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Abstract

The known Lorentz invariant string field theory for openN = 2 strings is combined with a generalization of the twis
description of anti-self-dual (super-)Yang–Mills theories. We introduce a Chern–Simons-type Lagrangian containing twistor
variables and derive the Berkovits–Siegel covariant string field equations of motion via the twistor correspondence.
purely bosonic and the maximally space–time supersymmetric cases are considered.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

It was recently shown by Witten[1] that B-type
open topological string theory with the supertwis
spaceCP 3|4 as a target space is equivalent to holom
phic Chern–Simons (hCS) theory on the same sp
(for related works see[2–7]). This hCS theory in
turn is equivalent to supersymmetricN = 4 anti-self-
dual Yang–Mills (ASDYM) theory in four dimensions
TheN = 4 super-ASDYM model is governed by th
Siegel Lagrangian[8]. Its truncation to the bosoni
sector describesN = 0 ASDYM theory with an auxil-
iary field of helicity−1 [8,9].
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It may be of interest to generalize the twistor c
respondence to the level of string field theory (SF
This could be done using the approach proposed in[5]
or in the more general setting of[6]. Alternatively,
one could concentrate on (an appropriate exten
of) SFT for N = 2 string theory. At tree level, ope
N = 2 strings are known to reduce to the ASDY
model in a Lorentz noninvariant gauge[10]; their SFT
formulation [11] is based on theN = 4 topological
string description[12,13]. The latter contains twistor
from the outset: the coordinateζ ∈ CP 1, the linear
system, the integrability and the classical solutio
with the help of twistor methods were all incorp
rated intoN = 2 open string field theory in[14,15].
Since this theory[11] generalizes the Wess–Zumino
Witten-type model[16] for ASDYM theory and thus
describes only anti-self-dual gauge fields (having
licity +1), it is not Lorentz invariant. Its maximall
supersymmetric extension,N = 4 super-ASDYM the-
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For
ory, however, does admit a Lorentz-invariant form
lation [8,9]. This theory and its truncation toN = 0
features pairs of fields of opposite helicity. In[17] it
was proposed to lift the corresponding Lagrangian
SFT.

In the present Letter the twistor description of bo
the purely bosonic and theN = 4 supersymmetric AS
DYM models[8,9] is raised to the SFT level. In con
trast to previous proposals[1–7], we allow the string
to vibrate only in part of the supertwistor space. T
remaining coordinates of this space are not promo
to word-sheet fields but kept as non-dynamical str
field parameters. Concretely, we propose a cubic
tion containing an integration over the supertwis
spaceCP 3|4 and show that its hCS-type equatio
of motion are equivalent to the covariant string fie
equations introduced in[17]. This model may be re
garded as a specialization of Witten’s supertwis
SFT and may even be equivalent to it. In any case,
directly related withN = 4 super-ASDYM theory in
four dimensions. We also consider its proper trun
tion to the bosonic sector, which yields a twistor S
related to non-supersymmetric ASDYM theory.

2. Covariant string field theory for open N = 2
strings

OpenN = 2 strings

From the worldsheet point of view critical ope
N = 2 strings in a flat four-dimensional space–tim
of signature(−−++) or (++++) are nothing but
N = 2 supergravity on a two-dimensional (pseud
Riemannian surface with boundaries, coupled to
chiral N = 2 matter multiplets(X,ψ). The latter’s
components are complex scalars (the four embed
coordinates) and Dirac spinors (their four NSR pa
ners) in two dimensions. In the ghost-free formulat
of theN = 2 string one employs the extension of t
c = 6, N = 2 superconformal algebra to the “sma
N = 4 superconformal algebra2

T = ∂zX
αβ̇∂zXαβ̇ + ψα̇β̈∂zψα̇β̈ ,

2 We raise and lower indices withε12 = −ε21 = −1, ε12 =
−ε21 = 1, and similarly forεα̇β̇ , εα̇β̇ andεα̈β̈ , εα̈β̈ .
(1)Gα
β̈ = ψγ̇ β̈∂zXαγ̇ , J α̈β̈ = ψγ̇ α̈ψγ̇

