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1. Introduction

The time fractional diffusion-wave equation [1–4] is obtained from the classical diffusion or wave equation by replacing
the first- or second-order time derivative by a fractional derivative of order α with 0 < α < 1 or 1 < α < 2, respectively. In a
seminal paper Schneider and Wyss [1] formulated fractional diffusion/wave equation (together with appropriate initial con-
ditions) in terms of integrodifferential equations. They have shown that for 0 < α < 1, the Green’s function is a probability
density, and the mean square displacement is proportional to tα, hence represents sub-diffusive behaviour. It has further
been observed that for 1 < α < 2, only one-dimensional case represents probability density. Hence α ∈ (1,2) represents en-
hanced diffusion, termed as superdiffusion, but only in one dimension. On the other hand in higher dimensions, for α > 1,

the solutions need not be non-negative and hence do not represent physical diffusion of any kind.
The time-fractional diffusion-wave equation has been studied widely in the literature, as it models a wide range of

important physical phenomena. These equations represent propagation of mechanical waves in visco-elastic media [5],
a non-Markovian diffusion process with memory [6], charge transport in amorphous semiconductors [7] and many more.
There exists a large number of articles devoted to the study of one-dimensional anomalous diffusion [1–9], whereas a few
have discussed multi-dimensional case [1,10]. Some researchers have used Riemann–Liouville derivative [2–4] while others
have used Caputo derivative [1,10,11,13]. Various methods have been used to solve the fractional diffusion-wave equation.
Schneider and Wyss [1] have used Green’s function method. Metzler et al. [12] have introduced separation of variables
method for solving fractional Fokker–Plank equation. Agrawal [11] has solved fractional diffusion equation using finite sine
transform method, and Metzler and Klafter [6] have employed the method of images and Fourier–Laplace transform. Further
Daftardar-Gejji and Jafari have used separation of variables method [13], while solving fractional boundary value problems
for fractional diffusion-wave equations. Sokolov and Metzler [14] have used method of subordination to obtain first passage
time density for Levý random processes, as methods like method of images are inadequate there. Iterative methods, such
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as Adomian decomposition method (ADM) has also been explored extensively to solve fractional diffusion-wave equation
[15,16].

Present paper deals with multi-term generalisation of fractional diffusion-wave equation:

P (D)u(x, t) = k
∂2u(x, t)

∂x2
+ q(t), 0 < x < π, t > 0,

where

P (D) = Dμ
t −

r−1∑
i=1

λi Dμi
t , 0 < μr−1 < μr−2 < · · · < μ1 < μ � 2,

with homogeneous/non-homogeneous boundary conditions. Method of separation of variables is used and fractional bound-
ary value problems are further explicitly solved in various cases. The paper has been organized as follows. In Section 2
preliminaries and notations are given. In Section 3 homogeneous fractional boundary value problems (BVPs) are solved. Sec-
tion 4 deals with solution of non-homogeneous fractional BVPs. In Section 5, BVP in higher dimensions has been dealt with.
Section 6 deals with non-homogeneous boundary conditions. Some numerical examples have been presented in Section 7,
followed by conclusions in Section 8.

2. Preliminaries and notations

This section deals with some preliminaries and notations regarding fractional calculus [17–20].

Definition 2.1. A real function f (x), x > 0, is said to be in space Cα , α ∈ �, if there exists a real number p (> α), such that
f (x) = xp f1(x) where f1(x) ∈ C[0,∞).

Definition 2.2. A real function f (x), x > 0, is said to be in space Cm
α , m ∈ N ∪ {0}, if f (m) ∈ Cα.

Definition 2.3. Let f ∈ Cα and α � −1, then the expression

Iμt f (x, t) = 1

Γ (μ)

t∫
0

(t − τ )μ−1 f (x, τ )dτ , t > 0,

is called as the (left sided) Riemann–Liouville integral of order μ.

Definition 2.4. The (left sided) Riemann–Liouville fractional derivative of f , f ∈ Cm−1, m ∈ N0 = N ∪ {0}, is defined as

R Dμ
t f (x, t) = ∂m

∂tm

(
Im−μ
t f (x, t)

)
, m − 1 < μ < m, m ∈ N, t > 0.

