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In this paper, we discuss the light-curve features of various flaring scenarios in a time-dependent
leptonic model for low-frequency-peaked blazars. The quasar 3C273 is used as an illustrative example.
Our code takes into account Fermi-II acceleration and all relevant electron cooling terms, including the
external radiation fields generally found to be important in the modeling of the SEDs of FSRQs, as well
as synchrotron self absorption and γ γ pair-production. General parameters are constrained through
a fit to the average spectral energy distribution (SED) of the blazar by numerically solving the time-
dependent Fokker–Planck equation for the electron evolution in a steady-state situation. We then apply
perturbations to several input parameters (magnetic field, particle injection luminosity, acceleration time
scale) to simulate flaring events and compute time-dependent SEDs and light curves in representative
energy bands (radio, optical, X-rays, γ -rays). Time lags between different bands are evaluated using
a discrete cross correlation analysis. We find that Fermi-II acceleration has a significant effect on the
distributions and that flaring events caused by increased acceleration efficiency of the Fermi II process
will produce a correlation between the radio, optical and γ -ray bandpasses, but an anti-correlation
between these three bandpasses and the X-ray band, with the X-rays lagging behind the variations in
other bands by up to several hours.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Blazars represent a class of radio-loud Active Galactic Nuclei
that consists of BL Lac objects and Flat Spectrum Radio Quasars
(FSRQs). The spectral energy distributions (SED) of blazars is char-
acterized by two broadband, nonthermal components that span
from the radio to UV or X-ray wavelengths and from X-rays
to high-energy γ -rays. The extreme inferred isotropic-equivalent
γ -ray luminosities, combined with rapid variability in different
bandpasses, in some cases, down to just a few minutes, provides
evidence for strong Doppler boosting in these sources. This is con-
sidered to be the result of beamed emission from relativistic jets
closely aligned with our line of sight. It is generally accepted that
the low-energy spectral component is synchrotron emission of rel-
ativistic electrons/positrons. For the origin of the high-energy SED
component, two different approaches have been discussed, referred
to as leptonic and hadronic models (for a review of both types
of models, see, e.g., Böttcher, 2007; Böttcher et al., 2012). In the
leptonic scenario, the X-ray to γ -ray emission is due to the in-
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verse Compton scattering off the relativistic electrons, with the
target photon fields either being the synchrotron photons within
the emission region (SSC = synchrotron self Compton), or pho-
tons external to the jet (EC = external Compton). The external
photon fields can include the accretion disk (Dermer et al., 1992;
Dermer and Schlickeiser, 1993), the broad line region (BLR), (Sikora
et al., 1994; Blandford and Levinson, 1995), or even an infra-
red emitting dust torus (IR) that surrounds the central accre-
tion flow onto supermassive black hole (Blazejowski et al., 2000).
Leptonic models are widely used and have been relatively suc-
cessful in modeling the SEDs and some variability features of
blazars. In hadronic models (e.g., Mannheim and Biermann, 1992;
Mastichiadis and Kirk, 1995, 2005; Mücke and Protheroe, 2001;
Mücke et al., 2003; Böttcher et al., 2013), γ -rays are the result of
proton synchrotron radiation as well as π0-decay and synchrotron
and Compton radiation from secondary particles in photo-pion in-
duced cascades, presuming the existence of ultra-relativistic pro-
tons in the emission region. While such models have also had
success in modeling the SEDs of blazars and remain viable, rapid
variability observed in blazars is more readily explained in terms
of the much shorter acceleration and cooling time scales of rela-
tivistic leptons. Therefore, in this work, we will focus on leptonic
models.
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The shapes of the spectral components provide insight into
the underlying particle distribution that is producing the emis-
sion. Simple power-law and broken power-law electron distribu-
tions with parameters chosen ad-hoc, have often been invoked in
order to model the SEDs of blazars. Alternatively, log-parabolic
electron distributions have been successfully employed to pro-
duce the curved synchrotron and Compton spectra observed in
many blazars (Massaro et al., 2006a, 2006b; Cerruti et al., 2013;
Dermer et al., 2014). The log-parabola function is characterized
by two variables that describe the spectral parameter of the elec-
tron distribution and the spectral curvature of the distribution.
The log parabolic shape has been shown to be analytically related
to a stochastic acceleration mechanism, in which the acceleration
probability decreases with energy (Rani et al., 2011; Massaro et
al., 2006a, 2006b). Such a connection of log-parabolic spectra and
acceleration mechanisms naturally arises in solutions of the time
dependent Fokker–Planck equation that contains a momentum dif-
fusion term, indicative of Fermi II acceleration, when the evolution
reaches equilibrium (Tramacere et al., 2011; Massaro et al., 2006b).
They showed that the spectral curvature is inversely proportional
to the momentum diffusion coefficient, since the diffusion term
acts to broaden the shape of the particle distribution.

