside vsvt have a path either to vs or to vt .

Similarly, the function boolean G∗(s, t, k), where s < t , is to check whether there is a topology on vsvt that satisfies the
following conditions simultaneously:

1. the transmission radius of vs is rvs ;
2. the transmission radius of vt is rvt ;
3. all the nodes inside vsvt can be only adjacent to the ones on vsvt ;
4. the skeleton for vs+1vt−1 is c(vs+1, vt−1, k);
5. RI(v) ≤ k, for each v inside vs+1vt−1;
6. all the nodes on vsvt are connected to each other directly or by the nodes on vsvt .

For F∗(s, t, k), we still assume that there has been a path from vs to vt before adding any edges to the nodes inside vsvt .
When s < t − 1, to satisfy the condition 6), there must be a node vm inside vsvt that is adjacent to vp, where vp = vs or
vt . Therefore, there is a path from vs to vm as well as from vm to vt . By ensuring RI(vm) ≤ k, F∗(s, t, k) is divided to check
F∗(s,m, k) and F∗(m, t, k). So it can be computed by Algorithm 6:

• Lines 1–2 is the boundary condition.
• Lines 4–14 are to compute F∗(s, t, k) recursively.
• In line 8, we assume adding an edge (vm, vp).
• Lines 9 and 10 enumerate the possible skeletons on vs+1vm−1 and vm+1vt−1.
• Line 11 is to ensure the condition 4 is satisfied.
• In line 12,

c(v0, vm, k) = Merge(c(v0, vs, k), c(vs+1, vm−1, k), c(vm, vm, k)),
and c(vm, vn−1, k) = Merge(c(vm, vm, k), c(vm+1, vt−1, k), c(vt , vn−1, k)).

Line 13 is to check their validity.
• All the three components for F∗(s,m, k) are checked in line 13.

Actually, in line 9, we need not enumerate all the elements in C(vs+1, vm−1, k) to set c(vs+1, vm−1, k), because the
interference of the nodes on segment vs+1vm−1 with the node vs has been defined in the input parameter c(vs+1, vt−1, k).
Therefore, we only need to enumerate the nodes on vs+1vm−1 that interfere with vm. Similarly, in line 10, we also only need
enumerate the nodes on vm+1vt−1 that interfere with vm as interference on vt has been defined in c(vs+1, vt−1, k).

Algorithm 6: Compute boolean F∗(s, t, k)
1 if s+ 1 = t then /* the boundary condition */
2 return F∗ ← true;
3 S ← {vs, vs+1, . . . , vt};
4 foreach vm ∈ S/{vs, vt} do
5 R(vm, S)← {|u− vm||u ∈ N(vm)


S};

6 foreach vp ∈ {vs, vt} do
7 foreach rvm ∈ R(vm, S) do
8 if |vp − vm| ≤ min(rvm , rvp) then
9 foreach c(vs+1, vm−1, k) ∈ C(vs+1, vm−1, k) do

10 foreach c(vm+1, vt−1, k) ∈ C(vm+1, vt−1, k) do
11 if Merge(c(vs+1, vm−1, k), c(vm, vm, k), c(vm+1, vt−1, k)) = c(vs+1, vt−1, k) then
12 compute c(v0, vm, k) and c(vm, vn−1, k) by merging;
13 if c(v0, vm, k) is valid and c(vm, vn−1, k) is valid and no more than k nodes that interfere

with vm and F∗(s,m, k) and F∗(m, t, k) then
14 return F∗ ← true;

15 return F∗ ← false /* no topology on vsvt to satisfy the 6 conditions */;

