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Abstract

Residue complexes were introduced by Grothendieck in algebraic geometry. These are canonical
complexes of injective modules that enjoy remarkable functorial properties (traces). In this paper we
study residue complexes over nhoncommutative rings. These objects have a more intricate structure
than in the commutative case, since they are complexes of bimodules. We develop methods to prove
uniqueness, existence and functoriality of residue complexes. For a polynomial identity algebra over
a field (admitting a Noetherian connected filtration) we prove existence of the residue complex and
describe its structure in detail.
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0. Introduction
0.1. Motivation: a realization of the geometry of a noncommutative ring

For a commutative ringt it is clear (since Grothendieck) what is the geometric object
associated toi: the locally ringed space Spdc However if A is noncommutative this
guestion becomes pretty elusive. One possibility is to consider the seASyéwo-sided
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prime (or maybe primitive) ideals of. Another possibility is to choose a side—say left—
and to consider the categorod A of left A-modules (or some related construction) as a
kind of geometric object. Both these options are used very effectively in various contexts;
but neither is completely satisfactory. A common (genuine) obstacle is the difficulty of
localizing noncommutative rings. A “classical” account of the subject can be found in
[MRY]; recent developments are described in [SV] and its references.

In this paper we try another point of view. Taking our cue from commutative algebraic
geometry, we try to construct a global algebraic object—#sedue compleXCs—which
encodes much of the geometric informationdof

Let us first examine an easy case which can explain where we are heading. SKppose
is a field andA is a finite K-algebra. IfA is commutative then Spetis a finite set. The
injective moduleA* := Homk (A, K) is a direct sum of indecomposable modules, each
summand corresponding a point in Sgec

On the other hand ifA is noncommutative the geometric object associated to it
is a finite quiver A. The vertex set ofA is Specd, and the arrows (links) are
determined by the bimodule decomposition:gf?, wherer is the Jacobson radical. The
connected components Efa[e called cliques. Here is the corresponding module-theoretic
interpretation: the vertices af are the isomorphism classes of indecomposable summands
of A* as left module, the cliques are the indecomposable summandsasfbimodule, and
the arrows inA represent irreducible homomorphisms between vertices. Finally-# B
is a finite homomorphism then there is Arbimodule homomorphism By : B* — A*.

The point of view we adopt in this paper is that for some infinite honcommutative
K-algebrasA the module-theoretic interpretation of the geometryofas stated above,
should also make sense. The generalization of the bimotuiethe residue complekX 4.

The additional data (not occurring in finite algebras) is that of specialization, which should
be carried by the coboundary operatorof.

There are certain cases in which we know this plan works. For commutative rings,
this is Grothendieck’s theory of residual complexes, worked out in [RD] and reviewed
in Section 0.2 below. IfA is finite over its center ZA) then the cliques ofA biject
to Spec4A), and hence the geometry df is understood; and the residue complex is
Ka=Homz)(A, Kza))-

If A is a twisted homogeneous coordinate ring of a projective varktywith
automorphismr ando-ample line bundleC) we know the graded residue complEy
exists (see [Yel]). Here the indecomposable graded left module summari@s"fﬁ,

0 < g <dimX, are indexed by the points &f of dimensiong; and the indecomposable
graded bimodule summands are th@rbits of these points. A similar phenomenon (for
g =0, 1) occurs whem is a 3-dimensional Sklyanin algebra (see [Ye2]).

In Section 0.3 we give a brief explanation of the noncommutative residue complex and

state the main results of our paper.

0.2. Résumé: residue complexes in algebraic geometry
Residue complexes in (commutative) algebraic geometry were introduced by Grothen-

dieck [RD]. Suppos& is a field andX is a finite typek-scheme. The residue complexXof
is a bounded compleX y of quasi-coherent sheaves with some remarkable properties. First
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each of ther-moduIesIC;q is injective, and the functdtlomp, (—, Kx) is a duality of

the bounded derived category with coherent conomolafilod Ox). Next, if £ : X — ¥

is a proper morphism then there is a nondegenerate trace map (an actual homomorphism
of complexes) Ty : f.Kx — Ky. Finally, if X is smooth of dimension overK then there

is a canonical quasi—isomorphis.ﬁ?g’(/K[n] — Kx.

In [RD] the residue compleK is closely related to the twisted inverse image functor.
Indeed, if we denote by : X — SpedK the structural morphism, then the twisted inverse
imageyrng € DE(Mod Oy) is a dualizing complex. There is a tracefTRf*yr;(K —
nyK for a proper morphisny: X — Y, and an isomorphisn®Y ; [n] — 73K for X
smooth.

The filtration ofMod Ox by dimension of support (niveau filtration) gives rise to the
Cousin functotE. For a complexM the Cousin complex E1 is the rowg =0 in the E;
page of the niveau spectral sequem‘feq = HP*9 M. In this way one obtains a functor
E:DT(Mod Ox) — C*(Mod Oy) where the latter is the (Abelian) category of complexes.
By definition, the residue complex i§y := Ex K, and there is a canonical isomorphism
n)!(K = Ky in the derived category. Explicit constructions of the residue complex also exist
(cf. [Ye3] and references therein).

Here is what this means for affine schemes. If we consider a commutative finitely
generated-algebraA, and X := SpecA, thenkK4 := I'(X, Kx) is a bounded complex
of injective A-modules. For any integerthere is a decompositidﬁ;q = J(p), where
p runs over the prime ideals such that din'p = ¢, andJ (p) is the injective hull ofA /p.

The mapJ (p) — K;¢ — K;*** — J(q) is nonzero precisely whep C q. Moreover,
K4 is dualizing, in the sense that the functor Hp, K4) is a duality of the bounded
derived category with finite cohomologiBE(Mod A).If A — B is afinite homomorphism
then there is a nondegenerate trace map ATz — K4. Andif A is smooth of relative
dimensiom then

0— 24 g — K" — K3 =0
is a minimal injective resolution.
0.3. Statement of main results

In the present paper we study a noncommutative version of the above ANievan
associative, unital, Noetherian, affine (i.e., finitely generatédligebra, not necessarily
commutative. We denote yod A the category of lefdi-modules and byl °P the opposite
algebra.

A dualizing complex over the algebra is, roughly speaking, a compleR of
bimodules, such that the two derived functors RH@m, R) and RHomyoe(—, R) induce
a duality betweem?(Mod A) andDP(Mod A%). The full definition of this, as well as of
other important notions, are included in the body of the paper. Dualizing complexes over
noncommutative rings have various applications, for instance in ring theory (see [YZ1]),
representation theory (see [Ye5,EG,BGK]), and even theoretical physics (see [KKO]).

The twisted inverse imagﬁr}!(K of the commutative picture is generalized to the
rigid dualizing complexR, as defined by Van den Bergh [VdB1]. Indeed, Af is
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commutative and( = SpecA thenR := RI"(X, 7 K) is a rigid dualizing complex. For
noncommutatived we know that a rigid dualizing compleR, (if exists) is unique, and
for a finite homomorphism — B there is at most one rigid tracegliy : Rp — Ra.

It is known [YZ1] that if R is an Auslander dualizing complethen the canonical
dimension associated tB, namely CdimM := —inf{q | Extf{x (M, R) # 0} for a finite
moduleM, is an exact dimension function.

The residue complex oAl is by definition a rigid Auslander dualizing compléx,
consisting of bimodulel{;q which are injective, and pure of dimensigmwith respect to
Cdim, on both sides. Again, i is commutative then this definition is equivalent to that of
[RD].

The Cousin functor is available in the noncommutative situation too. Assume we have
arigid Auslander dualizing compleR4. The canonical dimension Cdim gives a filtration
of Mod A by “dimension of support”, and just like in the commutative case we obtain a
Cousin functor EDT™(Mod A ® A°P) — C*T(Mod A @ A°P). However, usually R, will
not be a residue complex!

The first main result gives a sufficient condition for the existence of a residue complex
(it is not hard to see that this condition is also necessary). WeRgdyas a pure minimal
injective resolution on the left if in the minimal injective resoluti®y — 1 in C*(Mod A)
eachl 7 is pure of Cdim= ¢; likewise on the right.

Theorem 0.1. SupposeA is a NoetherianK-algebra andR, is an Auslander rigid
dualizing complex over. AssumeR, has pure minimal injective resolutions on both
sides. TherC4 := ER,4 is a residue complex.

This result included in Theorem 4.8 in the body of the paper. We also have a result
guaranteeing the existence of a trace between residue complexes (it is part of Theorem 5.4).
One calls a ring homomorphism— B a finite centralizing homomorphism#f = > Ab;
where theb; are finitely many elements df that commute with every € A.

Theorem 0.2. Let A — B be a finite centralizing homomorphism between Noetherian
K-algebras. Suppose the two conditions below hold.

(i) There are rigid dualizing complexeR, and Rp and the rigid trace morphism
Tre/a:Rp — Ry exists.

(i) R4 is an Auslander dualizing complex and it has pure minimal injective resolutions
on both sides.

Let £4 := ER4 be the residue complex df (cf. TheorenD.1). ThenKp := ERp is the
residue complex oB. The homomorphism of compleXe@rg, 1) : Kp — K4 is a rigid
trace, and it induces an isomorphism of complexes-timodules

Kp = Homy (B, K4) = Homuon(B, K4).

In Section 0.1 we listed a few classes of algebras for which residue complexes were
previously known to exist. More examples appear in Section 5 of the paper (e.g., the first
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Weyl algebra, the universal enveloping algebra of a nilpotent 3-dimensional Lie algebra). In
the remainder of this subsection we discuss our results for the class of polynomial identity
(PI) algebras.

We remind that a PI ringd is one that satisfies some polynomial identjtyx, ...,
xn) = 0, and hence is close to being commutative (a commutative ring satisfies the identity
x1x2 — x2x1 = 0). We have a quite detailed knowledge of the residue complex of a
Pl algebraA, assuming it admits some Noetherian connected filtration. A Noetherian
connected filtration on the algebrais a filtration {F,, A} such that the graded algebra
grf A is a Noetherian connected gradiealgebra. Most known examples of Noetherian
affine PI algebras admit Noetherian connected filtrations, but there are counterexamples
(see [SZ]).

Theorem 0.3. Let A be an affine Noetherian Pl algebra admitting a Noetherian connected
filtration.

(1) A has aresidue compleg,.

(2) Let B= A/a be a quotient algebra. Theh has a residue complegp, there is a rigid
trace Trp 4 : Kp — K4 that is an actual homomorphism of complexes of bimodules,
andTrp,4 induces an isomorphism

K = Homy (B, K4) =Homyuon(B, K4) C Ka.

This is Theorem 6.6 in the body of the paper.

The next theorem describes the structure of the residue coriipledt a Pl algebra.

Recall that the prime spectrum Specs a disjoint union of cliques. For any cliguewe
denote byA sz the localization aiZ, and for a modulé/ we letI"zM be the submodule
supported orZ. We say a cliqueZ; is a specialization of a cliqugg if there are prime
idealsp; € Z; with po C p1.

The g-skeleton of Sped is the set of prime ideals such that Cdind/p =g¢. Itis a
union of cliques.

For any prime ideap we let J(p) be the indecomposable injective-module with
associated primg, and (p) is the Goldie rank ofd /p.

Theorem 0.4. Let A be a PIK-algebra admitting a Noetherian connected filtration, and
let K4 be its residue complex.

(1) For everyq there is a canonical-bimodule decomposition
K =@ rzk,’
VA

whereZ runs over the cliques in thg-skeleton oSpecA.
(2) Fix one cliqueZ in the g-skeleton ofSpecA. ThenFZIC/]q is an indecomposable
A-bimodule.
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3) FZICZq is an injective leftA s(z)-module, and its socle is the essential submodule

DKL, = @ Homa(A/p, K,7) € I2K,7.
peZ peZ

(4) There is a(noncanonicgldecomposition of lefd sz)-modules

FZ’CZI ~ @ Ja (p)r(P).
peZ

(5) SupposeZ; is a clique in the(¢g—i)-skeleton ofSpecA, for i = 0,1. ThenZ; is a
specialization oz iff the composed homomorphism

- - —g+1 —g+1
Iz K0 — K1 — ICAqu —» leKAqu
is nonzero.