β̈ ,

where α,β = 1,2 and α̇, β̇ = 1̇, 2̇ are space–tim
spinor indices and̈α, β̈ = 1̈, 2̈ denote the world-shee
internal indices associated with the groupSU(1,1)′′
(Kleinian spaceR2,2) or SU(2)′′ (Euclidean space
R4,0) of R symmetries. For the reality structures im
posed on target space coordinates and superconfo
algebra generators see[11,12,15,18]. After twisting
this algebra,

(2)D̄α := Gα
1̈

become two fermionic spin-one operators which s
sequently serve as BRST-like currents since they
nilpotent[11,12],

(3)(D̄1)
2 = 0 = (D̄2)

2 and {D̄1, D̄2} = 0.

Furthermore,ψα̇1̈ is now conformal spin zero whil
ψα̇2̈ is conformal spin one.

Covariant string field theory

Following Berkovits and Siegel[17], we intro-
duce two Lie-algebra valued fermionic string fiel
Aα[X,ψ] and three Lie-algebra valued bosonic str
fields Gαβ [X,ψ] (symmetric inα andβ). Although
we suppress it in our notation, string fields are
ways multiplied using Witten’s star product (midpo
gluing prescription)[19].3 The index structure revea
that the fieldsGαβ parametrize the self-dual4 tensor
Gαα̇,ββ̇ = εα̇β̇Gαβ on the target space.

The Lorentz invariant string field theory action[17]
reads

(4)SBS = 〈
tr
(
Gαβ Fαβ

)〉
,

where 〈· · ·〉 means integration over all modes ofX

andψ , the trace “tr” is taken over the Lie algebra i
dices and

(5)Fαβ := D̄αAβ + D̄βAα + {Aα,Aβ}.

3 The star product was concretized in oscillator language
bosons in[20] and for twisted fermions in[21].

4 Self-duality can always be interchanged with anti-self-dua
by flipping the orientation of the four-dimensional target space.
the choice of the orientation made in[1,22] theseGαβ parametrize
a self-dual tensor.
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Note that the action ofD̄α on any string fieldB is
defined in conformal field theory language as tak
the contour integral[11]

(6)(D̄αB)(z) =
∮
z

dw

2π i
D̄α(w)B(z).

The covariant string field equations of motion follow
ing from the action(4) read

(7)Fαβ = 0 and D̄αGαβ + [
Aα,Gαβ

] = 0.

For a supersymmetric generalization of the act
(4) Berkovits and Siegel[17] introduce a multiplet of
string fields

(8)
(
Aα, χ̃i, φij , χ

αi,Gαβ
)

with i, j = 1,2,3,4

imitating theN = 4 ASDYM multiplet [8]. Here,Aα

and χαi are fermionic whileχ̃i , φij and Gαβ are
bosonic. Ref.[17] proposes the following action fo
this super SFT:

ŜBS =
〈
tr

(
GαβFαβ + 2χαi∇αχ̃i

(9)

+ 1

8
εijklφij∇α∇αφkl + 1

2
εijklφij χ̃kχ̃l

)〉

with

(10)∇αB := D̄αB + AαB − (−1)|B|BAα,

where the Grassmann parity|B| equals 0 or 1 for
bosonic or fermionic fieldsB, respectively. Due to
the large number of string fields this model see
unattractive. However, as we shall see in the com
section, all these fields appear as components ofone
string field living in a twistor extended target space

3. Cubic string field theory for open N = 2 strings

Supertwistor space notation

In Appendix Awe describe the supertwistor spa
P3|4

ε of the space(R4, gε) with the metric gε =
diag(−ε,−ε,1,1) andε = ±1. It is fibered over the
real two-dimensional spaceΣε with Σ−1 = CP 1 and
Σ+1 = H 2 covered by two patchesUε±. The space