To compute G∗(s, t, k), we actually assume there is no path from vs to vt before adding edges to the nodes inside vsvt . In
order to satisfy the condition 6), there must be a node vm inside vsvt that is adjacent to vs. Similarly, by ensuring RI(vm) ≤ k,
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Algorithm 7: Compute boolean G∗(s, t, k)
1 if |vs − vt | ≤ min(rvs , rvt ) and F∗(s, t, k) = true then /* assume adding an edge (vs, vt) */
2 return G∗ ← true;
3 S ← {vs, vs+1, . . . , vt};
4 foreach vm ∈ S/{vs, vt} do
5 R(vm, S)← {|u− vm||u ∈ N(vm)


S};

6 foreach rvm ∈ R(vm, S) do
7 if |vs − vm| ≤ min(rvm , rvs) then
8 foreach c(vs+1, vm−1, k) ∈ C(vs+1, vm−1, k) do
9 foreach c(vm+1, vt−1, k) ∈ C(vm+1, vt−1, k) do

10 ifMerge(c(vs+1, vm−1, k), c(vm, vm, k), c(vm+1, vt−1, k)) = c(vs+1, vt−1, k) then
11 compute c(v0, vm, k) and c(vm, vn−1, k) by merging;
12 if c(v0, vm, k) is valid and c(vm, vn−1, k) is valid and no more than k nodes that interfere with vm

and F∗(s,m, k) and G∗(m, t, k) then
13 return G∗ ← true;

14 return G∗ ← false /* no topology on vsvt to satisfy the 6 conditions */;

a b

c

Fig. 7. The different optimal spanning trees for the 6-node exponential chain with MMI of 3. The numbers next to each node are the node interference.

G∗(s, t, k) is divided to check F∗(s,m, k) and G∗(m, t, k). Algorithm 7 gives a detailed description on how to compute
G∗(s, t, k).

We design the main function FindMinMax(V ) to find MMI k, which calls F∗(s, t, k) and G∗(s, t, k). From 1 to n − 1, we
check and return k immediately when a spanning tree with the maximum interference of k is found. Algorithm 8 illustrates
how to compute the function FindMinMax(V ) by calling G∗(0, n− 1, k), where we only consider the cases of |V | = n > 2.

Algorithm 8: FindMinMax(V ): Compute MMI in 1D networks
1 k← 1;
2 while k ≤ n− 1 do
3 foreach rv0 ∈ R(v0) do
4 foreach rvn−1 ∈ R(vn−1) do
5 foreach c(v1, vn−2, k) ∈ C(v1, vn−2, k) do
6 if no more than k nodes in c(v1, vn−2, k) and vn−1 that interfere with v0 and no more than k nodes in

c(v1, vn−2, k) and v0 that interfere with vn−1 and G∗(0, n− 1, k) then
7 return k;

8 k = k+ 1;
9 return+∞ /* no connected topology on V with the constraint of rmax */;

After computing FindMinMax(V ), we can do traceback and construct the optimal spanning tree with MMI by adding
exactly n− 1 edges, similar to Algorithm 4. For brevity, we omit the traceback function here.

4.3. Analysis

4.3.1. Correctness
The method has been verified through comparing our optimal topologies with the outputs generated by the brute-force

search whose running time is O(n∆). Moreover, our algorithms can find all the optimal topologies of MMI without crosses.
We illustrate three different optimal topologies for the 6-node exponential chain in Fig. 7.



6924 H. Tan et al. / Theoretical Computer Science 412 (2011) 6913–6925

4.3.2. Time complexity
Firstly, we analyze the size of the set C(vs, vt , k) when s > 0 and t < n − 1. The nodes in each element c(vs, vt , k) can

be divided into the node sets CL and CR which contain the nodes on vsvt that interfere with vs−1 and vt+1 respectively. As
the maximum interference is k, we get |CL| ≤ k ≤ ∆. Each node has the maximum different transmission radii of ∆. The
number of combinations for the nodes in CL and their transmission radii is

∆

0


+


∆

1


×∆+ · · · +


∆

k


×∆k

= O(∆2k). (12)