Definition 2.5. The (left sided) Caputo fractional derivative of f , f ∈ Cm−1, m ∈ N0 = N ∪ {0}, is defined as

Dμ
t f (x, t) = ∂m

∂tm
f (x, t), μ = m,

= Im−μ
t

∂m f (x, t)

∂tm
, m − 1 < μ < m, m ∈ N.

Definition 2.6. Two parameter Mittag–Leffler function is defined as [18,19]

Eα,β(z) =
∞∑

k=0

zk

Γ (β + αk)
.

Note that

Eα,1(z) = Eα(z)

and

E1,1(z) = Exp(z).
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Definition 2.7. Multivariate Mittag–Leffler function is defined as [17,18]

E(a1,a2,...,an),b(z1, z2, . . . , zn) =
∞∑

k=0

∑
l1+l2+···+ln=k

(k; l1, . . . , ln)

∏n
i=1 zli

i

Γ (b + ∑n
i=1 aili)

,

where l1 � 0, . . . , ln � 0 and multinomial coefficient

(k; l1, . . . , ln) = k!
l1!l2! · · · ln! .

Theorem 2.1. (See [17,18].) Let μ > 0, m − 1 < μ � m, m ∈ N0 = N ∪ {0}, λ ∈ R. The initial value problem (IVP)(
Dμ

x y
)
(x) − λy(x) = g(x),

y(k)(0) = ck ∈ R, k = 0, . . . ,m − 1, (2.1)

where the function g is assumed to lie in C−1 if μ ∈ N, in C1−1 if μ /∈ N, and the unknown function y(x) is to be determined in the
space Cm−1 , has a solution, unique in the space Cm−1 , of the form

y = yg + yh. (2.2)

Here yg is a solution of the IVP (2.1) with zero initial conditions and is represented in the form

yg(x) =
x∫

0

tμ−1 Eμ,μ

(
λtμ

)
g(x − t)dt (2.3)

and

yh(x) =
m−1∑
k=0

ckxk Eμ,k+1
(
λxμ

)
(2.4)

is a solution of the homogeneous part of Eq. (2.1) with the given initial conditions.

Theorem 2.2. (See [17,18].) Let μ > μ1 > · · · > μn � 0, mi − 1 < μi � mi, mi ∈ N0 = N ∪ {0}, λi ∈ R, i = 1, . . . ,n. The IVP

(
Dμ

x y
)
(x) −

n∑
i=1

λi
(

Dμi
x y

)
(x) = g(x),

y(k)(0) = ck ∈ R, k = 0, . . . ,m − 1, m − 1 < μ � m, (2.5)

where the function g is as in Theorem 2.1 above, has a solution, unique in the space Cm−1 , of the form

y(x) = yg(x) +
m−1∑
k=0

ckuk(x), x � 0. (2.6)

Here

yg(x) =
x∫

0

tμ−1 E(μ−μ1,...,μ−μn),μ

(
λ1tμ−μ1 , . . . , λntμ−μn

)
g(x − t)dt (2.7)

is a solution of the IVP (2.5) with zero initial conditions, and the system of functions

uk(x) = xk

k! +
n∑

i=lk+1

λi x
k+μ−μi E(μ−μ1,...,μ−μn),k+1+μ−μi

(
λ1xμ−μ1 , . . . , λnxμ−μn

)
(2.8)

fulfills the initial conditions u(l)
k (0) = δkl , k, l = 0, . . . ,m − 1. The natural numbers lk, k = 0, . . . ,m − 1, are determined from the

conditions mlk � k + 1, mlk+1 � k.

Theorem 2.3. Let f ∈ Cm−1 , m ∈ N and m − 1 < μ � m. Then the Riemann–Liouville and the Caputo fractional derivatives are con-
nected by the relation [17–19]

R Dμ
t f (x, t) = Dμ

t f (x, t) +
m−1∑ ∂k f

∂tk
(x,0)

tk−μ

Γ (1 + k − μ)
, t > 0.
k=0
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Hence the following fractional diffusion equation involving Caputo derivative

Dμ
t f (x, t) = ∂2 f (x, t)

∂x2
, 0 < μ < 1,

is equivalent to the fractional diffusion equation involving Riemann–Liouville derivative

R Dμ
t f (x, t) − t−μ

Γ (1 − μ)
f (x,0) = ∂2 f (x, t)

∂x2
, 0 < μ < 1.