P3|4
ε is parametrized by four even complex coordina
(xαα̇) ∈ C4 subject to the reality conditionsx22̇ = x̄11̇

and x21̇ = εx̄12̇, complex coordinatesζ± ∈ Uε± and
odd (Grassmann) coordinatesθ i±, i = 1, . . . ,4. The

spaceP3|4
ε is a Calabi–Yau supermanifold[1]. From

now on we shall work on the patchUε+ of Σε , and for
notational simplicity we shall omit the subscript “+”
in ζ+ ∈ Uε+, θ i+ etc. For further use we introduce

(ζα) =
(

1
ζ

)
,

(
ζ α

) =
(−ζ

1

)
,

(11)
(
ζ̂ α

) =
(

ε

−ζ̄

)
and ν = (1− εζ ζ̄ )−1.

BRST operator

Let us introduce the operator

(12)D̄ := ζ αD̄α = ψβ̇1̈∂z

(
ζ αXαβ̇

)
taking values in the holomorphic line bundleO(1). We
notice that the operatorsζ α∂zXαβ̇ act as derivatives o

string fields. Their zero mode parts,ζ α ∂

∂xαβ̇
, form two

type (0,1) vector fields on the bosonic twistor spa
P3

ε fibered overΣε (seeAppendix A for more de-
tails). Recall thatP3

ε being an open subset ofCP 3 is
the twistor space of(R4, gε). In order to obtain a gen
eral type(0,1) vector field along the twistor space o
should therefore extend the operator(12) by adding
the type(0,1) derivative alongΣε ,

(13)∂̄ := dζ̄
∂

∂ζ̄
.

Assuming that string fields now depend on the ex
variableζ ∈ Σε , we define the operator

(14)Q := D̄ + ∂̄

acting on string fields via(6) for the D̄ part and by
ordinary differentiation with respect tōζ . It is easy to
see thatQ2 = 0 due to(3) and the facts that̄D does
not depend on̄ζ and that{dζ̄ ,ψα̇β̈} = 0 (cf. [23]). We
take this nilpotent operator as the BRST operato
our SFT extended toΣ1|4

ε ↪→ P3|4
ε .

String fields

We now consider a fermionic (odd) string fie
A[X,ψ, θi, ζ, ζ̄ ] depending not only onX(σ) and
ψ(σ) but also onθ i and on the parameterζ ∈ Σε .
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It is important to realize thatθ i andζ do not depend
on σ here but may be considered as zero mode
world-sheet fields. Since the operatorQ has the split
form (14) it is natural to assume the same splitting
the string fieldA,

A =AD̄

[
X,ψ, θi, ζ, ζ̄

] +A∂̄

[
X,ψ, θi, ζ, ζ̄

]
(15)with A∂̄ = Aζ̄ dζ̄ ,

whereAD̄ gaugesD̄ andA∂̄ gauges̄∂ . Note also that
D̄ takes values inO(1) and∂̄ in O(0); therefore,AD̄

andA∂̄ areO(1) andO(0) valued, respectively. Sinc
dζ̄ is the basis section of the bundlēO(−2) com-
plex conjugate toO(2) and anticommutes with spino
ψα̇β̈ we reason thatAζ̄ is bosonic (even) and take

values inŌ(−2). It is also assumed that a termAζ dζ

is absent in the splitting(15), i.e.,A is a string field
of the (0,1)-form type (cf.[1] for the B-model argu-
ment). Note that by definition the string fieldAD̄ does
not contain d̄ζ and is fermionic (odd).

Cubic action

Having dζ and dθ i we introduce the action

(16)

S =
∫

dζ

∫
dθ1 dθ2 dθ3 dθ4

〈
tr

(
AQA+ 2

3
A3

)〉
,

where〈· · ·〉 is the same integration over(X,ψ) modes
as in(4). Note that

∫
dζ acts as integration overΣε for

terms containing d̄ζ and as a contour integral aroun
ζ = 0 for other terms. The LagrangianL in (16) can
be split into two parts,

(17)L = tr

(
AQA+ 2

3
A3

)
= L1 +L2, with

(18)L1 = tr
(
AD̄∂̄AD̄ + 2AD̄D̄A∂̄ + 2A∂̄A

2
D̄

)
,

(19)L2 = tr

(
AD̄D̄AD̄ + 2

3
A3

D̄

)
,

where we used the cyclicity under the trace and om
ted total derivatives.

