Erratum

Volume 149, Number 2 (1992), in the article "Semisimple Extensions and Elements of Trace 1," by Miriam Cohen and Davida Fischman, pages 419-437: H.-J. Schneider has recently pointed out two errors in this paper. The following are corrected versions of the appropriate theorems.

THEOREM 1.8. Let H be a Hopf algebra, Frobenius as an algebra, and let A/A^H be an H*-Galois extension (with x_i , y_i the elements of A satisfying $\sum [x_i, y_i] = x_i t y_i = 1$). Then conditions (1)–(5) are equivalent:

- (1) A/A^H is a separable extension.
- (2) $\exists \omega \in C_{A\#H}(A) \text{ with } T \rightarrow \omega = 1.$
- (3) A is an A-bimodule direct summand of A # H.
- (4) There exists an element $c \in C_A(A^H)$ such that $\sum x_i c y_i = 1$.
- (5) [DT, Th. 3.14] There exists a total integral $\phi: H \to C_A(A^H)$.

In the original version there was also a condition analagous to (4), for a general element $c \in A$. This condition, however, does not imply the others. In particular, the mapping $A \otimes_{A^H} A \to A \otimes_{A^H} A$ given by $x \otimes y \mapsto xc \otimes y$ exists only if c is in the centralizer of A^H in A. In fact, Schneider showed us a counterexample to this condition implying condition (1), for an arbitrary $c \in A$.

Theorem 1.11. Let H be a cocommutative Hopf algebra, A a left H-module algebra with a central trace 1 element c, and σ an invertible normal 2-cocycle. Then $A \#_{\sigma} H$ is a separable extension of A.

In the original version, we required only that the left integral $t \in \int_I$ be a cocommutative element. However, the twisted module condition can be applied as necessary to the third line of calculation in the proof only if u_7 and u_8 are interchanged—and this is possible only if H is cocommutative.

Theorem 1.11 is used to prove Theorems 1.20 and 1.23 under hypothesis (ii). Thus in both cases, hypothesis (ii) should be:

(ii) A has a central element of trace 1 and H is cocommutative.

REFERENCE

[DT] Y. DOI AND M. TAKEUCHI, Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action, and Azumaya algebras, J. Algebra 121 (1989), 488-516.

242

Copyright (C 1994 by Academic Press, Inc. All rights of reproduction in any form reserved.