3. Multi-term homogeneous fractional BVPs

3.1. Type I

In the present section we consider the following multi-term homogeneous fractional differential equation:

P (D)u(x, t) = k
∂2u(x, t)

∂x2
, 0 < x < π, t > 0, (3.1)

along with the boundary conditions

u(0, t) = u(π, t) = 0, t � 0, (3.2)

u(x,0) = f (x), 0 < x < π, (3.3)

where

P (D) = Dμ
t −

r−1∑
i=1

λi Dμi
t , 0 < μr−1 < μr−2 < · · · < μ1 < μ � 1,

k and λi are constants. Assume u(x, t) = X(x)T (t), then (3.1) along with conditions (3.2) yield

X ′′(x) + θ X(x) = 0, X(0) = X(π) = 0, (3.4)

and

(
P (D) + θk

)
T (t) = 0, (3.5)

where θ is a separation constant. The Sturm–Liouville problem given by (3.4) has eigenvalues θn = n2 and the corresponding
eigenfunctions Xn(x) = sin nx (n = 1,2, . . .). Thus (3.6) takes the form

(
P (D) + n2k

)
T (t) = 0 (n = 1,2, . . .). (3.6)

For any fixed positive integer n, the solution of (3.6) is (except for a constant factor) (cf. Theorem 2.2) Tn(t) = 1 −
n2ktμE(μ−μ1,...,μ−μr−1,μ),1+μ(λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−n2ktμ). The formal solution of the boundary value problem is,
therefore

u(x, t) =
∞∑

n=1

Bn sin nx
(
1 − n2ktμE(μ−μ1,...,μ−μr−1,μ),1+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−n2ktμ

))
, (3.7)

where the coefficients Bn need to be determined so that

f (x) = u(x,0) =
∞∑

n=1

Bn sin nx, 0 � x � π. (3.8)

In view of (3.8)

Bn = 2

π

π∫
0

f (x) sin nx dx (n = 1,2, . . .). (3.9)

Hence the solution of fractional boundary value problem (3.1)–(3.3) is given by (3.7) where Bn ’s are as given in (3.9).
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3.2. Type II

Consider the multi-term homogeneous fractional differential equation

P (D)u(x, t) = k
∂2u(x, t)

∂x2
, 0 < x < π, t > 0, (3.10)

along with the boundary conditions

u(0, t) = u(π, t) = 0, t � 0,

u(x,0) = f (x), 0 < x < π,

ut(x,0) = g(x), 0 < x < π, (3.11)

where

P (D) = Dμ
t −

r−1∑
i=1

λi Dμi
t , 1 < μr−1 < μr−2 < · · · < μ1 < μ � 2,

k and λi are constants. Assume u(x, t) = X(x)T (t), then (3.10) along with conditions (3.11) yield

X ′′(x) + θ X(x) = 0, X(0) = X(π) = 0, (3.12)

and

(
P (D) + θk

)
T (t) = 0, (3.13)

where θ is a separation constant. The Sturm–Liouville problem given by (3.12) has eigenvalues θn = n2 and the corresponding
eigenfunctions Xn(x) = sin nx (n = 1,2, . . .). Thus (3.13) takes the form:

(
P (D) + n2k

)
T (t) = 0 (n = 1,2, . . .). (3.14)

For any fixed positive integer n, the general solution of (3.14) is (cf. Theorem 2.2) Tn(t) = An T0n + Bn T1n, where

T0n = 1 − n2ktμE(μ−μ1,...,μ−μr−1,μ),1+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−n2ktμ

)
, (3.15)

T1n = t − n2kt1+μE(μ−μ1,...,μ−μr−1,μ),2+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−n2ktμ

)
(3.16)

are independent solutions of (3.14) satisfying T ( j)
in (0) = δi j , i, j = 1,2. The general solution of the boundary value problem

is, therefore

u(x, t) =
∞∑

n=1

(An T0n + Bn T1n) sin nx, (3.17)

where the coefficients An and Bn need to be determined so that

f (x) = u(x,0) =
∞∑

n=1

An sin nx, 0 � x � π, (3.18)

g(x) = ut(x,0) =
∞∑

n=1

Bn sin nx, 0 � x � π. (3.19)

In view of (3.18) and (3.19)

An = 2

π

π∫
0

f (x) sin nx dx (n = 1,2, . . .),

Bn = 2

π

π∫
0

g(x) sin nx dx (n = 1,2, . . .). (3.20)