It is important to note thatL1 takes values inO(2),
which is compensated by the holomorphic meas
dζ dθ1 dθ2 dθ3 dθ4 beingO(−2) valued.5 At the same

5 The choice of four Grassmann coordinatesθi is dictated by the
Calabi–Yau condition: the contribution of the coordinates(X, ζ, θ)

to the first Chern number is(2,2,−4), respectively.
time,L2 takes values inO(3) which causes it to drop
out of the action by virtue of Cauchy’s theorem a
plied to theζ contour integral. Thus, the action(16)
can be rewritten as

S =
∫

dζ

∫
dθ1 dθ2 dθ3 dθ4

(20)× 〈
tr
(
AD̄ ∂̄AD̄ + 2AD̄D̄A∂̄ + 2A∂̄A2

D̄

)〉
.

Moreover, both forms(16)and(20)of the action lead
to the same Chern–Simons-type equation of motio

(21)QA+A2 = 0

which decomposes into

(22)D̄A∂̄ + ∂̄AD̄ + {AD̄,A∂̄ } = 0 and

(23)D̄AD̄ +A2
D̄

= 0.

Component analysis

Recall thatAD̄ andAζ̄ take values in the bundle

O(1) andŌ(−2), respectively. Together with the fa
that theθ i are nilpotent andO(1) valued, this deter
mines the dependence ofAD̄ andA∂̄ = Aζ̄ dζ̄ on θ i ,

ζ and ζ̄ . Namely, this dependence has the form (
[22])

AD̄ = ζ αAα + θ iχ̃i + ν

2!θ
ij ζ̂ αφαij

+ ν2

3! θ
ijkζ̂ αζ̂ βχαβijk

+ ν3

4! θ
ijkl ζ̂ αζ̂ β ζ̂ γ Gαβγ ijkl ,

Aζ̄ = ν2

2! θ
ij φij + ν3

3! θ
ijkζ̂ αχαijk

(24)+ ν4

4! θ
ijkl ζ̂ αζ̂ βGαβijkl ,

whereζ α , ζ̂ α andν are given in(11) andθ i1i2···ik :=
θ i1θ i2 · · ·θ ik . The expansion(24) is defined up to a
gauge transformation generated by a group-va
function which may depend onζ and ζ̄ . All string
fields appearing in the expansion(24) depend only
on X(σ) andψ(σ). From the properties ofAD̄ , A∂̄

andθ i it follows that the fields with an odd numbe
of spinor indices are fermionic (odd) while those w
an even number of spinor indices are bosonic (ev
Moreover, due to the symmetry of theζ̂ α products and
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the skew symmetry of theθ i products all componen
fields are automatically symmetric in their spinor
dices and antisymmetric in their Latin indices.

Substituting(24) into (22), we obtain the equa
tions6

φαij = −∇αφij and χαβijk = 1

2
∇(αχβ)ijk and

(25)Gαβγ ijkl = −1

3
∇(αGβ)γ ijkl

showing that(φαij , χαβijk,Gαβγ ijkl) is a set of aux-
iliary fields. The other nontrivial equations followin
from (22)and(23)after substituting(24) read7

Fαβ ≡ D̄αAβ + D̄βAα + {Aα,Aβ} = 0,

∇αχ̃i = 0,

εαβ∇αχi
β + 2ε

[
φij , χ̃j

] = 0,

∇α∇αφij + 2ε
[
χ̃i , χ̃j

] = 0,

(26)εαβ∇αGβγ + 2ε
[
χ̃i , χ

i
γ

] + ε
[∇γ φij , φ

ij
] = 0,

where we introduced

φij := 1

2!ε
ijklφkl, χi

α := 1

3!ε
ijklχαjkl and

(27)Gαβ := 1

4!ε
ijklGαβijkl .