Second order Fermi acceleration is therefore a viable mecha-
nism for producing log-parabola particle spectra which may be
hard enough to reproduce the hard spectra of γ -ray emission ob-
served in several TeV blazars (Lefa et al., 2011; Asano et al., 2013).
It has also been shown that relativistic Maxwellian electron distri-
butions can result from stochastic acceleration processes balanced
by radiative losses (Schlickeiser, 1984a). For the full time depen-
dent Fokker–Planck equation incorporating Fermi II acceleration,
general solutions have been found using Green’s functions and
the application of spectral operators (Stawarz and Petrosian, 2008;
Tramacere et al., 2011). Solutions to the Fokker–Planck equation
incorporating both Fermi I and Fermi II processes, have been devel-
oped for the application of the transport of energetic ions (Becker
and Dermer, 2006). Solutions have also been obtained that con-
sider both Fermi I and Fermi II acceleration, and radiative losses in
the Thomson regime (Schlickeiser, 1984a, 1984b). However, when
Klein–Nishina effects on the electron cooling rates, as well as ab-
sorption processes in the radiation transfer problem, are taken into
account, one needs to resort to numerical solutions of the Fokker–
Planck equation. Asano et al. (2013) developed a time dependent
Leptonic model that incorporated Fermi II processes to study the
hard spectrum of the blazars Mrk 421 and 1ES 1101-232. The cur-
vature of the electron spectrum, as well as the hard γ -ray spectra
could be reproduced by a model that utilizes a stochastic momen-
tum diffusion process (Fermi II).

In this paper, we use a time-dependent Leptonic model that in-
corporates Fermi acceleration and self-consistent radiative losses,
including synchrotron and Compton scattering on internal (SSC)
and external (EC) radiation fields as well as synchrotron self-
absorption and γ γ absorption and pair production. The purpose
of this paper is to investigate the effects of various flaring sce-
narios, including Fermi-II acceleration, in external-Compton domi-
nated blazars to complement the study for SSC-dominated sources
by Asano et al. (2013). Therefore, while our code is applicable to
all types of blazars, we here focus on its application to FSRQs.
We describe the model and underlying assumptions in Section 2.
We use our code to study the influence of Fermi-II acceleration
on the quasi-equilibrium particle distribution and light-curve fea-
tures, including possible time delays between variations in differ-
ent frequency bands. These features are studied with parameters
motivated by an SED fit to the FSRQ 3C273, described in Sec-
tion 3. Once we have obtained appropriate baseline parameters,
we choose a set of input parameters (specifically, the particle in-
jection luminosity, the magnetic field, and the acceleration time
scale) to perturb them in the form of a Gaussian in time, in or-
der to study the light curves in the radio, optical, X-ray and γ -ray
bandpasses (Section 4). In Section 5, we perform a discrete corre-
lation function analysis on the light curves obtained in the preced-
ing section, to determine possible time lags between the selected
bandpasses. We summarize and discuss our results in Section 6.
Throughout this paper, a cosmology with Ωm = 0.3, ΩΛ = 0.7, and
H0 = 70 km s−1 Mpc−1 is used.

2. Model setup

Our model is based on a single, homogeneous emission region
of radial size R which moves relativistically with bulk Lorentz fac-
tor Γ along a pre-existing jet structure, oriented at a small angle
θobs with respect to our line of sight. Throughout the paper, un-
primed quantities denote values in the co-moving frame of the
emission region, while primed quantities denote values in the sta-
tionary AGN frame. The emission region is pervaded by a homoge-
neous, randomly oriented magnetic field of strength B . The size of
the emission region is constrained by the observed variability time
scale, �t , through

R = c · �t · δ
1 + z

(1)

where z is the redshift to the source and δ = (Γ [1−βΓ cos θobs])−1

is the Doppler factor.
A population of an ultra-relativistic electrons is continuously in-

jected. We assume that the electron injection spectrum is in the
form of a power-law distribution with the functional form

Q (γ , t) = Q 0(t)γ
−q H(γ ;γmin, γmax) (2)

where H(γ ;γmin, γmin) denotes the Heaviside function defined by
H = 1 if γmin ≤ γ ≤ γmax, and H = 0 otherwise. The normaliza-
tion factor for the injection spectrum is determined through the
injection luminosity by

Q 0 =

⎧⎪⎨
⎪⎩

Linj(t)
Vbmec2

2−q

γ
2−q
2 −γ

2−q
1

if q �= 2,

Linj(t)

Vbmec2 ln(
γ2
γ1

)
if q = 2,

(3)

where Vb denotes the co-moving blob of the emission region and
me denotes the rest mass of an electron.

The time evolution of the electron distribution is found by
numerically solving the time-dependent Fokker–Planck equation,
which is given in the following form:

∂ne(γ , t)

∂t
= ∂

∂γ

[
1

(a + 2) · tacc
· γ 2 · ∂ne(γ , t)

∂γ

]

− ∂

∂γ

(
γ̇rad · ne(γ , t)

) + Q (γ , t) − ne(γ , t)

tesc
(4)

where a = v2
s /v2

A , v A represents the Alfven velocity, vs represents
the shock velocity. In this study, a value of a = 10−3 is chosen.
γ̇rad denotes the radiative (synchrotron and Compton) losses, tak-
ing into account Klein–Nishina effects (e.g., Böttcher et al., 1997).
Synchrotron losses are governed by the strength of the randomly
oriented magnetic field within the emission region. Inverse Comp-
ton losses are governed by the scattering of the electrons with the
synchrotron photons that they produce (SSC) or by the external
radiation fields surrounding the black hole (EC). These radiation
fields include emission directly from the accretion disk, emission
reprocessed by the Broad Line Region (BLR), and radiation emitted
by a dusty torus.