The solution of fractional boundary value problem (3.10)–(3.11) is (3.17), where An and Bn ’s are as given in (3.20).
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3.3. Type III

Consider

P (D)u(x, t) = K
∂2u(x, t)

∂x2
, 0 < x < π, t > 0, (3.21)

along with the boundary conditions

u(0, t) = u(π, t) = 0, t � 0,

u(x,0) = f (x), 0 < x < π,

ut(x,0) = g(x), 0 < x < π, (3.22)

where

P (D) = Dμ
t −

r−1∑
i=1

λi Dμi
t , 0 < μr−1 < · · · < μr−k � 1 < μr−k−1 < · · · < μ1 < μ � 2,

1 � k � r − 1, K and λi are constants. Assume u(x, t) = X(x)T (t), then (3.21) along with conditions (3.22) yield

X ′′(x) + θ X(x) = 0, X(0) = X(π) = 0, (3.23)(
P (D) + θ K

)
T (t) = 0, (3.24)

where θ is a separation constant. The Sturm–Liouville problem given by (3.23) has eigenvalues θn = n2 and the correspond-
ing eigenfunctions Xn(x) = sin nx (n = 1,2, . . .). Thus (3.24) takes the form

(
P (D) + n2 K

)
T (t) = 0 (n = 1,2, . . .). (3.25)

For any fixed positive integer n, the general solution of (3.25) is (cf. Theorem 2.2) Tn(t) = An T0n + Bn T1n, where

T0n = 1 − n2 KtμE(μ−μ1,...,μ−μr−1,μ),1+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−n2 Ktμ

)
,

T1n = t +
r−1∑

i=r−k

λit
1+μ−μi E(μ−μ1,...,μ−μr−1,μ),2+μ−μi

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−n2 Ktμ

)
− n2 Kt1+μE(μ−μ1,...,μ−μr−1,μ),2+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−n2 Ktμ

)
are independent solutions of (3.25) satisfying T ( j)

in (0) = δi j , i, j = 1,2. The general solution of the boundary value problem
is, therefore

u(x, t) =
∞∑

n=1

(An T0n + Bn T1n) sin nx. (3.26)

Using conditions (3.22) we can observe that the coefficients An and Bn are as given in (3.20).

4. Non-homogeneous case

Present section deals with the non-homogeneous fractional differential equation

P (D)u(x, t) = k
∂2u(x, t)

∂x2
+ q(t), 0 < x < π, t > 0, (4.1)

along with the boundary conditions

u(0, t) = u(π, t) = 0, t � 0,

u(x,0) = f (x), 0 < x < π,

ut(x,0) = g(x), 0 < x < π, (4.2)

where

P (D) = Dμ
t −

r−1∑
λi Dμi

t , 1 < μr−1 < μr−2 < · · · < μ1 < μ � 2,
i=1
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k and λi denote constant coefficients, q(t) is assumed to be a continuous function of t . Since (4.1) is non-homogeneous, we
use the method of variation of parameters [21], where in first the corresponding homogeneous equation is solved (putting
q(t) ≡ 0 in (4.1)), together with the boundary conditions, by separation of variables method. Assume u(x, t) = X(x)T (t), then
(4.1) along with conditions (4.2) yield

X ′′(x) + θ X(x) = 0, X(0) = X(π) = 0, (4.3)(
P (D) + θk

)
T (t) = 0 (n = 1,2, . . .) (4.4)

where θ is a separation constant. The Sturm–Liouville problem given by (4.3) has eigenvalues θn = n2 and the corresponding
eigenfunctions Xn(x) = sin nx (n = 1,2, . . .). For any fixed positive integer n, (4.4) is solved in Section 3.2. Now we seek a
solution of the non-homogeneous problem which is of the form

u(x, t) =
∞∑

n=1

Bn(t) sin nx. (4.5)

We assume that the series (4.5) can be differentiated term by term and note [21]

1 =
∞∑

n=1

2[1 − (−1)n]
nπ

sin nx, 0 < x < π. (4.6)

Hence, in view of (4.1), we get

∞∑
n=1

[
P (D)Bn(t) + n2kBn(t)

]
sin nx =

∞∑
n=1

2[1 − (−1)n]
nπ

q(t) sin nx. (4.7)