This theorem is repeated as Theorem 6.14 in the body of the paper.

Observe that part (4) of the theorem says that the prime spectrumiSpencoded in
the left module decomposition of the compl€x . By the left—right symmetry (replacing
with A°P) the same is true for the right module decompositiorkaf. Parts (1) and (2)
imply that the cliques in Spet are encoded in the bimodule decompositiofaf Part (5)
says that specializations are encoded in the coboundary operétar. of

We end this subsection with a disclaimer. If the algeAr& “too honcommutative”
then it will not have a residue complex (for instande= U(sl2)). Thus the scope of the
theory of residue complexes is necessarily limited. Our upcoming paper [YZ2] presents an
alternative approach to address precisely this issue.

0.4. Outline of the paper

Section 1. We begin by recalling the notions of localizing subcategories and torsion
functors in the module categomyod A of a ring A. Given a localizing subcategory

M C Mod A we consider the derived functorifg, and the cohomology with support

in M, namely H, := HYRI4. We recall what is an exact dimension function, and relate
it to localizing subcategoriesv-flasque modules are defined. The main result here is
Theorem 1.23, dealing with cohomology with supports for bimodules.

Section 2. Given a filtrationM = {M”} of Mod A by localizing subcategories we can
define the Cousin functor Jg: Dt (Mod A) — CT(Mod A). The main result here is
Theorem 2.11 which provides a sufficient condition for a compléxo be isomorphic
to its Cousin complex &M in D+ (Mod A).

Section 3. The definitions of rigid dualizing complex and rigid trace are recalled. We
show that the rigid dualizing complex is compatible with central localization.
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Section 4. Here we look at residual complexes, which are Auslander dualizing complexes
consisting of bimodules that are injective and pure on both sides. We prove Theorem 4.8,
which is the essential ingredient of Theorem 0.1 above. Also we prove Theorem 4.10,
asserting the existence of a residual complex over an FBN algebvith an Auslander
dualizing complex satisfying a certain symmetry condition.

Section 5. A residue complex is a residual complex that is also rigid. The main result
in this section is Theorem 5.4 which relates the rigid trace to residue complexes. As a
corollary we deduce that a residue complex over an algebra is unique up to a unique
isomorphism of complexes (Corollary 5.5). We present examples of algebras with residue
complexes. Also we explain what our results mean for commutative algebras.

Section 6. Besides proving Theorems 0.3 and 0.4, we also prove that for a prime PI
algebraA of dimensiom the generic componefit,” is untwisted; in fact, it is isomorphic
as bimodule to the ring of fraction3. Several examples are studied.

1. Cohomology with support in alocalizing subcategory

In algebraic geometry, given a scherkieand a closed subset C X, the functorl'z
is defined: for any sheaf, I'y M C M is the subsheaf of sections supportedarhe
derived functors MRI'z M = H, M are called the sheaves of cohomologies\dfwith
support inZ. More generally one can take a family of suppagtswhich is a family of
closed sets satisfying suitable conditions (ef.= {Z closed dimZ < ¢}).

In this section we consider an analogous construction replacing the scheviibk the
categoryMod A of left modules over a ringi. The role of family of supports is played
by a localizing subcategom c Mod A. This idea already appeared in [Ye2], but here we
expand the method significantly. With minor modifications the contents of this section and
the next one will apply to any Noetherian quasi-sche¥mgn the sense of [VdB2]).

We begin with a quick review of Gabriel's theory of torsion, following [Ste, Chapter VI],
but using notation suitable for our purposes. Fix a riig A left exact radical(or
torsion functoy is an additive functord™ : Mod A — Mod A, which is a subfunctor of the
identity functoriyeg 4, left exact, and” (M /I" M) =0 for anyM € Mod A. It follows that
I'r'M=rIM,andifNCcMthenTN=NNITM.

A hereditary torsion classs a class of objects c Mod A closed under subobijects,
quotients, extensions and infinite direct sums. The full subcatemoiy a localizing
subcategoryGiven a left exact radicdrl’, the subcategory

Mp:={M|T'M=M)
is localizing. Conversely, given a localizing subcategarythe functor
M—ITyM:={meM|A -meM}

is a left exact radical. One hd$. = I andMp,, = M.
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A third equivalent notion is that déft Gabriel topology(or filter) in A, which is a sef
of left ideals of A satisfying some axioms (that we shall not list here). Given a localizing
subcategoryl C Mod A, the set of left ideals

Sm:={aC Aleftideal | A/a e M}

is a left Gabriel topology, and any left Gabriel topology arises this way. On the other hand,
given a left Gabriel topolog§, the functor

Iy = Iiﬁrr}HomA(A/a, -), (1.2)

ae

whereg is partially ordered inclusion, is a left exact radical.
Below are some examples of localizing subcategories.

Example 1.2. Let Z be a set of two-sided ideals of a rimg each of which is finitely
generated as left ideal. Then the set

§z :={leftidealsaCc A|m1---m, C a forsomems,...,m, € Z} (1.3)

is a left Gabriel topology (cf. [Ste, Proposition VI.6.10]). The corresponding torsion
functor is denoted™; and the localizing subcategory is;. If Z = {m} we also write

Iy, andMy,. If A is commutative theiF,, is the usuain-adic topology, and\, M is the
submodule of elements supported on Spém.

Keeping this example in mind, in the general situation of a localizing subcat&twey
call I'yM the submodule of elements supportedvan

A localizing subcategory is calledstableif wheneverM e M and M C N is an
essential submodule then alsoe M.

Example 1.4. Suppos# is left Noetherian. If the ideal has the left Artin—-Rees property
(e.g., wheru is generated by normalizing elements) then the localizing subcat&toiy
stable. See [MR, Theorem 2.2 and Proposition 2.6]. More generally, if the eétdeals
has the Artin—Rees property thety, is stable, see [BM, Proposition 2.9].

In this paper the most important examples of localizing subcategories arise from
dimension functions.

Definition 1.5. Let M be an Abelian category. Aexact dimension functioon M is
a function dimM — {—o0} U R U {infinite ordinalg, satisfying the following axioms:

(i) dim0= —cc.
(i) For every short exact sequence9 M’ — M — M” — 0 one has dinM =
maxdimM’, dimM"}.
(i) If M =Ilimy_, M, and eachlM, — M is an injection then dilM = supdim M, }.
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WhenM = Mod A for a left Noetherian ringd, often a dimension function will satisfy
a further axiom. Recall that {f is a prime ideal then aA /p-moduleM is calledtorsionif
foranym € M there is a regular elemeate A/p such thaum = 0.

Definition 1.6. Let A be a left Noetherian ring. Apectral exact dimension functiam
Mod A is an exact dimension function dim satisfying the extra axiom:

(iv) If pM = 0 for some prime ideap, and M is a torsionA/p-module, then dinM <
dimA/p — 1.

In this paper the dimension functions will all take value$-#vo} U Z.
Remark 1.7. The definition of spectral exact dimension function is standard in ring theory,
although usually one restricts to the subcategaog: A of finite (i.e., finitely generated)
modules, where condition (iii) becomes trivial (cf. [MR, Section 6.8.4]).
Example 1.8. Let dim be an exact dimension function blod A. For an integey let

M, (dim) := {M € Mod A | dimM < g}.

ThenM, (dim) is a localizing subcategory.

Here is a different kind of localizing subcategory.
Example 1.9. Given a left denominator sétC A (cf. [MR, Paragraph 2.1.13]) we define

Fs:={acC A leftideal| an S # @}.
According to [Ste, Section I.3 and Example in Section V1.9] this is a left Gabriel topology.
We denote the localizing subcategory bl. Letting As = S~1A be the left ring of
fractions, for every moduld/ one has an exact sequence
O0— ITuygM > M — As @4 M.

Now we want to pass to derived categories. DéiMod A) be the derived category
of A-modules, and leb*(Mod A) be the full subcategory of bounded below complexes.
As usualC(Mod A) denotes the Abelian category of complexes. Our references are [RD,
Section I] and [KS, Section I].

SupposeV e C*(Mod A). By aninjective resolution of\/ in C*(Mod A) we mean a

guasi-isomorphism — I in C*(Mod A) with eachl/¢ an injective module.

Lemma 1.10. Let M be a localizing subcategory ®fod A. Then there is a right derived
functor

RIv:DT(Mod A) — DT (Mod A).
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Proof. Given M € D*(Mod A) take any injective resolutiod — I in C*(Mod A), and
let RlyM := I'y! (cf. [RD, Theorem I.5.1]). O

Note that RyM € D',\';(Mod A), the full triangulated subcategory whose objects are
complexes with cohomology M.

Remark 1.11. One can define RyM for an unbounded complex ad RM := 'yl where
M — [ is a quasi-isomorphism to a K-injective complexcf. [Sp]).

Definition 1.12. The gth cohomology ofM with support inM is defined to be §M :=
HIRIyM.

For the purposes of this paper it will be useful to introduce a notion of flasque modules.
Recall that a sheaM on a topological spac& is called flasque (or flabby) if for any
two open subset¥ C U the restriction mapl" (U, M) — I'(V, M) is surjective. It
follows that for any closed subsét the cohomology sheavés‘;/\/l, q > 0, are zero.

The following definition is somewhat ad hoc, but we try to justify it in the subsequent
examples.

Definition 1.13. SupposeM C Mod A is a localizing subcategory. A modul is called
M-flasqueif H,M = 0 for all ¢ > 0.

Example 1.14. SupposeM is stable. For any¥ € M the minimal injective resolution
M — 19— 11— ...isinCcT (M), and hence/ is M-flasque.

Example 1.15. SupposeS C A is a left denominator set (Example 1.9), and assume that
the localizing subcategomyy is stable. Then a modul® is Mg-flasque iff the canonical
homomorphismM — Ag ®4 M is surjective. To see why this is true, first observe
that for an injective moduld the modulel! is also injective (because of stability).
So I/Iyg! is an injective S-torsion-free module. Sinces is a flat right A-module
[Ste, Proposition 11.3.5], we get from [Ste, Proposition V.2.11] thgt®4 I = As ®4
(I/TwgI) = I/TwgI. Hence there is an exact sequence @y, — I — As ®4 I — 0.
Using an injective resolution o/ we deduce that ﬁsM =0 forg > 2 and the sequence

M— Ag®@a M — th,lsM—> 0 is exact.
A moduleM is calledfinitely resolvedf it has a free resolution
o> A2 5 AT S A S M0
where all ther; < c0.

Definition 1.16. A localizing subcategor is calledlocally finitely resolvedf there is
a cofinal inverse systeffm; } in the filter§y consisting of finitely resolved left ideals.

If A is left Noetherian then any localizing subcategdris automatically locally finitely
resolved. But the next examples show this is a more general phenomenon.
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Example 1.17. Let A be any ring and: a central regular element. Define := (a).
Then the localizing subcategon,, (cf. Example 1.2) is locally finitely resolved. This
generalizes to a regular sequenge. . ., a, of normalizing elements.

Example 1.18. Let K be a commutative ring and := K(x1, ..., x,), a free associative
algebra. Letm := (x1,...,x,) be the augmentation ideal. Tham, is locally finitely
resolved.

Example 1.19. SupposeA is a connected graded algebra over some figldndm is the
augmentation ideal. 1A is Ext-finite in the sense of [VdB1], i.e., every I%)(K, K) is
finite asK-module, then the localizing subcatego#y, is locally finitely resolved. This is
Van den Bergh's original setup in [VdB1].

Proposition 1.20. SupposeM is locally finitely resolved. TheH{, commutes with direct
limits. Therefore the direct limit af-flasque modules id-flasque.

Proof. Let{qa;} be a cofinal inverse system in the filgy with all the left idealsy; finitely
resolved. Say = lim;_, M; for some direct syster/;} of A-modules. Since the left
moduleA/q; is finitely resolved, we get

Ext (A/a;, M) =limExti (A/a;, M;).
J=

Hence, for any; we have
H M = 'giT Exti (A/a;, M) = IiiT ',iT Exti(A/a;, M;)

= limlim Exti (A/a;, M;) =limH,M;. O
j— i—> J=
Since any injective module ist-flasque it follows that there are enoughflasque
modules: any module embeds intoMrflasque one. Hence for ay € D™ (Mod A) there
is a quasi-isomorphisi — I in CT(Mod A) with each/¢ anM-flasque module. We call
such a quasi-isomorphism afiflasque resolution off in C*(Mod A).