In addition to radiative losses, the electron distribution is sub-
jected gyro-resonant wave–particle interactions with hydromag-
netic turbulence described by a turbulent plasma wave spectrum
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I(k) ∝ k−p with index p, where k is the wave number of turbulent
plasma waves.

If the energy density of the plasma waves is small compared to
the energy density of the magnetic field (quasi-linear approxima-
tion), then the diffusion coefficient becomes a power law function
of the form

D(γ ) = K · γ p (5)

In this work, we consider a diffusion coefficient with a spectral
index p = 2 (hard sphere scattering). This makes the acceleration
time scale independent of energy. The normalization of the diffu-
sion coefficient is given by K = 1/([a + 2]tacc). The values tacc and
tesc represent the acceleration and escape time scales, respectively.
We parameterize the escape time scale in terms of the light cross-
ing time scale as tesc = ηR/c where η ≥ 1.

The Fokker–Planck equation is solved through an implicit
Crank–Nichelson scheme that converts the partial differential
equation into a tri-diagonal set of linear equations. The solution
to the linear equations is then found through a tri-diagonal matrix
algorithm. This method has the advantage of being unconditionally
stable, allowing us to use arbitrarily large time steps to numerically
solve the partial differential equation when approaching equilib-
rium.

Simultaneously with the Fokker–Planck equation (4) for the
electrons, we solve a separate evolution equation for the photon
field in the emission region:

∂nph(ν, t)

∂t
= 4π

hν
· jν(t) − nph(ν, t) ·

(
1

tesc,ph
+ 1

tabs

)
(6)

where jν denotes the emissivity due to the various radiation
mechanisms, tesc,ph = 4R/3c is the photon escape time scale and
tabs denotes the absorption time scale due to synchrotron self ab-
sorption and gamma–gamma absorption. The absorption time scale
can be defined through the opacities τ , as

tabs = R

c · (τSSA + τγ γ )
(7)

where τSSA and τγ γ denote the synchrotron-self-absorption and
γ γ absorption opacities. With the solution to the photon field at
any given time step, we then compute the emerging (observable)
broadband spectrum in the observer’s frame through

f ′
ν ′

(
t′) ≡ ν ′ F ′

ν ′
(
t′) = h · ν2 · nph(ν, t) · δ4 · V co

4πd2
L · tesc,ph

(8)

At every time step, separate subroutines are used to compute
the emission coefficients for the various radiation processes in the
co-moving frame of the emission region. The synchrotron emission
coefficient is evaluated as

jν,syn(t) = 1

4π

∞∫
0

dγ ne(γ , t) · Pν(γ ) (9)

where the term Pν(γ ) denotes the spectral synchrotron power of
a single lepton. The spectral synchrotron power is approximated by
Böttcher et al. (2012):

Pν(γ ) = 32πc

9Γ (4/3)
· r2

e

(
me

m

)2

· uBγ
2 · ν1/3

ν
4/3
c

e−ν/νc (10)

where uB denotes the energy density of the magnetic field and re

denotes the classical electron radius. The critical frequency for the
synchrotron spectrum is νc = (4.2 × 106 B(me/m)) · γ 2 Hz.

The SSC emissivity is calculated using the solution of Jones
(1968) for Compton scattering of an isotropic radiation field by
an isotropic distribution of relativistic electrons. Our code uses the
entire co-moving photon field as targets for Compton scattering,
thus incorporating higher-order SSC scattering.

For the external radiation field from the accretion disk, we
assume that the disk is in the form of a Shakura–Sunyaev disk
(Shakura and Sunyaev, 1973) with the following intensity profile:

I ′S S
ε

(
Ω ′; R̃ ′) = 3GMṁ

16π2 R3
· ϕ(

R̃ ′) · δ
(
ε′ − C

R̃3/4

)
(11)

where ε′ = hν ′/mec2 is the photon energy normalized to the elec-
tron rest energy in the AGN frame and ϕ(R̃ ′) is defined by

ϕ
(

R̃ ′) = 1 − βi · (R ′
i/R ′)1/2

(12)

where βi denotes the fraction of angular momentum captured by
the black hole at the radius Ri , the innermost stable circular orbit
around the black hole. The constant C is defined by

C = 1.51 × 10−4
(

ledd

η f M9

)1/4

(13)

and R̃ ′ = R ′/R ′
g , with R ′

g denoting the gravitational radius. With
this representation for the intensity, we can compute the observed
ν Fν flux of the accretion disk (Dermer and Menon, 2009):

f ′
ε′,S S = leddLedd

2πd2
Lη f R̃ ′

min

·
(

ε′

ε′
max

)4/3

· exp
(−ε′/ε′

max

)
(14)