Up to constant field rescalings

Gαβ → −Gαβ, χ̃i → 1

2
χ̃i ,

(28)φij → 1

2
φij and χi

α → χi
α

Eq. (26) for ε = 1 coincide with the equations o
motion following from the action(9) proposed by
Berkovits and Siegel[17]. In the zero mode sector the
reduce to the anti-self-dualN = 4 super-Yang–Mills
equations of motion. Hence, we have established
maximally supersymmetric ASDYM theory can be o
tained from the standard cubic SFT for a single str
field A after extending the setting to the supertwis
space.

6 Round brackets denote symmetrization with respect to
closed indices.

7 Recall thatε = 1 for signature(−−++) andε = −1 for sig-
nature(++++).
4. Bosonic truncation of open string field theory

In order to make contact with non-supersymme
ASDYM theory, we subject our string fieldA from(15)
and(24) to the truncation conditions

(29)
∫

dθ1 dθ2 dθ3 dθ4

{
θ i

θ ij

θ ijk

}
A = 0.

These conditions imply thatA depends only on th
combination

(30)θ := θ1θ2θ3θ4 i.e., A=A[X,ψ, θ, ζ, ζ̄ ].
Obviously, the even nilpotent variableθ belongs to
the bundleO(4) and the integration measure in(29)
to O(−4).

The properties of the truncated string field

(31)A =AD̄[X,ψ, θ, ζ, ζ̄ ] +A∂̄ [X,ψ, θ, ζ, ζ̄ ]
are the same as before the truncation, except for th
stricted dependence on the Grassmann variables.
operatorsQ, D̄ and ∂̄ , the actions(16) and(20), the
Lagrangians(17)–(19)and the equations of motio
(21)–(23)are unchanged. However, the expansion(24)
now simplifies to

AD̄ = ζ αAα[X,ψ] + θν3ζ̂ αζ̂ β ζ̂ γ Gαβγ [X,ψ],
(32)A∂̄ = θν4ζ̂ α ζ̂ βGαβ [X,ψ]dζ̄ ,

where (see(27))

Gαβ = 1

4!ε
ijklGαβijkl and

(33)Gαβγ := 1

4!ε
ijklGαβγ ijkl .

From the properties ofAD̄ andA∂̄ it follows that the
string fieldsAα and Gαβγ are odd and theGαβ are
even.

Substituting the expansion(32) into the equations
of motion (22) and(23), we recover forAα andGαβ

the bosonic string field equations

(34)Fαβ = 0 and D̄αGαβ + [
Aα,Gαβ

] = 0

displayed already in(7) and forGαβγ the dependenc

(35)Gαβγ = −1

3
∇(αGβ)γ

as expected. The same result occurs when puttin
zero in (26) the string fieldsχ̃i , χi

α and φij as the
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truncation(29) demands. All other equations follow
ing from(22)and(23)are satisfied automatically, du
to (34)and the Bianchi identities.

Hence, we have proven that the cubic supertwis
SFT defined by the action(16) together with the geo
metric truncation conditions(29) is equivalent to the
Berkovits–Siegel SFT given by the action(4). More-
over,(4) and(9) derive from(16)simply by substitut-
ing there the expansion(32) or (24), respectively, and
integrating over the Grassmann and twistor variab
All this is similar to the field theory case[1,22] where
in the supertwistor reformulation ofN = 4 ASDYM
theory as hCS theory the dependence of all fields
the twistor variableζ is fixed (up to a gauge transfo
mation) by the topology of the supertwistor space a
one can integrate over it, descending from six to f
real dimensions.