Proposition 1.21. LetM € D*(Mod A) andM — I anM-flasque resolution i€ (Mod A).
Then the canonical morphisiiy/ — R/ is anisomorphism, and henBdyM = Iyl.

Proof. If J € CT(Mod A) is an acyclic complex ofi-flasque modules thehyJ is also
acyclic. Now use [RD, Theorem 1.5.1].0

Thus we can computeR; usingM-flasque resolutions.

Let K be a commutative base ring and letand B be associative uniték-algebras.
We denote byB°P the opposite algebra, aml® B°P:= A @k B°P. Thus an(A ® B°P)-
module M is, in conventional notation, K-central A- B-bimodules Mp. WhenA = B
thenA®:= A ® A°Pis the enveloping algebra.
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Proposition 1.22. Let A and B beK-algebras withB flat overKK. Then there is a derived
functor

RIv:D"(Mod A ® B°P) — D (Mod A ® BP)

commuting with the forgetful funct@™ (Mod A ® B°P) — D*(Mod A). In particular, an
A ® B°P-moduleM is M-flasque iff it isM-flasque asA-module.

Proof. SinceB°Pis flat overK, any injectiveA ® B°P-module is also an injectiva-mod-
ule. O

The next theorem is inspired by [VdB1, Theorem 4.8]. We shall use it in our discussion
of Cousin complexes in the next section.

Theorem 1.23. Let A and B be flatK-algebras and leM c Mod A andN C Mod B°P be

stable, locally finitely resolved, localizing subcategories. SupppgeD+ (Mod A ® BOP)

satisfieH],M € N andH},M < M for all integersq. Then there is a functorial isomorphism
RIvM =RIVM in D(Mod A ® B?).

We precede the proof by three lemmas.

Lemma 1.24. In the situation of the theorem, but without the stability assumptiahjsf
an injectiveA ® B°P-module, them ! is anN-flasqueB°P-module.

Proof. LetFw be the filter of left ideals associated with Then

Il = lim Homy(A/a, I).
aedm

BecauseB®P is flat overK each Hom (A/a, I) is an injectiveB°P-module, and hence it is
N-flasque. By Proposition 1.20, the direct limitefflasque modules is-flasque. O

Lemma 1.25. In the situation of the theorem, but without the stability assumption, there is
a functorial isomorphism

RIVRIWM =R(In[wWM in DY (Mod A ® BP).
Proof. Take an injective resolutiod — I in C*(Mod A ® B°P). Then RINT WM =
I'nlwI, and RiyM = I'ylI. According to Lemma 1.24 1 is a complex ofN-flasque
B°P modules, so by Proposition 1.21/RIwI = InIwl. O

Lemma 1.26. In the situation of the theorem, I&¥ < D;,“(Mod B°P). Then the natural
morphismRIyN — N in D(Mod B°P) is an isomorphism.
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Proof. It suffices (by “way-out” reasons, see [RD, Proposition 7.1(iv)]) to consider a single
module N € N. But by the stability assumption, the minimal injective resolutign—
1> 11— ...isinN,sol =I\I. O

Proof of Theorem 1.23. For any bimoduleV write
I'vanN ;= INTuN =INNNITyN =1wywInN CN,

It suffices by symmetry to prove thatlig M = RIiynnM. Since RiyM € D;,“(Mod B°P),
Lemma 1.26 says that there is a functorial isomorphidgig ® = RIZRIwM. Finally, by
Lemma 1.25, there is a functorial isomorphismypynM = RINRIWM. O

Example 1.27. Theorem 1.23 does not hold in general without the stability assumption.
Here is a counterexample. Take= C and A = B = U(sly), the universal enveloping
algebra of the Lie algebral,. Let Mg := Mo(GKdim) be the full subcategory dflod A
consisting of modules of Gelfand—Kirillov dimension 0 (unionsA¥modules that are
finite overK), and letN := Mod B°P. Then all hypotheses of Theorem 1.23 hold, except
thatMg is not stable. If we takdf € Mg to be the simple module with ragkM = 1, then

it follows from [AjSZ, Proposition 7.5] that ﬁOM = M, but of course IﬁM =0.

2. Cousin functors

Cousin complexes in commutative algebraic geometry were introduced by Grothen-
dieck in [RD]. Several people (including Lipman, private communication) had suggested
extending the construction to more general settings. The noncommutative version below
already appeared in [Ye2], but the powerful Theorem 2.11 is new.

Suppos# is aring, and we are given an increasing filtration

-+ CMg—1CMy CMg41C--- CModA

by localizing subcategories, indexed By We shall sometimes writkl? := M_,, so that
{M?},¢7 is a decreasing filtration. This is to conform to the convention that decreasing
filtrations go with cochain complexes. We say the filtratioa= (M, } = {M”} is bounded

if there arego < g1 such tham,,_1 = 0 andM,; = Mod A.

Example 2.1. Suppose dim is an exact dimension function that is bounded, in the sense
that there are integeig < g1 such that for any nonzero modubé, go < dimM < q;.
DefineM, (dim) as in Example 1.8. Thex = {M, (dim)} is a bounded filtration dflod A

by localizing subcategories. Conversely, given a bounded filtratien{M, } by localizing
subcategories, we can define difn=inf{g | M € M,}, and this will be a bounded exact
dimension function.

Example 2.2. Specializing the previous example, lebe a finitely generated commutative
algebra over a fiel& and X := SpecA. Taking dim= Kdim, Z, = {Z c X closed|
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dmZ < ¢} and 29 := Z_, we get I'w» = I'zp». This is the kind of filtration by
codimension (coniveau) used in [RD, Chapter IV]. The boundgaredim X andgg = 0.

SupposeM = {M,} is a collection of localizing subcategories ®mbd A. We call a
moduleM M-flasquef it is M, -flasque for ally (Definition 1.13).
For a module andd > 0 we write Iy, yp+a M := yr M/ Iyyp+a M.

Lemma 2.3. There is a right derived functdRl,,» P+ that fits into a functorial triangle
for M e D™ (Mod A):

RIp+aM — RIw M — RFMP/Mp+dM — RIp+a M[1].
If M — 1 is aflasque resolution theRl'y,y yp+a M = Iyp o+l

Proof. If I e D™(Mod A) is an acyclic complex ofi-flasque modules then from the exact
sequence of complexes

0— Nyp+al = Dyl — FMP/Mp+dI -0

we see thaf,, ,»+a1 is also acyclic. Thus we can defind R, yp+a M := Iyp j\yp+al
when M € D™ (ModA) and M — [ is a flasque resolution (cf. the proof of Proposi-
tion 1.21). O

We set I—Iﬂp/wﬂ,

M= HqRFMp/M1)+dM.
Proposition 2.4. Let M = {M?} be a bounded filtration oflod A by localizing subcate-
gories. Then for everyZ € D (Mod A) there is a convergent spectral sequence

P4 __ gpbtq p+q
El _HMp/Mp+1M=>H M,

functorial in M.

Proof. Pick anM-flasque resolution — I in C*(Mod A). The decreasing filtration
{Iwe 1} is bounded in the sense of [Mac, Sections XI1.3 and XI.8], ilgwo/ = I and
Iy I = 0 for somepg < p1. Hence by [Mac, Theorem XI.3.1] we get a convergent
spectral sequence

EP? =HPY Ly ol = HPHL

Now HP+qFMp/Mp+1I = H,\’;IJ;Z M and H+4] =HPYIM. If T > I is a homomor-
phism betweem-flasque complexes then there is a map between the two spectral se-
guences; and if; — I is a quasi-isomorphism then the two spectral sequences are iso-

morphic. O
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Definition 2.5 (Grothendieck [RD]). Given a bounded filtratish= {M”} of Mod A and
a complexM € D™ (Mod A) define the complex &M as follows. For any,

,0
(EuM)? :=E}" = Hﬁp/MMM

in the spectral sequence above, and the coboundary operator is
&% EuM)” = EP® — (EuM)P+L = EPTYO.

Thus By M is the rowg = 0 in the E1 page of the spectral sequence. We obtain an additive
functor

Ev:DT(Mod A) — CT(Mod A)
called theCousin functor

Unlike the commutative situation, here the complexME can behave quite oddly—see
below.

Definition 2.6. Given an exact dimension function dim dvd A we say anA-moduleM
is dim-pure of dimensiog if dim M’ = dim M = ¢4 for all nonzero submodule®’ c M.

Remark 2.7. In the commutative case (see Example 2.2)Mete DT (Mod A) and let
M = Ox ®4 M denote the corresponding complex of quasi-coherent sheavésTimen
for any p, g one has

rtq ~ Ptq ~ rtq
Hyw jariaM = F(X’HZI’/ZI’+1M) = @HX M
X

wherex runs over the points itX of dim{x} = —p and H*? is local cohomology. In

the language of [RD], the shea{g;‘jZPHM lies on thez?/ZP+1l-skeleton ofX. In

particular, this means tha-module (EyM)~7 = H(Aj/mq,lM is M-flasque and Kdim-
pure of dimensiolg. Note that this implies EEyM = EyM. A complexN such that each
N1 is M-flasque and Kdim-pure of dimensignis called a “Cousin complex” in [RD,
Section IV.3]. However for a noncommutative ridgthe complex g M will seldom be a
Cousin complex in this sense (cf. Example 2.8).

Example2.8. ConsidelK = C andA = U(slz) as in Example 1.27. L&t = {M, (GKdim)}
be the filtration by Gelfand—Kirillov dimension and € Mg the simpleA-module with
rankg M = 1. Then(EwM)® = Hy M = M. Since H, M 3 0 we see thatEwM)° is not
M-flasque.

Proposition 2.9. SupposeAd — B is a homomorphism of ringsy(4) = {M,(A)} and
M(B) = {M, (B)} are bounded filtrations dflod A andMod B, respectively, by localizing
subcategories, with Cousin functdeg4) andEwg), satisfying
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(i) ForanyM € Mod B and anygy, FMq(B)M = FMq(A)M-
(ii)y If I € Mod B is injective then it isvi(A)-flasque.

Then there is an isomorphisBy gy M = Ew4)M, functorial inM e D™ (Mod B).

Proof. Choose an injective resolutia — I in C*(Mod B). ThenM — I is anM(A)-
flasque resolution ilt™ (Mod A), the filtered complexequ(B)I and T, a1 coincide,
and the spectral sequence defines baifp and ByyyM. O

Now letK be a commutative base ring and as befare ®x.

Corollary 2.10. Let A be aK-algebra, M = {MP} a bounded filtration ofMod A by
localizing subcategories, and a flat K-algebra. Suppos#f/ € D™ (Mod A ® B°P). Then
the Cousin functoEyM commutes with the forgetful functblod A ® B°P — Mod A.

Proof. Write M(A) and M(A ® B°P) for the filtrations of Mod A and Mod A ® B°P
respectively, and apply Proposition 2.90

For the next theorem it will be important to distinguish between morphisméitod A)
andC(Mod A), so let Q C(Mod A) — D(Mod A) be the localization functor (identity on
objects).

Theorem 2.11. Let A be a ring,M = {M”} a bounded filtration ofvod A by localizing
subcategories andEy the associated Cousin functor. L& € D°(Mod A) a complex
satisfying

(%) Hﬁj‘;MMM =0forall g £0andall p.

Then there is an isomorphisi = QEyM in D(Mod A).

Proof. This is really the implication (ii)= (iii) in [RD, Proposition IV.3.1]. We shall
explain the minor modification needed in the proof to make it apply to our situation. Also
we shall sketch the main ideas of the proof using our notation, so the interested reader can
find it easier to consult the rather lengthy proof in [RD].

The result in [RD] refers to the Abelian categoxip X of sheaves of Abelian groups
on a topological spac&. The spaceX has a filtration{Z”} by closed subsets, inducing
a filtration M = {MP} of Ab X, with I'y» = I'z». With this notation the proof involves
homological algebra only, hence it appliesmod A as well.