We next consider an isotropic, external blackbody radiation field
of temperature TBB surrounding the emission region. This is an
appropriate representation for a thermal IR radiation field from
a dust torus (with Tbb � 1000 K), but also produces an external-
Compton spectrum in good agreement with that resulting from
a full BLR radiation field for Tbb ∼ a few 103 K (Böttcher et al.,
2013), as long as the emission region is not located far beyond the
outer boundary of the BLR. The spectral energy density of the ex-
ternal radiation field is

u′(ε′) = K
ε′3

exp(ε′/Θ) − 1
(15)

where K denotes the normalization constant and Θ = kT /(mec2)

denotes the dimensionless temperature parameter. The normaliza-
tion constant is constrained equating

∫ ∞
0 u′(ε′)dε′ to the expected

energy density of the radiation field in the AGN frame

u′
ext = L′

dτ

4π R ′2
extc

(16)

where Ld denotes the total luminosity of the disk and τ denotes
the fraction of the disk’s radiation that’s reprocessed by either the
dust torus or the BLR and reemitted as thermal radiation, and Rext
denotes the radius of the (assumed spherical) reprocessing mate-
rial. In order to evaluate the emission coefficients for EC scattering
in the co-moving frame, we need to transform the spectral en-
ergy density (Eq. (15)) from the AGN frame to the co-moving frame
through (Dermer and Menon, 2009):

u(ε,Ω) = u′(ε′,Ω ′)
Γ 3(1 + βμ)3

(17)

where μ denotes the cosine of the angle between the normal-
ized, negative bulk velocity of the emission region and direction of
propagation of photons in the co-moving frame, and u′(ε′,Ω ′) =
u′(ε′)/(4π) under the assumption of isotropy in the AGN rest
frame. The resulting spectral energy density in the co-moving
frame is then used to evaluate the emission coefficient in the co-
moving frame.
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For time dependent modeling, evaluating the full expressions
for the EC emission coefficients, involving full integrations over
the solid angles of the target photon field and the electron distri-
butions in the co-moving frame, is impractically time-consuming.
Therefore, in order to save computing time, we assume that pho-
tons from both the accretion disk and the isotropic radiation field
are boosted into the relativistic blob in the forward direction, thus
replacing the angular characteristic of Eq. (17) by a δ function
δ(μ + 1). For the accretion disk, we invoke the near field approx-
imation (Dermer and Menon, 2009), which is valid as long as the
relativistic blob is near the black hole:

udisk(ε,Ω) = uNF

2π
· δ(ε − Γ ε′∗/2

) · δ(μ + 1) (18)

where u′
NF denotes the total energy density of the accretion disk in

the near-field regime in the co-moving frame and ε ′∗ denotes the
peak energy of the accretion-disk emission.

For the isotropic radiation field, we construct the energy den-
sity in the co-moving frame using

uext(ε,Ω) = 15uIR

2π5(Θ)4
· ε3

exp(ε/Θ) − 1
· δ(μ + 1) (19)

With Eqs. (18) and (19), we use the relations given in Dermer and
Menon (2009) to compute the corresponding EC emission coeffi-
cients.

Once we have the combined photon field of all the radiation
fields in the co-moving frame, we compute the γ γ absorption
opacity (Dermer and Menon, 2009), and the pair production rate
(Böttcher and Schlickeiser, 1997). The produced pair spectrum is
added to the solution of the Fokker–Planck equation from the cur-
rent time step, and τγ γ is included in the calculation of the photon
absorption time scale (Eq. (7)) for the next time step.

3. Steady state spectrum

The purpose of this paper is a generic study of variability fea-
tures caused by variations of individual emission-region param-
eters in the model described in the previous section. To choose
realistic baseline parameters for this study, we perform a fit to the
time-averaged SED of the FSRQ 3C273 (data taken from Abdo et al.,
2010), based on an equilibrium solution obtained with our code
with time-independent input parameters. The equilibrium model
is fully determined through the following list of input parameters:
The magnetic field B , the observed variability time scale, �tvar,
the bulk Lorentz factor Γ , the observing angle θobs, the low- and
high-energy cutoffs γmin,max and spectral index q of the electron
injection spectrum, the electron injection luminosity Linj, the ac-
cretion disk luminosity L′

disk, the initial distance of the emission
region from the central black hole, Raxis, the characteristic extent
R ′

ext, energy density u′
ext, and blackbody temperature TBB of the

external radiation field, and the ratio between the acceleration and
escape time scales, tacc/tesc.