5. Conclusions

The basic result of this Letter can be summariz
in the equations

S =
∫

dζ

∫
dθ1 dθ2 dθ3 dθ4

〈
tr

(
AQA+ 2

3
A3

)〉
=

∫
Σε

dζ ∧ dζ̄

∫
dθ1 dθ2 dθ3 dθ4

× 〈
tr
(−AD̄∂ζ̄AD̄ + 2AD̄D̄Aζ̄ + 2A2

D̄
Aζ̄

)〉
= c

〈
tr

(
GαβFαβ + 2εχαi∇αχ̃i

(36)+ 1

4
εφij∇α∇αφij + φij χ̃kχ̃l

)〉
,

wherec is an inessential numerical constant. The fi
step demands a splitA = AD̄ + Aζ̄ dζ̄ of the basic
(supertwistor) string field. The second step requires
tegrating overΣ1|4

ε and rescaling the field as in(28).
TruncatingA to its lowest and highest Grassma
components (theO(θ0) andO(θ4) parts) projects the
above action to〈tr(GαβFαβ)〉, which governs bosoni
N = 2 open SFT. Finally, reducing to the string ze
modes one recovers the twistor description ofN = 4
andN = 0 ASDYM on the field theory level.
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Appendix A. Supertwistor space

The twistor space ofR4,0

Let us consider the Riemann sphereCP 1 ∼= S2 with
homogeneous coordinates(µα) ∈ C2. It can be cov-
ered by two patches,

U+ = {
(µ1,µ2): µ1 
= 0

}
and

(A.1)U− = {
(µ1,µ2): µ2 
= 0

}
with coordinatesζ+ := µ2/µ1 on U+ and ζ− :=
µ1/µ2 on U−. On the intersectionU+ ∩ U− we have
ζ+ = ζ−1− .

The holomorphic line bundleO(n) overCP 1 is de-
fined as a two-dimensional complex manifold with t
holomorphic projection

(A.2)π :O(n) → CP 1

such that it is covered by two patchesŨ+ andŨ− with
coordinates(w+, ζ+) on Ũ+ and(w−, ζ−) on Ũ− re-
lated byw+ = ζ n+w− andζ+ = ζ−1− on Ũ+ ∩ Ũ−. A
global holomorphic section ofO(n) exists only for
n � 0. OverU± ⊂ CP 1 it is represented by polyno
mials p

(n)
± in ζ± of degreen with p

(n)
+ = ζ n+p

(n)
− on

U+ ∩ U−.
Recall that the Riemann sphere

(A.3)CP 1 ∼= SO(4)

U(2)

parametrizes the space of all translational invar
(constant) complex structures on the Euclidean sp
R4,0, and the spaceP3

E := R4 × CP 1 is called the
twistor space ofR4,0 [24]. As a complex manifoldP3

E
is a rank 2 holomorphic vector bundleO(1) ⊕ O(1)

overCP 1:

(A.4)P3
E =O(1) ⊕O(1).

For more details and references see, e.g.,[22,24,25].
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The twistor space ofR2,2

In the Kleinian spaceR2,2 of signature(−−++)

constant complex structures are parametrized by
two-sheeted hyperboloid

(A.5)H 2 = H+ ∪ H− ∼= SO(2,2)

U(1,1)
,

where

H+ = {
ζ+ ∈ U+: |ζ+| < 1

} ∼= SU(1,1)

U(1)
and

(A.6)H− = {
ζ− ∈ U−: |ζ−| < 1

} ∼= SU(1,1)

U(1)
.

In fact, under the action of the groupSU(1,1) the Rie-
mann sphere is decomposed into three orbits,CP 1 =
H+ ∪ S1 ∪ H−, where the boundary of bothH+
andH− is given by

S1 = {
ζ ∈ CP 1: |ζ | = 1

} ∼= SU(1,1)

B+
with

(A.7)B+ =
(

a1 + ia2 a3 − ia2
a3 + ia2 a1 − ia2

)
with a1,2,3 ∈ R anda2

1 − a2
2 = 1.