Here is the sketch. Let us abbreviate-EEy. Define

T5pEM = (--- —> 0— (EM)? — (EM)P™t - ...)
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to be the truncation i€(Mod A). One shows by descending induction ptthat there are
(noncanonical) isomorphisms

¢p:ROwM = Qrs,EM in D(Mod A) (2.12)

such that the diagrams

g
Ry M «—— RIyw M

J% l% (2.13)

QEM)P[—p] «—— Qr>,EM

commute. The horizontal arrows are the canonical ones.

The starting point is that for large enough= puig, H’M = H’EM = 0. For such
p one shows that ﬁIpM =0 if ¢ # p. Hence there is an isomorphismifp M =
Q(Hy, M)[—p]. Also one shows that H>,EM =0 if ¢ # p, so that Q> ,EM =
Q(H?t3 ,EM)[—p]. Since the modules@M and H’t ,EM are canonically isomorphic
in this case, we get an isomorphism (2.12) o ppig.

In the inductive step, depicted in Fig. 1, we have two canonical triangles (in which
the morphismsy,,_; and &1 have degree-1), canonical isomorphismg, andy,_1
(arising from the assumptior)) and an isomorphism, that’s already been constructed.
The square on the left is diagram (2.13).

By definition of the Cousin complex, it follows tha?d! = H?~1(8,«,_1). Since
H? > ,EM C (EM)?, diagram (2.13) implies that

Hp(¢p°‘p—1) = Hp_l(dp_ll//p—l) an; 1/M1’M - pr)pEM~

RI 1’/M1’+1M RFMP_l/MI’M

‘//p

RIwr M RFMp—lM

[
prl I
\

QEM)P[-p] QEM)P—p+1] \¢p 1

Sl e

Qr> ,EM Qr>p 1EM

Fig. 1.
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Thereforep,ap_1 = dl’*lt/fp,l, and hence, by the axioms of triangulated categories, there
is an isomorphisng,_; making diagram in Fig. 1 commutative. Note that diagram (2.13)
for p — 1 commutes too so the induction continuesi

Remark 2.14. In [RD] a complex satisfying conditiorx] of the theorem is called a Cohen—
Macaulay complex w.r.t. the filtration. And indeed in the commutative case (Example 2.2),
for an A-moduleM of KdimM = d, M is a Cohen—Macaulay module iff the complex
M|[d] satisfies £) (cf. [RD, p. 239]). For a noncommutative riythese notions diverge.

Corollary 2.15. Let A be aK-algebra, M = {M?} a bounded filtration ofMod A by
localizing subcategories, anl a flat K-algebra. Suppos# € D™ (Mod A ® B°P) satisfies
condition(x) of the theorem. Then there is an isomorphight QEyM in DT (Mod A ®

B°P) commuting with the forgetful functdfod A ® B°P — Mod A.

Proof. Invoke the theorem withl ® B°P instead ofA, and use Corollary 2.10.0
We shall also need the next propositions.

Proposition 2.16. Supposed and B are flatK-algebras, and = {M?} andN = {N”} are
bounded filtrations oflod A and Mod B°P respectively by stable, locally finitely resolved,
localizing subcategories. Lét € D (Mod A ® B°P) be a complex satisfyirig;’,lpM € N?
and Hz,,M e M? for all p, g. Then there is a functorial isomorphism

EwM =ZEyM in C(ModA ® B°P).

Proof. Choose an injective resolutio® — I in C*(Mod A ® B°P). Denote byIyl
the filtered complex with filtratiof I I} ez, and byIvnn/ the filtered complex with
filtration {Iy» I've I} ez By the proof of Theorem 1.23, the homomorphism of filtered
complexesdwnn!I — Iwl induces an isomorphism on thg pages of the spectral of the
sequences from Proposition 2.4. Similarly f6~nI — InI. O

Proposition 2.17. Let dim be a bounded exact dimension functionnad A, and letM =
{M, (dim)} be a the induced filtration dflod A. Suppose the complex&s I € C*(Mod A)
satisfy

(i) Each moduley—7 andl~4 is M-flasque andlim-pure of dimensiog.
(i) Each moduld ~7 is injective.

Then

(1) EuQM = M andEyQI = 1.
(2) The functorgy induces an isomorphism

HOMy+ (mod 4) (QM, QI) = HOM+ (o 4) (M, T)

with inverse induced b§.
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Proof. (1) Clear, sincd"Mp/MpHM*P = M~? and the same fof.
(2) Sincel is a bounded below complex of injectives, we have an isomorphism

HO Homa (M, 1) = HoMy+ (o 4, (QM, QI).

The purity implies that Hom(M, I)~1 = 0 and hence we get an isomorphism

HOMc+ (voa 4) (M, 1) = HOMy+ (vog 4) (QM, QI)

induced by Q. Finally, given a morphissa: M — I in CT(ModA), we have that
EvQ(@)=¢. O

3. Rigid dualizing complexes

Dualizing complexes were introduced by Grothendieck [RD]. The noncommutative
variant was studied in [Yel], and the notion of rigid dualizing complex is due to Van den
Bergh [VdBL1]. Let us recall the definitions. From here to the end of the gémknotes a
base field, and as befog= QK.

An A-moduleM is said to bdiniteif it is finitely generated. A homomorphism of rings
A — B is calledfinite if B is a finite A-module on both sides. K-algebraA is called
affineif it finitely generated.

Definition 3.1 [Yel,YZ1]. Let A be a left NoetheriafK-algebra and a right Noetherian
K-algebra. A complext € D’(Mod A ® B) is called adualizing complex oveiA, B) if:

(i) R has finite injective dimension over and B°P.

(i) R has finite conomology modules ovérand B°P.
(iif) The canonical morphisms

B — RHomy (R, R) inD(ModB®) and A — RHomgoe(R, R) in D(ModA®)

are both isomorphisms.
In caseA = B, we shall say thar is a dualizing complex ovet.

Condition (i) is equivalent to the existence of a quasi-isomorph®m> [ in
cP(Mod A ® B°P) with each bimoduld? injective overA and B°P.

In this paper, whenever we mention a dualizing complex averB) we implicitly
assume thatt and B°P are left NoetheriaiK-algebras.

Example 3.2. When A is commutative an® is a dualizing complex ovet consisting of
central bimodules, theR is a dualizing complex in the sense of [RD, Section V.2].
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Definition 3.3 [VdB1]. Supposer is a dualizing complex over a Noetheri&nralgebraA.
If there is an isomorphism

¢:R > RHOomse(A, R ® R)
in D(Mod A®) we call the pai(R, ¢) arigid dualizing complex

In the definition above, Home is with respect to the outsidé®-module structure of
R ® R, and the isomorphism is with respect to the remaining insidé-module structure.

A rigid dualizing complex over is unique, up to an isomorphism (Mod A®) (see
[VdB1, Proposition 8.2]).

Remark 3.4. “Rigid dualizing complex” is a relative notion, in the sense that it depends
on the homomorphisi — A (cf. [YZ1, Example 3.13]).

Definition 3.5 [YZ1]. SupposeA — B is a finite homomorphism oK-algebras and
(Ra,94) and(Rp, ¢p) are rigid dualizing complexes ovdrand B, respectively. Aigid
traceis a morphism Tg/4 : Rg — R4 in D(Mod A®) satisfying the two conditions below.

(i) Trg/a induces inD(Mod A®) isomorphisms
R = RHomy (B, Ra) = RHOoMyop(B, Ry).
(i) The following diagram is commutative iD(Mod A®):

Rp L) RHomge(B, Rp ® Rp)

Trl Tr® Trl

Ra L) RHomMye(A, R4 ® Ra).
Accordingto [YZ1, Theorem 3.2], arigid trace, if it exists, is unique. Taking B this
implies that any two rigid dualizing complexég, ¢) and(R’, ¢) areuniquelyisomorphic
in D(Mod A®), see [YZ1, Corollary 3.4]. Often we shall omit explicit mention of the
isomorphismp.

Lemma 3.6. Let R be a dualizing complex ovéA, B), and letC := Entbod ag?) (R).

(1) The left action of the centet(A) on R, and the right action oZ(B) on R, induce
isomorphisms dK-algebrasZ(A) = C = Z(B). These mak® into a complex o€’ -bi-
modulegnot necessarily central

(2) LetM € D(Mod A). Then the twaC-module structures oExt‘jx (M, R) coincide.

(3) If M € D(ModA ® B°P) is C-central then the threeC-module structures on
Ext) o son(M, R ® R) coincide.

(4) If A= B andR is rigid then the automorphism @f(A) in item(1) is the identity.
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Proof. The first item is a slight variation of [YZ1, Lemma 3.3] and [Ye4, Lemma 5.4]. In
item (2) the two actions of on Exfj‘(M, R) correspond to the left action &f on R (and

on M), and the right action oB on R. Since Exj; (M, R) = Hompmod 4) (M, R[g]), these
actions commute. Likewise in item (3). Item (4) is [YZ1, Proposition 3.5}

Lemma 3.7. Let A be a left NoetheriafK-algebra andL € D; (Mod A).

(1) Let B be someK-algebra, letN be a flatB-module and let € D(Mod(A ® B°P)).
Then the canonical morphism

RHomy (L, M) ® g N - RHomy (L, M ®p N)
is an isomorphism.
(2) SupposeA — A’ a ring homomorphism such that’ is a flat A°P-module. Let
M € D(Mod A’). Then the canonical morphism
RHomy (L, M) — RHomy (A’ ®4 L, M)

is an isomorphism.

Proof. (1) Choose a quasi-isomorphisPh— L whereP is a bounded above complex of
finite free A-modules. Then the homomorphism of complexes

Homy (P, M) @ N — Homy (P, M ®p N)

is bijective.

(2) With P — L as above we get a free resolutiah® 4 P — A’ ® 4 L asA’-modules,
and

Homy (P, M) — Homy (A’ ®4 P, M)

is bijective. O

The next theorem relates rigid dualizing complexes and central localization.
Theorem 3.8. Let R be a dualizing complex ovér, B), and identifyC = Z(A) = Z(B)
as in LemmaB.6. SupposeS C C is a multiplicatively closed set, and l€ts := S~1C,
Ag:=Cs ®c A, andBs := Cs ®¢ B be the localizations. Then
(1) The complex

Rs:=As®4 R®p Bs
is a dualizing complex ovedd s, Bs).

(2) If A= B, R is arigid dualizing complex oved, and A® is Noetherian, therRy is
a rigid dualizing complex oveds.
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Proof. (1) This is proved in a special case (whdnis commutative andig = A, for
a prime ideab) in the course of the proof of [YZ1, Theorem 1.11(1)]; but the same proof
works here too. Among other things one gets tRa& Ag ®4 R in D(Mod As ® A°P) and
Rs=R®a AsinD(Mod A ® A

(2) We considerR @ R as a left (respectively righti®-module via the outside
(respectively inside) action. Sincé® is Noetherian andA® — (Ag)® is flat, by
Lemma 3.7(1) we obtain an isomorphism

RHomye(A, R ® R) ®ae (Ag)®
RHomM4e(A, (R ® R) ®ae (As)®)

12

Rs = R ®a¢ (As)®

12

in D(Mod(As)®). Now
(R® R) ®ae (As)®= Rs ® Rs
in D(Mod(A® ® (As)®)). Finally using Lemma 3.7(2) we get

RHomue(A, Rs ® Rs) = RHOM45)e((As5)°®4 A, Rs ® Rs)

12

RHOmM 4 )e(As, Rs ® Rys). a
If M is a bimodule over a ring then the centralizer ¥/ is
Za(M):={ae€ A|lam=maforallme M}.

Thus Z4(A) = Z(A). A ring homomorphismA — B is calledcentralizingif B = A -
Zp(A). Aninvertible bimodulever A is a bimoduleL such there exists another bimodule
LY with L@, LY =LY ®4 A= A, If C is a commutative ring then a central invertible
C-bimodule is the same as a projectivemodule of rank 1.

Proposition 3.9. SupposeC is a commutative affin&-algebra. ThenC has a rigid
dualizing complexRc consisting of central bimodules. & is Cohen—Macaulay and
equi-dimensional of dimensionthen we can choosB¢ = w¢[n] wherewc is a central
bimodule, and ifC is Gorenstein themc is invertible.