Several of these parameters may be either directly measured
or constrained through observations. Specifically, for 3C273, we
have the following observables (see Böttcher et al., 2013 for ref-
erences to the observational data): z = 0.158, β⊥,app = 13 (the
apparent transverse velocity of individual jet components, normal-
ized to the speed of light), �tvar ∼ 1 d, Ldisk = 1.3 × 1047 erg s−1,
and LBLR = 9.1 × 1045 erg s−1. The observed apparent superlumi-
nal speed implies a limit to the bulk Lorentz factor of Γ > 13. We
choose the observing angle as θobs = 1/Γ so that δ = Γ , and the
size of the emission region is then constrained by Eq. (1). In the
SED of 3C273, the accretion disk component is directly visible as
a prominent Big Blue Bump, which facilitates reliable estimates of
the black hole mass and Eddington ratio, lEdd = Ldisk/LEdd. The ob-
served BLR luminosity is related to the disk luminosity through
Fig. 1. Equilibrium fit to the time-averaged SED of 3C273. See Table 1 for parameter
values. The line styles denote: solid = overall fit, dotted = synchrotron, dashed =
accretion disk, single-dot-dashed = SSC, dot-double-dashed = EC (accretion disk),
double-dot-dashed = EC (isotropic radiation field).

LBLR = τ Ldisk, and these quantities are related to the energy den-
sities of the respective radiation fields in the co-moving frame of
the emission region through (Dermer and Menon, 2009)

uext

uB
= 8 · L′

d · τ · Γ 2

3 · B2 · R ′2
ext · c

(20)

udisk

uB
= 6 · G · Mbh · ṁ · Γ 2 · 0.023

B2 · c · R3
axis

(21)

We may relate the observed synchrotron peak frequency to the
Doppler factor, magnetic field and peak electron energy, assum-
ing that the peak energy corresponds to γmin. Assuming that SSC
scattering is in the Thomson regime, the peak location of the SSC
power will then be located at νSSC = νsyn · γ 2

min. Given a constraint
on the Doppler factor, this provides estimates for γmin and B .
Unfortunately, the spectral slope of the synchrotron spectrum is
difficult to constrain for 3C273 due to the substantial contribution
from the accretion disk in the optical regime, which is masking
much of the synchrotron emission.

Within the framework of the observational constraints, the re-
maining parameters are varied to obtain an acceptable fit to the
SED of 3C273. Fig. 1 shows the SED fit obtained, with parameters
listed in Table 1. Our fitting procedure is a “fit by eye” method.
Due to the considerable number of adjustable parameters not con-
strained by observations, a detailed χ2 minimization procedure is
infeasible. While our fit parameters might provide a reasonable es-
timate of the actual physical conditions in the emission region, the
lack of a rigorous χ2 minimization procedure makes an error anal-
ysis impractiable. However, since the goal of this paper is the study
of light curve features resulting from individual parameter varia-
tions, the exact value of any individual parameter is irrelevant for
our purpose.

Fig. 1 illustrates that the SED of 3C273 is reproduced quite
well with our fit. The optical to near UV radiation is fitted well
by a combination of synchrotron and direct accretion disk emis-
sion. The value of B = 1.75 g is consistent typical values (of
the order of 1 — a few G) found in the modeling of FSRQs by
other authors (e.g., Ghisellini et al., 2011; Böttcher et al., 2013;
Dermer et al., 2014). The X-ray spectrum is fitted with a syn-
chrotron self Compton component, and the Fermi-LAT data points
are fitted with external-Compton radiation, also in agreement with
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Table 1
Parameter values used for the equilibrium fit to the SED of
3C273 (see Fig. 1).

Parameter Value

B 1.75 G
R 7.25 × 1015 cm
η 18.0
Γ 14
θobs 7.14 × 10−2 rad
γmin 6.25 × 102

γmax 1.0 × 105

q 3.4
Linj 5.6 × 1042 erg s−1

MBH 2.6 × 109 M�
lEdd 0.395
Raxis 0.07 pc
R ′

ext 0.73 pc
u′

ext 6.5 × 10−5 erg cm−3

TBB 6000 K
tacc/tesc 1.5 × 10−3

Fig. 2. Normalized light-curves in the radio, optical, X-ray, and γ -ray bandpasses
resulting from the magnetic field perturbation (Eq. (22)). The dotted vertical line
indicates the value of t0.

most other modeling works which utilize external Compton scat-
tering to reproduce the γ -ray emission of low-frequency-peaked
blazars, as opposed to high frequency BL Lacs that can usually be
well represented by pure synchrotron-self-Compton models. In our
fit, the external radiation fields is a combination of radiation from
the accretion disk and an isotropic external radiation field (repre-
sentative of the BLR), as suggested by Finke and Dermer (2010)
to reproduce the spectral break in the Fermi-LAT spectrum of the
FSRQ 3C 454.3. The choice of parameters for the isotropic radia-
tion field is consistent with being related to the BLR, given the
distance of the emission region from the black hole, ∼ 1017 cm,
the radial extent of the external field, ∼ 1018 cm, and the black-
body temperature of 6 × 103 K (see, e.g., Böttcher et al., 2013). The
distance from the black hole is also consistent with the near-field
approximation adopted for the accretion disk radiation field. The
radio emission is suppressed due to synchrotron self absorption,
which suggests that the extended radio emission is likely due to
synchrotron emission of electrons further down the jet.

Our fit employs a moderate diffusive acceleration time scale of
tacc = 6.5 × 103 s, which is longer than the radiative cooling time
scale of electrons at γmax. Therefore, the influence of Fermi-II ac-
celeration on the presented steady-state fit is negligible. However,
as we will see in the next sections, this is no longer the case for
the flaring scenarios that we investigate.
Fig. 3. Normalized light-curves in the radio, optical, X-ray, and γ -ray bandpasses
resulting from the injection luminosity perturbation (Eq. (23)). The dotted vertical
line indicates the value of t0.