A similar result can be obtained for CR. Therefore, the size of C(vs, vt , k) is O(∆4k) when s > 0 and t < n − 1. For the
parameters of the function F∗(s, t, k), the number of different values of vs or vt is n, and rvs or rvt has ∆ different choices
at the most. Furthermore, the size of c(vs+1, vt−1, k) is O(∆4k), while the size of c(v0, vs, k) or c(vt , vn−1, k) is O(∆2k) since
v0vs only have nodes on the right side and vtvn−1 only have nodes on the left side. Therefore, the total of the functions
F∗(s, t, k) is O(n2∆8k+2). Also, G∗(s, t, k) has the same number of variations. For each function of F∗(s, t, k) or G∗(s, t, k), the
computing time is O(n∆4k+1). As there are no functions being repeatedly computed, the time to finish FindMinMax(V ) will
be O(n3∆12k+3). To construct the optimal spanning tree, the main time cost is for computing k by FindMinMax(V ). Thus, the
time complexity to construct the spanning tree with the minimum maximum interference is O(n3∆O(k)). Since ∆ ≤ n − 1
and k = O(

√
∆) have been proved in paper [20], the time is sub-exponential. However, when ∆ is small, which means a

low maximum node degree, our algorithm is fast.

Space complexity: The space is mainly for storing the functions F∗(s, t, k) and G∗(s, t, k) as well as the sets C(vs, vt , k).
Therefore, the space complexity is O(n2∆O(k)).

5. Discussions

In this paper we study situations where the nodes are arbitrarily distributed along a line. One node can interfere with
other nodes even if they are not neighbors. An edge (u, v) exists only if the transmission ranges of both nodes are not shorter
than their distance |uv|. Adding an edge (u, v) may not affect u, as the transmission range of u is not shorter than (u, v),
but may cause v to interfere with more nodes. Or (u, v) may not affect both u and v at all. All these variations make the
minimization of interference hard. Whether it is NP-hard to minimize the maximum interference for the highway model is
an open question.

All the nodes have the same maximum transmission range rmax in our model. In practice, we may use various types
of nodes and select a suitable maximum transmission range for each node according to its remaining energy in order to
prolong the network’s lifetime. Note that when deleting a cross, we do not add an edge to v that exceeds in length the
longest edge the node already has in the previous topology. So the no-cross property is still true when each node v has an
individual maximum transmission range rv

max. After re-defining the potential neighbors N(v) by replacing rmax with rv
max in

Eq. (5), our algorithms can still construct the optimal spanning trees with theminimum average or theminimummaximum
interference.

Planarity is also an important property of the network.Many efficient routing protocols forwireless networks require the
topology to be planar [8,9]. Besides having guaranteed low interference and connectivity, the optimal topologies constructed
by our methods are planar. There are however other desirable network properties, such as low node degree. Our algorithms
can generate multiple optimal topologies with minimum interference. One example is the topology with MMI for the
exponential chains. For the 6-node chain, we can find all the 17 optimal topologies without a cross. For the 8-node, the
total number of optimal topologies without a cross can be as many as 241. Therefore, we can try to choose an optimal
topology that has the other properties as well as low-interference, planarity, and connectivity.

6. Conclusion

In this paper, we study the problem of minimizing the receiver-centric interference for the highway model. Based on
the no-cross property and dynamic programming, a polynomial-time exact algorithm is proposed which can construct a
connected topology with minimum average interference. Furthermore, making use of the radius property and the inertia
property, we propose a way to substantially speed up the computation. A sub-exponential-time exact algorithm is also
presented to construct the connected topology while minimizing the maximum interference. The optimal topologies
constructed have the properties of low interference, connectivity, and planarity simultaneously. The problem of whether
it is NP-hard to minimize the maximum interference for the highway model is still open. Related open problems include
how to extend the exact algorithms to 2D networks, how to design efficient approximations to minimize the maximum
interference in 2D networks, how to tackle the interference minimization given other network properties, such as small
node degree and low spanner.
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