By identifying the coefficients in the sine series on each side of (4.7), we get

P (D)Bn(t) + n2kBn(t) = 2[1 − (−1)n]
nπ

q(t), n = 1,2, . . . . (4.8)

This non-homogeneous equation has general solution (cf. Theorem 2.2)

Bn(t) = yq(t) + an y0n(t) + bn y1n(t), (4.9)

where

yq(t) = 2[1 − (−1)n]
nπ

t∫
0

τμ−1 E(μ−μ1,...,μ−μr−1,μ),μ

(
λ1τ

μ−μ1 , . . . , λr−1τ
μ−μr−1 ,−n2kτμ

)
q(t − τ )dτ (4.10)

is solution of (4.8) with zero initial conditions, y0n and y1n are two independent solutions of homogeneous part of (4.8)
having the same expressions as T0n and T1n , respectively, as given in (3.15)–(3.16). Observe that

Bn(0) = yq(0) + an y0n(0) + bn y1n(0) = an, (4.11)

B ′
n(0) = y′

q(0) + an y′
0n(0) + bn y′

1n(0) = bn. (4.12)

The boundary conditions (4.2) yield

∞∑
n=1

Bn(0) sin(nx) = f (x), (4.13)

∞∑
n=1

B ′
n(0) sin(nx) = g(x), (4.14)

From (4.11)–(4.14) it is clear that an and bn have same expressions as An and Bn respectively given in Section 3.2.

5. Multi-term fractional differential equation in higher dimensions

Consider the fractional differential equation

P (D)u = a2
(

∂2u

∂x2
+ ∂2u

∂ y2

)
, 0 < x, y < π, t > 0, (5.1)

along with the following boundary conditions:
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u(x,0, t) = u(x,π, t) = u(0, y, t) = u(π, y, t) = 0, t � 0,

u(x, y,0) = f (x, y), 0 � x, y � π,

ut(x, y,0) = g(x, y), 0 � x, y � π, (5.2)

where ‘a’ denotes a constant coefficient, and

P (D) = Dμ
t −

r−1∑
i=1

λi Dμi
t , 1 < μr−1 < μr−2 < · · · < μ1 < μ � 2.

We assume that the partial derivatives fx(x, y), f y(x, y), gx(x, y) and g y(x, y) are also continuous. Substituting U =
X(x)Y (y)T (t) in (5.1), we get

P (D)T (t)

a2T (t)
= X ′′(x)

X(x)
+ Y ′′(y)

Y (y)
= −θ, (5.3)

where θ is a separation constant. Eq. (5.3) implies

Y ′′(y)

Y (y)
= −θ − X ′′(x)

X(x)
= −ξ, (5.4)

where ξ is another separation constant. In view of (5.1) and (5.2), we get

X ′′(x) + (θ − ξ)X(x) = 0, X(0) = 0, X(π) = 0, (5.5)

and

Y ′′(y) + ξY (y) = 0, Y (0) = 0, Y (π) = 0. (5.6)

(5.3) gives

P (D)T (t) + θa2T (t) = 0. (5.7)

The Sturm–Liouville problem given in (5.6) has eigenvalues ξm = m2 (m = 1,2, . . .) and the corresponding eigenfunctions
are Ym(y) = sin my. Similarly the Sturm–Liouville problem given in (5.5) has eigenvalues θn − ξn = n2 (n = 1,2, . . .) and the
corresponding eigenfunctions are Xn(x) = sin nx. Thus (5.7) takes the form:

P (D)T (t) + a2(m2 + n2)T (t) = 0, m = 1,2, . . . , n = 1,2, . . . , (5.8)

which is equivalent to (3.13). For any fixed positive integers m and n, the general solution of (5.8) is therefore

Tmn(t) = Amn vmn(t) + Bmn wmn(t),

where Amn, Bmn are arbitrary constants and vmn(t), wmn(t) are independent solutions of (5.8) given by (cf. Theorem 2.2)

vmn(t) = 1 − a2(m2 + n2)tμE(μ−μ1,...,μ−μr−1,μ),1+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−a2(m2 + n2)tμ

)
,

wmn(t) = t − a2(m2 + n2)t1+μE(μ−μ1,...,μ−μr−1,μ),2+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−a2(m2 + n2)tμ

)
.