4. Simulated light-curves

Starting with the steady state model setup for 3C273 as de-
scribed above, we now investigate the influence of fluctuations
of individual parameters on the time-dependent radiative output.
After the simulation has reached equilibrium, one of the input
parameters (B , Linj, or tacc) is modified in the form of a Gaus-
sian perturbation in time. From the simulation outputs, we extract
light curves in the radio, optical (R-band), X-ray and GeV γ -ray
(Fermi-LAT) bandpasses. Specifically, we setup the time evolution
of the magnetic field perturbation as

B(t) = B0 + K B · e−(t−t0)2/2σ 2
(22)

where B0 = 1.75 G is the equilibrium value for the magnetic field,
K B = 2 G parameterizes the amplitude of the perturbation, and t0
and σ specify the time when the perturbation reaches its maxi-
mum and the characteristic time scale of the perturbation, respec-
tively. The chosen perturbation for the injection luminosity has the
same functional form,

Linj(t) = Linj,0 + K L · e−(t−t0)2/2σ 2
(23)

where Linj,0 = 5.6 × 1042 erg s−1 is the equilibrium injection lumi-
nosity and K L = 4.8 × 1042 erg s−1 is the amplitude of the pertur-
bation. The perturbation of the acceleration time scale is chosen
in such a way that the acceleration time scale decreases to a min-
imum during the peak of the perturbation. This is achieved with
the following parameterization:

tacc(t) = tacc,0

1 + Kt · e−(t−t0)2/2σ 2 (24)

where tacc,0 is the equilibrium value of the acceleration time scale
and Kt = 17 characterizes the amplitude of the perturbation. For
all three perturbations, we choose a width of σ = 4 × 105 s, and
a peak time of t0 = 6.7 × 106 s, corresponding to approximately
2 and 30 light-crossing time scales through the emission region,
respectively, both in the co-moving frame. The light curves (nor-
malized to the respective peak fluxes) are shown in Figs. 2–4.

As expected, the increase in the magnetic field (Fig. 2) causes
an increase in the synchrotron flux at all energies (specifically, ra-
dio and optical for the case studied here). The associated increase
in the synchrotron photon energy density also causes a flare in
the SSC-dominated X-ray emission. At the same time, this leads to
increased radiative cooling without a change of the external radi-
ation fields and, hence, a dip in the γ -ray light curve. This dip is
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Fig. 4. Normalized light-curves in the radio, optical, X-ray, and γ -ray bandpasses re-
sulting from the acceleration time scale perturbation (Eq. (24)). The dotted vertical
line indicates the value of t0.

Table 2
Simulated light curve parameters for the case of the magnetic field perturbation.
Fluxes, f0 and fpk , are given in units of erg cm−2 s−1, while the FWHM and peak
time, tpk , are given in units of seconds.

Radio R-band X-rays γ -rays

f0 7.5 × 10−16 2.68 × 10−11 1.78 × 10−10 6.85 × 10−10

f pk 8.71 × 10−16 5.53 × 10−11 2.50 × 1010 5.1 × 10−10

FWHM 8.36 × 104 7.31 × 104 7.80 × 104 9.57 × 104

tpk 4.86 × 105 4.87 × 105 4.87 × 105 5.26 × 105

delayed with respect to the maxima in the synchrotron and SSC
light curves by approximately the radiative cooling time scale of
γ -ray emitting electrons.

A temporarily increased injection luminosity (Fig. 3) initially
causes a flare in all bandpasses. However, we find a delayed
decrease of the radio flux following an initial, small-amplitude
flare. This is explained by an increased density of relatively low-
energy electrons, responsible for synchrotron self-absorption at ra-
dio wavelengths, delayed by the required radiative cooling time
scale for newly injected electrons to reach Lorentz factors of � 100.

A decreasing acceleration time scale (Fig. 4) leads to more effi-
cient acceleration of relativistic particles to higher energies. The
electron spectrum becomes harder and extends to higher ener-
gies during this perturbation, which shifts all spectral components
to higher frequencies. This leads to flaring behavior in the radio,
optical, and γ -ray bands. The X-ray flux, however, correspond-
ing to the low-frequency branch of the SSC emission component,
decreases due to the shift of the SSC component to higher frequen-
cies. The flare in the radio bandpass is particularly pronounced
in this simulation. Keeping in mind that the radio emission is
in the optically-thick (to SSA) regime, this can be explained by
low-energy electrons being accelerated to higher energies, out of
the energy range contributing to synchrotron self-absorption at ra-
dio wavelengths, thereby reducing the effective number density of
electrons for SSA. Due to the much steeper frequency dependence
of the SSA opacity compared to the synchrotron emissivity, the net
effect is an increase in the emanating synchrotron flux.