Proof. First assume& = K[¢] =K][z1,...,?,], a polynomial algebra. Then the bimodule
C is a dualizing complex. Because Ex(C, C®) = C and Ex@e(C, C® =0forg #nit
follows that the dualizing comple&[n] is rigid.

Next take any affine algebr&. Choose a finite homomorphisiid[z] — C. Let
K[¢] — I be an injective resolution of the modulg[¢] in cP(Mod C) and define
Rc = Homk(C, I[n]) € DP(Mod C®). So R¢ consists of central-bimodules, and
Rc = RHomg 1 (C, K[¢][n]). According to the calculations in the proof of [Ye4, Prop-
osition 5.7],R¢ is a rigid dualizing complex.

Finally suppose” is Cohen—Macaulay and equi-dimensional of dimengio@hoose
a Noether normalization, that is a finite (and necessarily injective) homomor itign-
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K[z, ...,t,] = C (cf. [Ei, Theorem 13.3]). According to [Ei, Corollary 18.14, is a
projective K[¢]-module. Letwc := Homg(C, K[t]); then wc([n] is a rigid dualizing
complex. If moreovelC is Gorenstein then the bimodugis also a dualizing complex,

and by the uniqueness of dualizing complexes over commutative algebras (cf. [RD,
Theorem V.3.1]) we find thabc must be an invertible bimodule.

Corollary 3.10. SupposeC is a commutative affin&-algebra, R¢ is a rigid dualizing
complex ovelC and C — A is a finite centralizing homomorphism Efalgebras. Then
R4 :=RHomc (A, R¢) is arigid dualizing complex oved.

Proof. Because of Proposition 3.9 and the uniqueness of rigid dualizing complexes we
may assumeR¢ is a complex of centra”-bimodules. Now proceed as in the proof of
[Ye4, Proposition 5.7]. O

Proposition 3.11. SupposeA is a Noetherian affinéK-algebra finite over its center
and A — B is a finite centralizing homomorphism. L& and Rp be rigid dualizing
complexes oveA and B, respectively. The rigid trac&rp,4 : Rp — R4 exists.

Proof. See [Ye4, Proposition 5.8], noting that the morphisng /Ar constructed there
satisfies axioms of rigid trace, as can be seen using the calculations done in the proof
of [Ye4, Proposition 5.7]. O

Remark 3.12. An alternative approach to proving the last three results is via Noetherian
connected filtrations (see [YZ1, Theorem 7.16] and text prior to it).

Example 3.13. A rigid dualizing complex of a commutativE&-algebraC need not be
central. LetR¢ be as in Proposition 3.9 above, and Mt be any non-central’-bimodule
(e.g.,N% = A°, the twisted bimodule witk- a nontrivial automorphism od). Define the
complexV := (N° S N1). ThenR¢ = Rc @ N in D(Mod C®), so the latter is a non-central
rigid dualizing complex.

Example 3.14. AssumeC is a smooth commutativE-algebra of relative dimensiom.
Let 27, . be the module of degree Kahler differentials. The canonical isomorphism
(fundamental class of the diagonal)

Qg/ug = Extge(C, ‘Qgré/]K)

makeng/K[n] into a rigid dualizing complex. More generally for agy if = : SpedC —
SpedK is the structural morphism, then the twisted inverse imagé of [RD] is the rigid

dualizing complex ofC.
4. Residual complexes

In this section we examine a refined notion of dualizing complex, again generalizing
from commutative algebraic geometry. Some graded examples have been studied by
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Ajitabh [Aj] and the first author [Ye2]. The main result here is Theorem 4.8, which
guarantees the existence of a residual complex.

Supposer is a dualizing complex ovefA, B)—whereA and B°P are left Noetherian
K-algebras—and le be a finiteA-module. The grade a¥ with respect taR is

Jjr:a(M) :=inflq | Exti (M, R) # 0} € Z U {o0}.
Similarly definejg. goo for a B°P-module.

Definition 4.1 [Ye2,YZ1]. Let R be a dualizing complex ovér, B). We say that is an
Auslander dualizing complekit satisfies the following two conditions:

(i) For every finiteA-module M, integerg and B°P-submoduleN c Ext! (M, R), one
hasjr.por(N) > q.
(i) The same holds after exchangidgand B°P.

Definition 4.2. For a finiteA-moduleM thecanonical dimensiois
CdimR;A M = —jr.A(M).

It is known that if R is an Auslander dualizing complex then the canonical dimension
Cdimg. 4 is a spectral exact dimension function blod A (cf. Definition 1.6 and [YZ1,
Theorem 2.10]). By symmetry there is a spectral exact dimension functionCghisron
Mod BOP,

Definition 4.3. A complexR € C’(Mod A ® B°P) is called aresidual complexver (A, B)
if the following conditions are satisfied:

(i) R is adualizing complex.
(ii) Each bimoduler™4 is an injective module ove4 and overB°P.
(iii) R is Auslander, and each bimoduk? is Cdimg. 4-pure and Cdimg. gor-pure of
dimensiong (Definition 2.6).

Let us denote by QC(ModA ® B°P) — D(Mod A ® B°P) the localization functor. If
M = {M,(Cdimg, »)} then from Proposition 2.17(1) we see that@&R = R for a residual
complexRr.

A complexI € DT (Mod A) is called a minimal injective complex if the modulé is
injective and Kefl? — 19t1) c 11 is essential, for allj. Given M € Dt (Mod A), there
is a quasi-isomorphism — I in C*(Mod A), where! is a minimal injective complex.
Such/ is unique (up to a non-unigue isomorphism), and it is callechtirémal injective
resolutionof M (cf. [Yel, Lemma 4.2]). IfM has finite injective dimension theh is
bounded.

Definition 4.4. Let R be an Auslander dualizing complex ovet, B), and let/ be the
minimal injective resolution oR in C*(Mod A). Suppose each-modulel =4 is Cdimg. 4-
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pure of dimensiory. Then we sayR has apure minimal injective resolutioover A.
Likewise for BP,

Accordingto [Ye2, Lemma 2.15], a residual compRis a minimal injective resolution
of itself, on both sides. ThuB has pure minimal injective resolutions.

Proposition 4.5. Suppose is an Auslander dualizing complex ovet, B) that has a pure
minimal injective resolution oveA. Then the subcategories, (Cdimg.4) C Mod A are
stable for allg. Likewise withB°P and A exchanged.

Proof. We may use the proof of [Ye2, Proposition 2.7]1

Remark 4.6. If the subcategories, (Cdimg.4) C Mod A are stable for aly then A is

called a left pure algebra. As shown in [AjSZ], many familiar algebras with Auslander
dualizing complexes do not admit residual complexes—indeed, are not even pure algebras
(cf. Example 1.27).

Lemma4.7. Let R be a residual complex ovéA, B). Then the ring homomorphisr(lsft
and right multiplication

Z(A), Z(B°P) — Homc(mod A Bop) (R, R)
are bijective.

Proof. Since R consists of injectiveA-modules, Hom (R, R) = RHomy (R, R). So
HOHomu (R, R) = B 1; = BOP. By the purity assumption Hog(R, R) "1 =0, so

Home wod 4) (R, R) = HOHom, (R, R) = B 1z C HoMcmoak) (R, R).
We see that
HomMcmod a@Bop) (R, R) = Z oo (BP - 1g) = Z(B®P) - 1.
The equality with ZA) - 1 is proved symmetrically. O
Theorem 4.8. Supposer is an Auslander dualizing complex oveét, B) that has pure
minimal injective resolutions oveA and over B°P. Let M = {M,(Cdimg.4)} be the

filtration of Mod A determined byR and letE := Ey, be the associated Cousin functor.
ThenER is a residual complex, and there is a unique isomorphism

¢:R> QER in D(ModA ® B%)
such that
E(¢):ER — EQER=ER in C(Mod A ® B°)

is the identity.
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Proof. If we decide to forget theB°P-module structure o, we may use the minimal
injective resolution/ of R as A-module to compute Rur jmp+1R. By the purity
assumption,

HPHIRE, 17 if g =0,

1R = . 4.
P /mpt {O otherwise. (4.9)

We conclude thatEy R) ™7 = I~ asA-modules, and s¢ER) 4 is an injectiveA-module,
Cdimg. 4-pure of dimension.

According to Proposition 4.5, we see that the hypotheses of Proposition 2.16 hold with
M = R,M = {M,(Cdimg; 4)}, andN = {M, (Cdimg. pop)}. This tells us that GR = ExR as
complexes of bimodules. By the previous paragraph appli&ffinstead ofA, (EyR) ¢
is an injectiveB°P-module, Cding. gop-pure of dimension.

Formula (4.9) says that Corollary 2.15 holds here. We deduce the existence of an
isomorphismyp’: R = QER in D(Mod A ® B). According to Lemma 4.7, there is some
invertible element: € Z(A) such that ') : ER — EQER = ER is multiplication bya.

The isomorphisng := a~1¢’: R — QER has the desired propertys

Here is a class of algebras to which the results of this section apply. Recall that4 ring
is right bounded if every essential right ideal #fcontains an ideal which is essential as
arightideal. A ringA is a right FBN (fully bounded Noetherian) if is right Noetherian
and every prime factor ring of is right bounded. A=BN ring is a ring A that is both
right and left FBN [GW, Chapter 8].

A dualizing complexk over two algebragl andB is calledweakly bifiniteif for every
bimoduleM which is a subquotient o, the bimodules E)Z‘t(M, R) are all finite on both
sides; and the same is true withand B°P interchanged.

An exact dimension function dim, defined avod A and on Mod B°P, is called
symmetridf dim4 M = dimg. M for every bimoduleV finite on both sides.

Theorem 4.10. Let A and B be FBNK-algebras and letR be an Auslander dualizing
complex oveKA, B) which is weakly bifinite and such th@dimg is symmetric. The®
has pure minimal injective resolutions on both sides, and therefore the Cousin cda®plex
(notation as in Theorem.8)is a residual complex.

For the proof we will need two lemmas and some notation.pLbé a prime ideal of
a left Noetherian ringA. Write S4,,,(0) for the set of regular elements df/p. This is
a denominator set i /p, and the ring of fraction® (p) = FracA/p = SA/p(O)—lA/p is
simple Artinian.

Given a finiteA-moduleM, it's reduced(Goldie) rankatp is

rank, (M) :=length,,,) Q(p) ®4 M.

For M = A/p we write n(p) := rank, (A/p). Let J(p) = Ja(p) be the indecomposable
injective A-module with associated prinpe The injective hull ofd /p asA-module is then
J(p)'®.
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Suppos# is a prime ring. Recall that an elemente M is torsionif am = 0 for some
regular element € A. M is atorsion modulef all its elements are torsion; otherwise it is
anon-torsion moduleM is torsion-freeif the only torsion elementin itis 0.

Lemma4.11. Supposel is a prime left Noetherian ring and¥/, L are non-torsionA-mod-
ules, withM finite.

(1) There is an injective homomorphisfn A — L", wherer =r(0) is the Goldie rank.
(2) Letdim be an exact dimension function dod A. ThendimL = dimA.
(3) There is a nonzero homomorphigmM — L.

The proof of this lemma is standard (cf. [GW, Corollary 6.26(b)]).
The following is essentially proved in [Br, Lemma 2.3]. We state it for any minimal
injective complex instead of a minimal resolution of a module.

Lemma 4.12. Suppose is a left Noetherian ring. Lef be a minimal injective complex
of A-modules. Lep be a prime ideal ofA, and letu; (p) be the multiplicity of/ (p) in I°.
Then

(1) The image of the map/~1: Homyu (A/p, I'1) — Hom4(A/p, I') is a torsion A /p-
module.

(2) wi(p) =rank,(Homa(A/p, 1)) = rank, (Ext, (A/p, I)).

(3) Letp andq be two primes oA and M an A /p-A/q-bimodule. Assum#/ is nonzero,
torsion-free ag A /q)°P-module, and finite non-torsion as/p-module. IfI’ contains
a copy of/ (p), thenExt"A(M, I) is a non-torsiond /q-module.

Proof. (1) This is true because the kernel of this map is an essential submodule.

(2) The first equality is clear. The second follows from (1) because factoring g
torsion the complex Hom(A /p, I) has zero coboundary maps.