The twistor space ofR2,2 is the spaceP3
K :=

R4×H 2 which as a complex manifold coincides wi
the restriction of the rank 2 holomorphic vector bu
dle (A.4) to the bundle overH 2 ⊂ CP 1. Equivalently,
it can be described as a spaceP3

K = P3
E \ T 3, where

T 3 is a real three-dimensional subspace ofP3
E stable

under an anti-linear involution (real structure) whi
can be defined onP3

E. For more details see, e.g.,[26].

Vector fields of type(0,1)

For considering both signatures together, we den
by Σε the space of complex structures on(R4, gε)

with the metricgε = diag(−ε,−ε,1,1) andε = ±1,
so that

(A.8)Σ−1 = CP 1 and Σ+1 = H 2.

Therefore,Σε is covered by two patchesUε± with
U−1± = U± andU+1± = H±. Analogously, we denot
by P3

ε the twistor space of(R4, gε) with P3
−1 = P3

E

andP3
+1 = P3

K . The complex manifoldP3
ε is covered

by two patchesVε± with complex coordinates(wα̇±, ζ±)
onVε±. We introduce(
ζ±
α

) =
(

1
ζ±

)
,

(
ζ α±

) =
(−ζ±

1

)
,

ν+ = (1− εζ+ζ̄+)−1 and

(A.9)ν− = −ε(1− εζ−ζ̄−)−1

for ζ± ∈ Uε±. Note that in terms of(ζ±
α ) or (ζ α±) a sec-

tion of the bundleO(n) overUε± can be written as

(A.10)

p
(n)
± = pα1···αnζ±

α1
· · · ζ±

αn
= pα1···αn ζ

α1± · · · ζ αn± .

Recall that(R4, gε) can be parametrized by coord
nates(xαα̇) ∈ C4 with the reality conditionsx22̇ = x̄11̇

andx21̇ = εx̄12̇ [22]. On the twistor spaceP3
ε

∼= R
4 ×

Σε we have coordinates(wα̇±,w3̇±) = (xαα̇ζ±
α , ζ±)

or (xαα̇, ζ±, ζ̄±). The antiholomorphic vector field
∂/∂w̄α̇± and∂/∂w̄3̇± can be rewritten in the coordinate
(xαα̇, ζ±, ζ̄±) as

∂

∂w̄1̇±
= ν±ζ α±

∂

∂xα2̇
,

∂

∂w̄2̇±
= εν±ζ α±

∂

∂xα1̇
and

(A.11)
∂

∂w̄3̇±
= ∂

∂ζ̄±
− ε x1α̇ζ α ∂

∂xαα̇
.

The vector fields

(A.12)v̄±
α̇ = ζ α±

∂

∂xαα̇
and v̄±

3̇
= ∂

∂ζ̄±
can be taken as a basis of vector fields of type(0,1)

onP3
ε .

Supertwistors

Let us now add four odd variablesθ i such that

(A.13)θ iθj + θj θ i = 0 for i, j = 1,2,3,4,

and eachθi takes its value in the line bundleO(1) over
CP 1 (cf. [1]). For describing them formally we intro
duce a Grassmann parity changing operatorΠ which,
when acting on a vector bundle, flips the Grassm
parity of the fibre coordinates. Hence, we consider
bundleΠC4⊗O(1) → CP 1 which is parametrized b
complex variablesζ± ⊂ U± ⊂ CP 1 and fibre Grass
mann coordinatesθ i± such thatθ i+ = ζ+θ i− on the in-
tersection of the two patches covering the total sp
of this vector bundle.
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With the Grassmann variablesθ i one can introduce
the supertwistor spaceP3|4

E as a holomorphic vecto
bundle overCP 1, namely,

(A.14)P3|4
E = C

2 ⊗O(1) ⊕ ΠC
4 ⊗O(1).

The supertwistor spaceP3|4
K is defined as a restrictio

of the bundleP3|4
E → CP 1 to the bundle over the two

sheeted hyperboloidH 2 ⊂ CP 1.
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