The light curves shown in Figs. 2 to 4 reveal noticeable delays
between the light curve features in different frequency bands. Ta-
bles 2–4 list the simulated equilibrium fluxes f0, peak fluxes fpk ,
FHWM and peak times tpk of the light curves in the four studied
frequency bands for the three perturbations investigated here. The
fluxes, f0 and fpk , are given in units of erg cm−2 s−1, while the
FWHM and peak time, tpk , is given in units of seconds.
Table 3
Simulated light curve parameters for the case of the injection luminosity perturba-
tion. Fluxes, f0 and fpk , are given in units of erg cm−2 s−1, while the FWHM and
peak time, tpk , are given in units of seconds.

Radio R-band X-rays γ -rays

f0 7.5 × 10−16 2.68 × 10−11 1.78 × 10−10 6.85 × 10−10

f pk 7.03 × 10−16 3.13 × 10−11 3.26 × 1010 1.01 × 10−9

FWHM 9.43 × 104 6.45 × 104 8.51 × 104 7.81 × 104

tpk 5.74 × 105 4.87 × 105 5.03 × 105 4.89 × 105

Table 4
Simulated light curve parameters for the case of the acceleration timescale pertur-
bation. Fluxes, f0 and fpk , are given in units of erg cm−2 s−1, while the FWHM and
peak time, tpk , are given in units of seconds.

Radio R-band X-rays γ -rays

f0 7.5 × 10−16 2.68 × 10−11 1.78 × 10−10 6.85 × 10−10

f pk 1.36 × 10−15 3.16 × 10−11 1.35 × 10−10 7.86 × 10−10

FWHM 1.04 × 105 7.37 × 104 9.01 × 104 9.08 × 104

t0 5.11 × 105 4.87 × 105 5.10 × 105 4.90 × 105

Fig. 5. Discrete correlation function between the optical (R-band) and X-ray band-
passes for the magnetic field perturbation case, along with a Gaussian fit to the
DCF.

The predicted anti-correlation between the X-ray fluxes and the
radio, optical, and γ -ray fluxes found for the case of the acceler-
ation timescale perturbation, is a particularly interesting feature.
These correlations and anti-correlations could represent a tell-tale
signature of flaring activity caused by a temporary increase of the
efficiency of Fermi II acceleration in the emission region.

5. Discrete correlation analysis of light-curve bandpasses

In order to be able to directly compare our predictions to light
curve features extracted from observational data, we apply a dis-
crete correlation function (DCF) analysis (Edelson and Krolik, 1988)
between the light curves at the various bandpasses investigated
here, as is routinely done for data from flux-monitoring campaigns
on blazars to study correlations/anti-correlation and time lags be-
tween different frequency bands. We arbitrarily assign a relative
error of 1% of the flux values to any simulated light curve point
in order to be able to apply a χ2 minimization technique to fit
a phenomenological Gaussian function to the obtained DCFs. For
comparison with observational data, which typically have the most
complete temporal light curve coverage in the optical and γ -ray
(Fermi-LAT) — and occasionally also X-ray — bands, we here focus
on the cross correlations between the optical and the X-ray and
γ -ray bands. The resulting DCFs are shown in Figs. 5 to 10.
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Fig. 6. Discrete correlation function between the optical (R-band) and γ -ray band-
passes for the magnetic field perturbation case, along with a Gaussian fit to the
DCF.

Fig. 7. Discrete correlation function between the optical (R-band) and X-ray band-
passes for the injection luminosity perturbation case, along with a Gaussian fit to
the DCF.

Fig. 8. Discrete correlation function between the optical (R-band) and γ -ray band-
passes for the injection luminosity perturbation case, along with a Gaussian fit to
the DCF.

Fig. 9. Discrete correlation function between the optical (R-band) and X-ray band-
passes for the acceleration time scale perturbation case, along with a Gaussian fit
to the DCF.

Fig. 10. Discrete correlation function between the optical (R-band) and γ -ray band-
passes for the acceleration time scale perturbation case, along with a Gaussian fit
to the DCF.

Table 5
Best-fit DCF correlation strengths and time lags from the Gaussian fits to the dis-
crete correlation functions.

F1 σ [s] τpk [s] Fig.

R − X : B 1.08 (4.97 ± 0.48) × 104 (−2.37 ± 4.84) × 103 Fig. 5
R − γ : B −1.04 (5.96 ± 0.57) × 104 (5.96 ± 0.57) × 104 Fig. 6
R − X : Linj 1.06 (5.62 ± 0.58) × 104 (1.94 ± 0.51) × 104 Fig. 7
R − γ : Linj 1.11 (4.97 ± 0.49) × 104 (4.96 ± 4.92) × 103 Fig. 8
R − X : tacc −1.05 (5.97 ± 0.56) × 104 (3.22 ± 0.54) × 104 Fig. 9
R − γ : tacc 1.13 (5.39 ± 0.49) × 104 (8.02 ± 5.16) × 103 Fig. 10

The DCF reveals correlations/anti-correlations between two
light curves, with a peak value of ±1 indicating a perfect corre-
lation/anti-correlation, respectively. The time lag τ at which the
peak occurs, indicates a time lag between the variability patterns
in the two light curves. In all cases, the DCF results shown in
Figs. 5–10 confirm the correlation and time lag results apparent
from Figs. 2–4 and Tables 2–4.