(3) By assumption there is a nonzero left iddalof A/p contained in/i. Let
Z':=Ker(d':I' — I't1). ReplacingL by L N Z!, we may assumé C Z'. SincelL
andM are non-torsiom /p-modules and is finite, Lemma 4.11 says there is a nonzero
map f:M — L. We claim thatf is nonzero in EX{(M, I). Otherwise there is a map
g:M — I'suchthatf = 8" ~1g. Let M’ := g(M) c I'. ThenM’ N Z'~1 is essential
in M" and henceM’/(M’ N Zi~1) is a torsionA/p-module. Nowf (M) is a quotient of
M'/(M' N Z'~1), soitis a nonzero torsioA /p-module. This contradicts the fact that any
nonzero submodule df must be a torsion-frea /p-module. Therefore we proved th#t
is nonzero in EX{(M, I).

Now let a be a regular element od/q. SinceM = Ma, M/Ma is a torsionA/p-
module. HenceMa is not contained in the kernel of : M — L. This implies that
af :M — L is nonzero. By the claim we proved in the last paragraph, we see:that
is nonzero in EX{(M, I). So f is non-torsion in EX{(M, I). O

Proof of Theorem 4.8. Let I be the minimal injective resolution ok as complex of
A-modules. First we will show that eadh’ is essentially pure of Cdigns =i, meaning
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that 7~/ contains an essential submodule that's pure of Gdim= i. It suffices to show
that if M is a Cding. 4-critical submodule of %, then Cding.4a M =i.

The critical moduleM is uniform. SinceA is FBN the injective hull ofM is J(q) for
some prime idea. ReplacingM by a nonzero submodule we can assubids a left
ideal of A/q, so it is a torsion-freel /q-module. By Lemma 4.12(3F; := Ext,'(A/q, R)
is a non-torsionA /g-module. In particular,e # 0 and hence Cdigms A/q > i. By
Lemma 4.11 we get Cdims E = Cdimg.4 A/q. From the weakly bifinite hypothesis,
E is Noetherian on both sides. Hence, by the symmetry of Gdine have Cdimg. 4 E =
Cdimg. gor E. According to [YZ1, Theorem 2.14] we have Cdimor E < i. We conclude
that Cdinmg. 4 A/q =i. Again by Lemma 4.11 we get Cdigy M = Cdimg. 4 A/q=1.

Next we show that the Cdim, is a constant on the cliques af If there is a linkg ~ p,
then there is a nonzew/q-A /p-bimoduleM that is a subquotient of and is torsion free
on both sides. By Lemma 4.11 and the symmetry of Gdime have

Cdimg.4 A/q = Cdimg, 4 M = Cdimg. goo M = Cdimg. gop A/p = Cdimg. 4 A/p.

The FBN ring A satisfies the second layer condition [MR, 4.3.14]. We know that
Cdimg.4 is constant on cliques. It follows from [MR, Proposition 4.3.13] that an
indecomposable injectivé-module has pure Cdigm4 (cf. [AjSZ, Theorem 4.2]). So, the
minimal injective resolutior is pure.

All the above works also for the minimal injective resolution ®fas a complex of
B°P-modules. O

Remark 4.13. Let A be a Noetherian affine Pl Hopf algebra owé&rof finite injective
dimension:. Brown and Goodearl [BG] show that is Auslander—Gorenstein. Using this
one can show that the Auslander dualizing compMx] is pre-balanced and has pure
minimal injective resolutions (see [YZ1]). According to Theorem 4 & [z]) is a residual
complex.

5. Theresidue complex of an algebra

In this section we define the residue complex of an algebra, combining the results in
Sections 3 and 4. The main result here is Theorem 5.4 which explains the functoriality of
residue complexes. Here as befétés the base field.

If a K-algebraA has a rigid dualizing compleR (Definition 3.1) that is Auslander
(Definition 4.1) then we shall usually write Cdjrinstead of Cdin. 4. This dimension
function depends only on tHg-algebraA.

Definition 5.1. A residue complerver A is a rigid dualizing complexR, ¢) such thatR
is also a residual complex (Definition 4.3).

The uniqueness of the residue complex will be made clear later in this section
(Corollary 5.5). In [Ye2] the name “strong residue complex” was used for the same notion
(in the graded case).
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Let Df(Mod A) denote the subcategory of complexes with finite cohomology modules.
The next result will be used in the proof of Theorem 5.4.

Proposition 5.2 (Local duality).Let R be a dualizing complex ovéA, B) andM C Mod A
a localizing subcategory. Then there is a functorial isomorphism

RIwM = RHomgon(RHOMy (M, R), RIWR)
for M € D{ (Mod A).

Proof. Take a quasi-isomorphist? — I in C*(Mod A) with each/¢ injective overA,
and a quasi-isomorphisn® — J in CP(Mod A ® B°P), where each/? is injective
overA and overB°P. Write DM := RHom, (M, R) andD°PN := RHomgep(N, R). Using
Lemma 4.7, we get a commutative diagrandfi{Mod A)

B
RIWM ———~ 5 R[WD®DM ———— RHomgop(DM, R R)

o

Iyl — IywHomgop(Homyu (1, J), J) —— Homgop(HOM4 (1, J), I'wJ)

with the bottom row consisting of morphisms @1"(Mod A). The homomorphisny is
actually bijective. And sincé/ € Df(Mod A), M — D°PDM is anisomorphism, and hence
S0 iSa. The isomorphism we want Bo. 0O

Remark 5.3. The proposition above generalizes [RD, Theorem 1V.6.2] (respectively [Yel,
Theorem 4.18]), wher is commutative local with maximal ideal (respectively connected
graded with augmentation ideah), andM is the category ofn-torsion A-modules.

Denote by Q C(Mod A®) — D(Mod A°®) the localization functor.

Theorem 5.4. Let A — B be a finite centralizing homomorphism between Noetherian
K-algebras. Suppose the two conditions below hold.

(i) There are rigid dualizing complexeR4 and Rp and the rigid trace morphism
Trp/a:Rp — Ra exists.

(i) R4 is an Auslander dualizing complex and it has pure minimal injective resolutions
on both sides.

Then

(1) Rp is an Auslander dualizing complex and it has pure minimal injective resolutions
on both sides.
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(2) Denote byE4 :D"(Mod A®) — C*(Mod A®) and Ep:D"(Mod B®) — C*(Mod B®)
the Cousin functors associated to the dimension funct@dimg,. » and Cdimg,. g,
respectively. TheBs M = EgM functorially for M € D™ (Mod B®).

(3) Let K4 :=EsR4 and Kp := EgpRp = E4 Rp be the two residual complexes, so we
have a morphisnE4(Trg/4):Kp — K4 in C(Mod A®). Let ¢4 : R4 3 QK4 and
¢p:Rp 3 QKCp be the isomorphisms from Theordn8. Then the diagram

¢
Rp — QKjp

JTr JQEA (Tr)
[

Ry —— QK4

in D(Mod A®) is commutative.
(4) Ea(Trpsa) induces isomorphisms

Kp =ZHomy (B, K4) = Homyoe(B, K4)
in C(Mod A®).
Proof. (1) According to [YZ1, Proposition 3.9],
Rp =RHomy (B, R4) =Homu (B, K4)

in D(Mod(B ® A°P)). Therefore the complex HogiB, K 4) is an injective resolution of

Rp in KT (Mod B). Choose elements, ..., b, € Zg(A) which generated as anA-mod-

ule. This gives rise to a surjectiad” — B of A-bimodules, and hence to an inclusion
Homu (B, K, ") c (K, *)". So Homy (B, K,?) is Cdimg,.-pure of dimensiory as an
A-module. By [YZ1, Proposition 3.9], the dualizing compl&®g is Auslander, and
Cdimg,. 4 M = Cdimg,. 3 M for any B-module M. Thus Hom (B, K,?) is Cdimg,. 5-

pure asB-module. We conclude that the injective resolution Haml, i) is Cdimg,. g-

pure. But one easily sees that a pure injective resolution must be minimal. Symmetrically
all the above applies to the right resolution Hgni(B, K 4) of Rp.

(2) Applying the functor kg to the isomorphisnkRp = Homy (B, K4) in D(Mod B ®
A°P), and using the fact that HonB, K ) is a pure injective complex a8-modules, we
obtainKg = Homy (B, K4) in C(Mod B ® A°P). Thus, in particular, Hom(B, K4) is a
complex of B-B-bimodules. By symmetry alskip = Homyuop(B, K4) as complexes of
bimodules.

Denote byM,(A) := {M € Mod A | Cdimg,.4 M < ¢} and likewiseM,(B). We get
filtrations M(A) = {M;(A)} andM(B) = {My(B)}. Since Iy, 4)Ka = Icf’q, Proposi-
tion 5.2 tells us that

RFMq(A)M = Hoonp(HomA(M,ICA),ICf_q)

= H0mBop(H0mB(M, Kg), K?iq) = RFMq(B)M
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functorially for M € D;F(Mod B). In patrticular, I-xlq(B)M = Hﬁq(A)M functorially for
finite B-modulesM. Passing to direct limits (using Proposition 1.20) this becomes true
for all B-modules. Hence iM is anM(B)-flasqueB-module, it is alsavi(A)-flasque. By
Proposition 2.9, it follows that M = Eg M functorially for M € D™ (Mod B®).

(3) Next we analyze the morphism QETg/4) € HOMp(mod ae)(RB, Ra). By [YZ1,

Lemma 3.3],
HOMp(Mod a®) (RB, Ra) =Zp(A) - Trpa,

S0 QEy(Trp/a) =b - Trp 4 for some (uniquep € Zg(A). We shall prove that = 1. If we
forget theA°P-module structure, then

Homp(mod 4) (QK B, QKa) =B - Trp/a .

From Proposition 2.17 we get that there is a bijection

HOMp (mod 4) (QK B, QK 4) = HOoMe(mod 4) (KB, Ka)

induced by E, and the inverse is induced by Q. Hence we obtain

Trg;a = QEa(Trp ) € HOMpmod ) (QK 5, QK 4).

This implies that = 1.

(4) By part (3), if we apply the functor Hog(B, —) to the homomorphism of
complexes B (Trp/a):Kp — K4 we get a quasi-isomorphisiiz — Homs (B, KCys).
But these are minimal injective complexes B8fmodules, so it must actually be an
isomorphism of complexes. By symmetry al§g — Homgop(B, K4) is an isomorphism
of complexes. O

Corallary 5.5 (Uniqueness of residue compleuppose/Ca, ¢) and (K, ¢) are two
residue complexes over. Then there is a unique isomorphismK’, — K4 in C(Mod A®)
that is compatible witly’ and¢, i.e., a rigid trace.

Proof. Write B := A and (K, ¢p) := (K4, ¢). By [YZ1, Theorem 3.2] we get a unique
isomorphism Tg,4 : K — K4 in D(Mod A®) that is a rigid trace. According to part (3) of
the theorem above,:= E4(Trp,4) satisfies Qr) = Trp,4, S0 it too is a rigid trace. O

Corollary 5.6. If in the previous theorem® = A/a for some ideah then there is equality
Homy (A/a, K4) = Homyon(A/a, K4) C Ka.

Proof. By part (4) of the theorem we get an isomorphismB® A°p-modulesIC‘I’3 =

Homu (B, K%) c K% for every q. This implies that Hom(B, K%) is annihilated by

a on the right too, and hence HortB, K4) € Homyuop(B, K4). By symmetry there is
equality. O
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Remark 5.7. Corollary 5.6 is pretty surprising. The ideaWill in general not be generated
by central elements. On the other hand the centralizgk4) = Z(A). So there is no
obvious reason for the left annihilator @in 4 to coincide with the right annihilator.

Corollary 5.8. Let A — B and B — C be finite centralizing homomorphisms. Assume the
hypotheses of Theored4, and also that the rigid dualizing comple¥: and the rigid
traceTrc,p exist. Then

Ea(Trc/a) =Ea(Trp a) Ep(Tre/B) : Kc — Ka.

Proof. By [YZ1, Corollary 3.8], the morphism H4 := Trg;a Trcp is a rigid trace.
According to Theorem 5.4 the residue compl€x = EgRc exists, and B(Tr¢/p) =
Ea(Tresp). O

Here are a few examples of algebras with residue complexes.