The solution of the boundary value problem is, therefore

u(x, y, t) =
∞∑

n=1

∞∑
m=1

sin nx sin myTmn(t). (5.9)

The boundary conditions (5.2) yield

Amn = 4

π2

π∫
0

sin my

π∫
0

f (x, y) sin nx dx dy, (5.10)

Bmn = 4

π2

π∫
0

sin my

π∫
0

g(x, y) sinnx dx dy. (5.11)
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6. Non-homogeneous boundary conditions

In the present section we consider the following homogeneous multi-term fractional differential equation:

P (D)u = k
∂2u

∂x2
, 0 < x < 1, t > 0, (6.1)

along with the non-homogeneous boundary conditions

u(0, t) = 0, K ux(1, t) = A, t > 0, (6.2)

u(x,0) = 0, ut(x,0) = 0, 0 < x < 1, (6.3)

where

P (D) = Dμ
t −

r−1∑
i=1

λi Dμi
t , 1 < μr−1 < μr−2 < · · · < μ1 < μ � 2.

Substituting u(x, t) = U (x, t) + Φ(x) in (6.1)–(6.3), we obtain

P (D)U = k

[
∂2U

∂x2
+ Φ ′′(x)

]
, 0 < x < 1, t > 0, (6.4)

U (0, t) + Φ(0) = 0, K
[
Ux(1, t) + Φ ′(1)

] = A, U (x,0) + Φ(x) = 0, Ut(x,0) = 0. (6.5)

Assume Φ ′′(x) = 0 and Φ(0) = 0, KΦ ′(1) = A. Hence Φ(x) = A
K x. The boundary value problem (6.4)–(6.5) now reduces to

the homogeneous case

P (D)U = k
∂2U

∂x2
(0 < x < 1, t > 0), (6.6)

U (0, t) = 0, Ux(1, t) = 0, U (x,0) = − A

K
x, Ut(x,0) = 0. (6.7)

Substituting U = X(x)T (t) in (6.6) and using conditions (6.7), we get

X ′′ + θ X = 0, X(0) = 0, X ′(1) = 0, (6.8)

P (D)T (t) + kθT (t) = 0, T ′(0) = 0, (6.9)

where θ is separation constant. The Sturm–Liouville problem given in (6.8) has eigenvalues θm = m2 (m = 1,2, . . .) and the
corresponding eigenfunctions are Xm(x) = sin( 2m−1

2 πx). Eq. (6.9) is equivalent to Eq. (3.14) and has solution

Tm(t) = 1 − k
(2m − 1)2π

4

2

tμE(μ−μ1,...,μ−μr−1,μ),1+μ

(
λ1tμ−μ1 , . . . , λr−1tμ−μr−1 ,−k

(2m − 1)2π

4

2

tμ
)

(6.10)

up to an arbitrary constant. Thus the boundary value problem (6.6)–(6.7) has solution

U (x, t) =
∞∑

m=1

Am Tm(t) sin
(2m − 1)πx

2
, (6.11)

where Am is an arbitrary constant to be determined so that U (x,0) = − A
K x. Thus

Am = −2

1∫
0

A

K
x sin

(2m − 1)πx

2
dx = (−1)m8A

K (2m − 1)2π2
. (6.12)

Since u(x, t) = U (x, t) + Φ(x), the boundary value problem (6.1)–(6.3) has solution

u(x, t) = A

K

[
x + 8

∞∑
m=1

(−1)m

(2m − 1)2π2
Tm(t) sin

(2m − 1)πx

2

]
. (6.13)
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Fig. 1. Example 1. Fig. 2. Example 2

7. Illustrative examples

Example 1. Consider the fractional homogeneous differential equation

(
D0.9

t − λ1 D0.2
t

)
u = ∂2u

∂x2
, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t � 0,

u(x,0) = sin(x), 0 < x < π. (7.1)

By virtue of (3.7) solution of this equation is

u(x, t) =
∞∑

n=1

Bn
(
1 − n2t0.9 E(0.7,0.9),1.9

(
λ1t0.7,−n2t0.9)) sin(nx), n = 1,2, . . . ,

where

Bn = 2

π

π∫
0

sin x sin nx dx (n = 1,2, . . .).