For a more rigorous analysis of the time lags and their errors,
we performed a Gaussian fit of the form

DCF(τ ) = F1 · e−(τ−τpk)
2/2σ 2

(25)

to each of the discrete correlation functions around the peaks/
troughs of the DCFs. This was done by rigorous χ2 minimization.
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The minimization produces the best fit parameters for the nor-
malization, F1, the location of the peak time delay, τpk , and the
standard deviation of the peak, σ . The best fit parameters are
listed in Table 5. Within error bars, the time lags determined from
the DCFs agree well with those extracted from inspection of the
light curves (Tables 2–4).

6. Results and discussion

In this paper, we describe the development of a time-dependent
model for the broadband emission from blazars, incorporating
Fermi II acceleration in the time evolution of the electron dis-
tribution, as well as internal (SSC) and external (EC) target photon
fields for Compton scattering, using the full Klein–Nishina cross
section. The use of a power law distribution for the electron in-
jection spectrum is motivated by the physical picture of Fermi I
acceleration providing the effective injection mechanism. We con-
sider two external radiation fields, namely the accretion disk and
a second radiation field that is approximated as being isotropic
in the AGN rest frame, representative of either the BLR or of IR
emission from a dust torus. The code was used for a generic study
of the influence of a diffusive acceleration process on the equi-
librium electron distribution and SEDs from blazars, and of the
multi-wavelength radiative signatures of fluctuations of individual
model parameters, including the Fermi-II acceleration efficiency.
The choice of baseline parameters was guided by a fit to the time-
averaged SED of the FSRQ 3C273, with our model simulation in
a steady-state. Our study is therefore representative of features ex-
pected for FSRQs or other low-frequency peaked blazars. We then
investigated the potentially observable signatures of flaring activ-
ity caused by short-term fluctuations of (a) the magnetic field,
(b) the electron injection luminosity, and (c) the acceleration time
scale. A discrete correlation function analysis was performed on
the light curves simulated for the different flaring scenarios, at ra-
dio, optical, X-ray, and γ -ray frequencies to quantify the predicted
strengths of cross-band correlations and associated time lags.

We found that magnetic field fluctuations lead to correlated
radio, optical, and X-ray flaring, but an anti-correlation of these
three bands with the γ -ray emission, with a time lag of up to
several hours, due to increased synchrotron and SSC cooling of
relativistic electrons. Flaring activity caused by fluctuations of the
injection luminosity lead to correlated variability in all wavelength
ranges, with a time lag of a few hours between the optical and
X-ray flares, associated with the cooling time scale of electrons
to reach low energies contributing to SSC X-ray emission. In this
scenario, the radio emission shows a delayed drop in flux, due
to the increase of the synchrotron self absorption caused by the
increased number of low-energy electrons. A temporary shorten-
ing of the acceleration time scale intensified both the synchrotron
and Compton emission and leads to a shift of both components
to higher frequencies due to the acceleration of electrons to higher
energies. Apart from correlated flaring activity at optical and γ -ray
frequencies, this has interesting consequences at X-rays and radio
wavelengths: The shift of the SSC emission to higher frequencies
leads to a decrease of the (SSC-dominated) X-ray flux and there-
fore an anti-correlation between the optical/γ -ray and X-ray fluxes
with time delays of a few hours. At the same time, the more effi-
cient electron acceleration reduces the number of low-energy elec-
trons responsible for synchrotron self-absorption at radio wave-
lengths and therefore leads to a radio flare correlated with the
optical/γ -ray activity.

Recent multi-wavelength observations of FSRQs have shown
correlations between different wavelength bands that can be at-
tributed to flares simulated in this paper. Multi-wavelength obser-
vations of the FSRQ 3C 454.3 from August–December 2008 have
shown pronounced flaring activity in the IR, UV, X-ray and γ -ray
bands with correlations for all bands except the X-rays (Bonning et
al., 2009). These correlations are consistent with a model in which
a change in the injection luminosity of higher energy electrons
takes place and interacts with external photons, causing the flar-
ing observed in the γ -rays (Bonning et al., 2009). The much longer
cooling time of the low-energy electrons responsible for the X-ray
emission leads to much delayed variability, on much longer time
scales compared to the optical and γ -ray bands, which might be
washed out by super-imposed longer-term variability. Correlated
multi-wavelength campaigns have also been done on the FSRQ
3C273 that reveal a correlation between the IR and X-ray bands,
with time lags on the order of a few hours (McHardy et al., 2007).
This is consistent with the results presented here and supports the
notion that the X-ray emission is dominated by synchrotron self
Compton radiation (McHardy et al., 2007).

We point out that our ad-hoc choice of Gaussian perturba-
tions to key parameters only serves to study generic features of
such changes. As has become obvious, the salient predictions con-
cerning correlations/anti-correlations and time lags result from the
microphysical processes of electron acceleration and cooling and
are only weakly dependent on the exact time profile of the pertur-
bation.
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