Example5.9. If A is a commutative affine (i.e., finitely generatéthalgebra andr 4 is its
rigid dualizing complex then the complégs := ER,4 is a residue complex. It consists
of central bimodules, and is the residue complexdotlso in the sense of [RD] (cf.
Example 3.14). For a finite homomorphistn— B of commutative algebras the trace
morphism Ti, 4 coincides with that of [RD].

Example 5.10. Consider a commutative Artinian loc&l-algebraA whose residue field
A/m is finitely generated oveK (i.e., A is residually finitely generated). Thea =
FracAg, the ring of fractions of some commutative affilfealgebradg C A, and by
Theorem 3.8 has arigid dualizing compleR4 = A ®4, R4,. Because of the uniqueness
of dualizing complexes for commutative algebrag, = IC(A)[n] wherelC(A) :=H_"R4
is an injective hull ofA /m andn = dim Ag = tr.degz (A/m).

If A — B is a finite homomorphism of such Artinian algebras then the rigid trace
Trg;a: K(B)[n] — K(A)[n] exists.

Now if A is a residually finitely generated commutative Noetherian completelloed
gebra we can defin€(A) := |IL)T'I KC(A/m’). The functorialA-module/C(A) is called the

dual moduleof A. (Cf. [Ye3,Ye5] for alternative approaches, applications and references
to other related work.)

Example5.11. If A is a Noetherian affin&-algebra finite over its cent&r andC¢ is the
residue complex of® thenK4 := Hom¢ (A, K¢) is the residue complex of. If A — B

is a finite centralizing homomorphism then the rigid tracg k. Xz — K4 is gotten

by applying Homp (—, K¢) to A — B. We see that the theory of residual complexes for
algebras finite over the center is very close to the commutative theory.

Proposition 5.12. The first Weyl algebra over the fieleihas a residue complex.

Proof. Recall that the first Weyl algebra i6 := C(x, y)/(yx — xy — 1). According to
[YZ1, Example 6.20],R4 := A[2] is a rigid Auslander dualizing complex over, and
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Cdim = GKdim. The ring of fractionsQ = FracA is a division ring, and the global
dimension ofA is 1. Therefore the minimal injective resolution afin Mod A is 0 —
A— 19— 11> 0and/®= Q. We see that is pure of GKdim/® = GKdimA = 2.
Sincell is a torsionA-module we get GKdini! < 1; but since there are né-modules of
GKdim = 0 it follows that/* is pure of GKdim= 1. So,A has a pure injective resolution
on the left. The same is true on the right too. We see iahas pure minimal injective
resolutions on both sides, %04 := ER4 is a residue complex. Moreoveiffqg2 = Q and

Kit=0/4. O

Proposition 5.13. Let g be a nilpoten3-dimensional Lie algebra ovef and A := U(g)
the universal enveloping algebra. Thdrhas a residue complex.

Proof. We may assumed is not commutative, sai is generated by, y, z with z
central andx, y] = z. By [YZ1, Proposition 6.18] and [Ye5, Theorem A], the complex
R4 := A[3] is a rigid Auslander dualizing complex, and Cd#nGKdim. Consider a
minimal injective resolution > A — 1% — 11— 12— 3 0 of A in Mod A. For any

A € C consider the ideal = A - (z — ). The localizing subcategoM,—,) = Mg C Mod A

is stable (cf. Example 1.4). We get a direct sum decompositiofrfodules indexed by
SpedC[z]:

79~ (@ F(zk)lq> ® (C(2) ®cy 17).

reC

For anyAr € C, RHomy(A/(z — 1), R4) is the rigid dualizing complex ofA/(z — 1),
and Homy (A/(z — 1), I[3]) is its minimal injective resolution as complex of left modules.
Since the algebrd /(z — 1) is isomorphic to either the commutative polynomial algebra
(r = 0) or to the first Weyl algebra, we see that HpfA /(z — 1), I7) is pure of GKdim=
3—gqg,forl<q <3.

Fix ¢ and . Introduce a filtrationF on N := I';_)I¢ by F~/N :=Homy(A/(z —
1)/, 19). Then forj > 1 multiplication byz — A is a bijection g;”lN = gr;’ N. It
follows that gi,’ N is pure of GKdim= 3 — ¢. Therefore alsaV = | J F~/ N is pure of
GKdim=3—g.

The direct sum complemefil(z) ®cy; ¢ is a B-module, whereB := C(z) @cy;] A. In
fact, C(z) ®c,; I is a minimal injective resolution a8 in Mod B. But B is isomorphic the
first Weyl algebra over the fiel@(z). Thereforel® = FracB is pure of GKdim= 3, and
C(z) ®cy I* is pure of GKdim= 2.

We conclude that eacH is pure of GKdim= 3 — g. By symmetry the same is true on
the right too. SAC4 := ER4 is a residue complex ovet. 0O

Remark 5.14. There are nilpotent Lie algebrgssuch that Wg) does not have a residue
complex. Indeed one can find such a Lie algebra with a surjection fremU(g) to the
second Weyl algebr&. B is not pure, so it does not have a residue complex. Hence by
Theorem 5.4A does not have a residue complex.
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Example 5.15. Let A be a 3-dimensional Sklyanin algebra over the algebraically closed
field K. The whole apparatus of Cousin functors can be implemented also i ghaded
module categorysrMod A—actually this was already done in [Ye2]—and, in particular,
Theorem 4.8 is true in the graded sense. According to [Aj], the minimal injective
resolutions ofA in GrMod A and in GrMod A°P are pure. On the hand, the balanced
dualizing complex, which is also rigid in the graded sens® 4s= w4 [3] wherewy = A°

for some automorphisra. We conclude thatC4 := ER4 is a graded residue complex
over A. Note that this result was proved in [Ye2] by a direct (and rather involved)
calculation of Ore localizations with respeciteorbits in the elliptic curve associatedAo

Question 5.16. In case the rigid Auslander dualizing compl&xexists but there is no
residue complex (e.g4 = U(slp)), is it still true that Es R = E4o0R? What can be said
about this complex?

In the following section we will discuss residue complexes over Pl algebras in detail.

6. Theresidue complex of a Pl algebra

In this section we look at an affine Noetherian Pl algelAraver the base field.
We show that—under a certain technical assumption—such an algehes a residue
complexK 4. Furthermore in Theorem 6.14 we give a detailed description of the structure
of K4. The material on PI rings needed here can be found in [MR, Section 13].

Proposition 6.1. Supposed is an affine prime PK-algebra with centerC. Then there
is a nonzero elemente C such that the localizatiod; is an Azumaya algebra over its
centerZ(Ay) = Cy, andC; is a regular commutative affiig-algebra.

Proof. By the Artin—Procesi Theorem [MR, Theorem 13.7.14] and [MR, Proposition
13.7.4] we may findy € C, s1 # 0 such thatA,, is an Azumaya algebra over its center
C1:=Z(Ay,). The commutative prim&-algebraCy is affine, and hence by [Mat, p. 246,
Theorem 73] there is a nonzero element C1 such that the localizatiof’s := (C1)s,

is regular. By Posner’'s Theorem [MR, Theorem 13.6.5], the fraction fields coincide:
FracC = FracC». Becaus&; is affine we may find € C (the product of the denominators

of a finite set ofK-algebra generators @) such thatC; = (C2),. HenceC; is also regular,
affine overk, andA; is Azumaya with cente€,. O

Theorem 6.2. Let A be an affine prime Noetherian F{-algebra with centerC and
Gelfand—Kirillov dimensioiGKdim A = n. AssumeA has a rigid dualizing compleR 4.

(1) Lets € C be a nonzero element such that the localizatignis an Azumaya algebra
with centerC;, andC; is a regular affinék-algebra. Then there is an isomorphism

Cs ®c Ra = we,[n]®c A

in D(Mod A®), wherewc, is a projectiveCs-module of rank.
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(2) LetK :=FracC and Q :=FracA. Then
K ®c Ra = Ql[n]
in D(Mod A®).

Proof. (1) By [ASZ, Proposition 4.4], the algebrf is Noetherian. Therefore, according
to Theorem 3.8, the compleX,, := A; ®4 Ra ®4 A is arigid dualizing complex oved;.
Moreover,

Rao, = R4 ®c Cs =Cs ®¢ Ra

in D(Mod A®).

By [MR, Proposition 8.2.13] we have GKdifh = GKdimA;, and hencen =
GKdimC; = Kdim C; (Krull dimension). According to Proposition 3.9, the rigid dualizing
complex ofCy is wc, [n] with ¢, a projectiveCs-module of rank 1. From Corollary 3.10
we see that Hom (A, wc,) is a rigid dualizing complex oves,. Finally, the reduced
traceA; — C, induces a bimodule isomorphisAy = Home, (A, Cy). Therefore

Ra, = o, ®c, As=wc, Qc A

in D(Mod A®).
(2) Follows from (1). O

Recall that aconnected gradet-algebra is arN-graded algebral = @, .y A; such
that Ap = K and rank A; < oo for all i. By a filtration of A we mean an ascending
filtration F = {F; A};cz by K-modules such thaf; A - F; C F;;; A. The associated graded
algebra is denoted by frA.

Definition 6.3. A Noetherian connected filtratioof a K-algebraA is a filtration F such
that g A is a Noetherian connected gradealgebra.

In [YZ1, Definition 6.1] the condition was that the Rees algebra Reeshould be
a Noetherian connected grad&dalgebra; but as mentioned there the two conditions are
in fact equivalent.

It is not hard to see that if admits a Noetherian connected filtration théritself is
Noetherian and affine ovég.

Remark 6.4. If A is affine and finite over its center then it admits a Noetherian connected
filtration (see [YZ1, Example 6.14]); but this case is in a sense too easy. There are known
examples of Pl algebras not finite over their centers that admit Noetherian connected
filtrations (e.g., [YZ1, Example 6.15]), and for a long time it was an open problem whether
they all do. The first counterexample was recently discovered by Stafford [SZ].

The notions of symmetric dimension function and weakly bifinite dualizing complex
were defined just before Theorem 4.10.
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Proposition 6.5. Supposel is a Pl algebra admitting a Noetherian connected filtration.
Then A has an Auslander rigid dualizing complé the canonical dimensio@dim =
Cdimg is symmetric, an® is weakly bifinite.

Proof. Let F be a Noetherian connected filtration af Then gf A is a Noetherian
connected graded F{-algebra. By [YZ1, Corollary 6.9]4 has an Auslander dualizing
complexR, and Cdiny = GKdim (Gelfand—Kirillov dimension) on the categorigied A
andMod A°P. Since GKdim is symmetric (see [MR, Proposition 8.3.14(ii)]), so is Gdim

Now take a bimoduleM that is a subquotient ofA. Then M admits a two-sided
good filtration F (i.e., g M is a finite module over grA on both sides), and by [YZ1,
Proposition 6.21] we get ExtM, R) = Ext,o,(M, R) as bimodules. Hence this bimodule
is finite on both sides. We conclude this weakly bifinite. O

Theorem 6.6. Let A be an affine Noetherian Pl algebra admitting a Noetherian connected
filtration.

(1) A has aresidue compleg,.

(2) Let B= A/a be a quotient algebra. Theh has a residue complégp, there is a rigid
trace Trp, 4 : Kp — K4 that is an actual homomorphism of complexes of bimodules,
andTrp,4 induces an isomorphism

Kp =Homu (B, Ka) =Homyuop(B, a) C K4.

Proof. (1) Is immediate from Proposition 6.5 and Theorem 4.10. (2) follows from (1),
Theorem 5.4, and Corollary 5.6.0

Given a setZ of ideals of A, we defined a localizing subcategaw; C Mod A in
Example 1.2. Now let us writ&°P for the same set, but considered as a set of ideals in the
ring A°P, and letMzoo C Mod A°P be the localizing subcategory. Denote By and I'zop
the two torsion functors, respectively.

Corollary 6.7. AssumeA is like in the theorem, and l&f be a set of ideals od. Then
I'7KA =T700Kq CK4.

Proof. Apply Theorem 6.6(2) to the ideals= b1---b, whereby,...,b, € Z, using
formulas (1.1) and (1.3). O

Corollary 6.8. AssumeA is like in the theorem. Lef be a denominator set i, with
localizationAg. Define s, := As ®4 K4 @4 As.