Hence B1 = 1 and Bn = 0 (n = 2,3, . . .), and

u(x, t) = (
1 − t0.9 E(0.7,0.9),1.9

(
λ1t0.7,−t0.9)) sin(x)

= sin(x)

(
1 − t0.9

∞∑
k=0

k∑
m=0

λm
1 (−1)k−mt0.9k−0.2m

Γ (1 + 0.9 + 0.9k − 0.2m)

)

= sin(x)

(
1 − t0.9

∞∑
k=0

(
(−1)kt0.9k

Γ (0.9(k + 1) + 1)
+

k∑
m=1

λm
1 (−1)k−mt0.9k−0.2m

Γ (1 + 0.9 + 0.9k − 0.2m)

))
. (7.2)

u(x, t) given in (7.2) for the case λ1 = 1 is plotted in Fig. 1.

Example 2. Consider the fractional homogeneous differential equation

(
D0.9

t

)
u = ∂2u

∂x2
, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t � 0,

u(x,0) = sin(x), 0 < x < π. (7.3)

Putting λ = 0 in (7.2) we get the solution of BVP (7.3) as

u(x, t) = sin(x)

(
1 − t0.9

∞∑
k=0

(−1)kt0.9k

Γ (0.9(k + 1) + 1)

)
= sin(x)

∞∑
k=0

(−t0.9)k

Γ (1 + 0.9k)
= sin(x)E0.9

(−t0.9). (7.4)

u(x, t) is plotted in Fig. 2.
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Fig. 3. Example 3: μ = 1.9, μ1 = 1.4. Fig. 4. Example 3: μ = 1.8, μ1 = 1.5.

Comment. Solution of Example 2 is non-negative as expected (cf. Fig. 2) whereas two-term equation in Example 1 has
solution which is not non-negative (cf. Fig. 1).

Example 3. Consider the following two-term homogeneous fractional differential equation along with the boundary condi-
tions given below

(
Dμ

t − Dμ1
t

)
u = ∂2u

∂x2
, 1 < μ1 < μ � 2, t > 0,

u(0, t) = u(π, t) = 0, t � 0,

u(x,0) = f (x) = π

2
−

∣∣∣∣π2 − x

∣∣∣∣, 0 < x < π,

ut(x,0) = 0, 0 < x < π.

This has solution (cf. Section 3.2)

u(x, t) =
∞∑

n=1

4

n2π
sin

(
nπ

2

)(
1 − n2tμE(μ−μ1,μ),1+μ

(
tμ−μ1 ,−n2tμ

))
sin(nx).

In Figs. 3 and 4 u(x, t) is plotted for different values of μ and μ1.

Example 4. Consider fractional differential equation

(
D1.3

t − D0.7
t

)
u = ∂2u

∂x2
, 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t � 0,

u(x,0) = 2π − |2π − 4x|, ut(x,0) = x2, 0 < x < π.

In view of (3.26) solution of given boundary value problem is

u(x, t) =
∞∑

n=1

sin nx

[
16

n2π
sin

(
nπ

2

)(
1 − n2t1.3 E(0.6,1.3),2.3

(
t0.6,−n2t1.3))

+ 2

n3π

(−2 + (
2 − n2π2) cos nπ

)(
t + t1.6 E(0.6,1.3),2.6

(
t0.6,−n2t1.3) − n2t2.3 E(0.6,1.3),3.3

(
t0.6,−n2t1.3))].

Example 5. Consider fractional non-homogeneous differential equation

(
D1.7

t − D1.2
t

)
u = ∂2u

∂x2
+ t2, 0 < x < π, t > 0,

u(x,0) = π

2
−

∣∣∣∣π2 − x

∣∣∣∣, 0 < x < π,

ut(x,0) = 0, 0 < x < π.
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Fig. 5. Example 5.

This boundary value problem has solution (cf. Section 3.2)

u(x, t) =
∞∑

n=1

sin nx

[
2[1 − (−1)n]

nπ

t∫
0

τ 0.7 E(0.5,1.7),1.7
(
τ 0.5,−n2τ 1.7)(t − τ )2 dτ

+ 4

n2π
sin

nπ

2

(
1 − n2t1.7 E(0.5,1.7),2.7

(
t0.5,−n2t1.7))].

The solution u(x, t) is plotted in Fig. 5.

8. Conclusions

In view of the illustrative examples and Figs. 1–5, it is clear that in multi-term case solutions need not be non-negative.
Hence multi-term generalisation of fractional diffusion-wave equation does not represent sub/super diffusion in any dimen-
sion.
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