(1) Kag = As®4 Ka =K4 ®a As as complexes of-bimodules.
(2) K4, is adualizing complex ovet .
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Proof. (1) Let Z := {p € SpecA | p N S # ¥}, and define Gabriel filterg, and Fy like
in Examples 1.2 and 1.9. According to [Ste, Theorem VII.3.4] these two filters are equal.
Hence (cf. Example 1.15) for eaghthere is an exact sequence

0—>F21CZ—>/CZ—>A5®A/CZ—>O.
By symmetry there is an exact sequence
0— FZOP’C% —>IC?4 _)ICZX Qs Ag — 0.

But by Corollary 6.7,1'2K% = I'zo0K% , which impliesAs ®4 K% = K% ®4 As. Finally
use the factthatly ® 4 As = Ag.
(2) This is proved just like [YZ1, Theorem 1.11(1)] (cf. proof of Theorem 3.8(1)).

Let us remind the reader the definition ofchque in the prime spectrum Spec
Supposep and q are two prime ideals. If there is a bimodulé that is a subquotient
of (p N q)/(pq) and is nonzero torsion-free as'p-module and a$A/q)°P-module, then
we say there is a (second layer) lipk~ g. The links make Spet into a quiver, and the
cligues are its connected components.

Example 6.9. Supposd A : K] < co. The lemma below implies that (up to multiplicity of
arrows) the link quiver ofA coincides with the quiver defined by Gabriel in the context
of representation theory (see [MY]). Cliques in this case stand in bijection to blocks of
(indecomposable factors), and also to Spet)Z

Lemma 6.10. Let A be an Artinian ring with Jacobson radical and maximal ideals
p1, ..., pn. Then the inclusionsC p; induce an isomorphism of-bimodules

L piNp;

2 Li Pipj

Proof. This proof was communicated to us by K. Goodearl. Choose orthogonal idempo-
tentse; € A lifting the central idempotents iA /¢, so that

pi=Al—¢)+rt=(1L—¢)A+r.
We have
(I—e)(pinpj)=A—e)pj Cpipj,
and likewise on the right, so each element@fnp;)/(p;p;) comes from some element
ine;(p; Npjle;. Bute;(p; Npjle; = e;re;. We see that the canonical homomorphism

freite; — (piNp;)/(pip;) is surjective. ObViOUSly,"CZEj c Ker(f). On the other hand,

pipj =L —e)A(l—e;)+ (L —e)r+t(l—ej) +12
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SOepipje; = eitzej. Thus Kel f) = eitzej. Finally, the isomorphism is obtained by the
decomposition

T @ T eite; 0
—=(Rei—e; :@ .
2 N2 eitle;

ij

L]

Definition 6.11. Let A be a NoetheriarK-algebra with an Auslander rigid dualizing
complex, such that the canonical dimension Cdim is weakly symmetricgTs$lesleton
of Spec is the set

{p € SpecA | CdimA/p =¢q}.

Proposition 6.12. Supposed is a Pl K-algebra admitting some Noetherian connected
filtration. Then the;-skeleton oSpec is a union of cliques.

Proof. Within the proof of Theorem 4.10 it is shown that Cdim is constant on cliques in
SpecA. O

Proposition 6.13. Supposé is a prime PIK-algebra admitting a Noetherian connected
filtration. Let n := CdimA and Q := FracA the ring of fractions. TherlC," = Q as
A-bimodules.

Proof. SinceC," is pure of Cdim=n it is a torsion-freeA-module, and it follows that
0 ®4 K" = K,". On the other hand, fog < n, K7 is pure of Cdim= g < n, so it
is a torsionA-module andQ ®4 K, = 0. We see tha ®4 K4 = K;"[n]. But by
Theorem 6.2 we geP ®4 K4 = Q[n]. O

Given a prime ideap in aring A, let
S(p) =Sa(p):={a € A|a+pisregularinA/p}.

For a setZ of prime ideals we write

S(Z):= (") Sp)

pez

According to [Mu, Theorem 10 and remarks in Section 3ifs a Noetherian PI affine
K-algebra andZ is a clique of prime ideals in SpelcthenS(Z) is a denominator set. We
get a ring of fractions

Asiy =St a=A.5(2)7L.

Furthermore, for each € Z one has

A/p®a Asz)y= Q(p) =FracA/p=(A/p)s,,0-
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For a prime idealp denote byJ4(p) the indecomposable injectivé-module with
associated prime (it is unique up to isomorphism). Lety) denote the Goldie rank
of A/p.

We say that a clique; is a specialization (respectively immediate specialization) of
a cliqueZy if there exist prime ideals; € Z; with pg C p1 (respectively and; is in the
(g—i)-skeleton of Sped for somey).

Here is the main result of this section.

Theorem 6.14. Let A be a PIK-algebra admitting a Noetherian connected filtration, and
let 4 be its residue complex.

(1) For everyq there is a canonical-bimodule decomposition
Ky =@ rzk,*
V4

whereZ runs over the cliques in thg-skeleton oBpecA.

(2) Fix one clique Z in the g-skeleton ofSpecA. Then I'zK,? = I'zeeK 7 is an
injective left(respectively right A g(z)-module, and its socle as l€fespectively right
Ag(z)-module is the essential submodule

DK, = D Homa(A/p. K}7) € Iz,
peZ peZ

(3) There is a(noncanonica) decomposition of lefrespectively right A s(z)-modules

Ky =@ Jam) ™ =P Jaw(p)'®.
peZ peZ

(4) FZICX‘J is an indecomposablé-bimodule.
(5) SupposeZ; is a clique in the(g—i)-skeleton ofSpec4, for i = 0,1. ThenZ; is an
immediate specialization dfy iff the composed homomorphism

. - - —g+1 —q+1
5(20,21)-FZOICA(]L>K:A(] —>ICAq —»FZlKAq
is nonzero.

Proof. (1) Let I be an indecomposable injective module with associated ppiraeZ,
where Z is a clique in theg-skeleton of Sped. Since A satisfies the second layer
condition, we getl'zI = I and alsol'scz)I = 0. It follows that] — Agz) ®a I is
bijective. Therefore, for any other cliqgu& in the g-skeleton of Sped, we must have
'y I=0. Because!CZq is an injective module, pure of dimensignwe get the left module
decompositioriC/}q =P, FZIC;‘J. By Corollary 6.7 and symmetry, this is a bimodule
decomposition.
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(2) Clearly, I'zK,? is an injective Ag(z)-bimodule, and®, ., K, A/p c IzK,*

gssential. WriteQ (p) := FractA /p; then@‘g ICA7p = @p Q(p) is a semi-simple (Ieft and
rlght) AS(Z)-mOduIe.

(3) This is because the injective hull gk(p) as A-module isJ4 (p)"®).

(4) Assume by contraposition thE};ICXq = M1® M> as bimodules, witlf; £ 0. Then
the socleV =D, ICA/‘g of I'zK,? (as left or rightA g z)-module) also decomposes into
V=V1i@Vawith Vi =M; NV =@,z K], andZ = Z1 1 Z3, Z; # . Takep; € Z;
such that there is a second layer lipk~ p2. Recall that this means there is a bimodule
surjection

=P10P2%N
p1p2

with N a nonzero torsion-free module ovayp; and(A/p2)°P. Then replacingd with
A /p1p2 we retain the link, only nowz; = {p;} andV; = Q(p;) as bimodules.

Let B := Agz). According to Corollary 6.8/Cp := B ®4 K4 ®4 B is a dualizing
complex overB. As in the proof of Proposition 6.13, we gléigp =0forall p <gq, and
Kz? =K% HenceKp = K3 [q]1 =K 7141

By Lemma 3.6,

Z(B) = Endbvod ge) (K ) = Endge (K 57)

asrings. Taker € Endge(ICE") to be the projectioriC;" — My. Sor is left multiplication
by a central idempotente B. SinceQ(p;) = V; C M;, we see that - Q(p1) = Q(p1) and
e-Q(p2)=0

Now the bimodule

Np:=B®4NQ®sB=Q(p1) @4 N Q4 Q(p2) #0.

Being a subquotient a8, e centralizesVy. We get a contradiction- Ng = Ng, Ng-¢ =0.
(5) First assume that there is specialization, and choose prime jgeglsas evidence.
Then the algebr® := A/po ®4 As(z,) is nonzero, having@ (p1) as a quotient. Thus is

prime. The compleXCs, with K = K%, . K59 = Iz, K958 andk; = 0 otherwise,

is dualizing by Corollary 6.8. If5.ICB — ICB‘”l were zero this would imply that
B = HHomg (K, Kp) is decomposable as bimodule, contradicting it being a prime ring.
Conversely, assum&z, z,) # 0 and pick somep € I'z,K ;¢ such thats(z, z,)(¢) €

lelCX“l is nonzero. By part (3) we can find € p1; € Z1 such that

075 'W =dai- am(S(Zo Z1) (¢) € ICA?;;:L = Q(pl)

for somepy € Z1. On the other hand, there are primgss, ..., po, € Zo such that
#yo,1---po,n = 0, which implies that/po1---po,» = 0. We conclude thaQ (p1)po,1- -
po,m =0, and thereforgg := po,; C p1 for somei. O



A. Yekutieli, J.J. Zhang / Journal of Algebra 259 (2003) 451-493 491

Example 6.15. Assume tha# is finite overK, and letA =[] A; be the block decompo-
sition, i.e., each4; is an indecomposable bimodule. Then Speds a clique in Sped
and

K =K = Homg (4, K) = P Hom (4;, K)

1

is a decomposition into indecomposable bimodules (cf. Example 6.9).

Example 6.16. Generalizing the previous example, consider a Noetherian dffiad

gebraA, finite over its centeC. It is well known thatq — p = C N q is a bijection from
the cliguesZ C SpecA to SpedC (see [GW, Theorem 11.20]). Fere SpeaC, denote
by C, the p-adic completion. The complete semilocal riig ®c A has centeC,, and is
indecomposable. On the other hand, say @jfp=rn. Then

rZK3" = LK™ = I Home (A, Kg") = Homg, (Cp ®c A, K(Cy))

WhereIC((A?p) is the dual module from Example 5.10. Since I—}gm /C@)) is a duality

for finite Cp-modules, we see that the indecomposability of the bimoduléC,” is
equivalent to the indecomposability 6f, ®c A.

Example 6.17. Consider the Pl algebra = K(x, y)/(yx — gxy, y?), g € K. AssumeK
is algebraically closed, so the spectrumAfconsists of the prime ideals:= (y) and
m; = (y,x — 1) wherel € K. We note that

mum, L0 otherwise.

Thus the cliques armi; | i € Z} and of coursép}. We see that iy is not a root of unity
then we get infinite cliques.

Example 6.18. Take the quantum plang := K(x, y)/(yx — gxy) with ¢ a primitive
Ith root of unity inK. The center iC := K[x/, y']. AssumekK is algebraically closed.
Let us describe the indecomposable bimodufedC,' and their decomposition into
indecomposable left moduld%, K" = Bypez Ja (p)"®).

(a) GenericallyQ (0) is a division ring, and thuk 72 = J4(0).

(b) If g € SpeaC is a curve or a pointi(= 1,0) in the Azumaya locus of (i.e.,
x!, y! ¢ q) thenp := Aq is prime. By Tsen’s Theorem, the Brauer groug/gr))) of the
residue fieldk(q) is trivial. ThereforeQ (p) = M, (k(q)). We conclude thaZ := {p} is a
cligque, (p) =1, and Iz, = Ja(p)'.

(c) If g = y!C thenp := yA is prime andQ(p) is commutative. We conclude that
Z:={p}is aclique, tp) =1, andI'zK ;> = J4(p). Likewise if g = x'C.

(d) If n=y'C + (x! —A1)C e SpeaC with A # 0 then the clique lying above is
Z:={my; | j=0,....,1 -1} notation is as in the previous example. The Goldie rank is
r(m,;;) =1andr;Kg = 1;:10 Ja(m,;;). Likewise withy and.x interchanged.
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(e) Finally, the clique lying above := y/C + x/C is Z := {m} wherem := xA + yA,
r(m) =1, andl’zK9 = J4(m).

Question 6.19. Are Theorems 6.6 and 6.14 valid without assuming the existence of
a Noetherian connected filtration?
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