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Abstract

This paper presents, from a user point-of-view, the mechanism of cooperation between constraint
domains that is currently part of the system T OY , an implementation of a constraint functional
logic programming scheme. This implementation follows a cooperative goal solving calculus based
on lazy narrowing. It manages the invocation of solvers for each domain, and projection operations
for converting constraints into mate domains via mediatorial constraints. We implemented the
cooperation among Herbrand, real arithmetic (R), finite domain (FD) and set (S) domains. We
provide two mediatorial constraints: The first one relates the numeric domains FD and R, and
the second one relates FD and S.

Keywords: Tools, Multiparadigm Programming, Constraint Functional Logic Programming,
Domain Cooperation.

1 Introduction

T OY [1] is a multiparadigm programming language and system designed to
support the main declarative programming styles and their combination. One

1 First and third authors partially supported by projects TIN2008-06622-C03-01, S-
0505/TIC/0407 and UCM-BSCH-GR58/08-910502. Second author partially supported by
Spanish MICINN under contract TIN2008-05941 (NEMESIS project).

Electronic Notes in Theoretical Computer Science 258 (2009) 79–91

1571-0661 © 2009 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.12.006
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82389357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


of its characteristics is that it provides support for functional logic program-
ming, and programs in T OY can include definitions of types, operators, lazy
functions in Haskell style, as well as definitions of predicates in Prolog style.
A predicate is viewed as a particular kind of function whose right-hand side is
true. A function definition consists of an optional type declaration and one or
more defining rules, which are possibly conditional rewrite rules. Both func-
tions and predicates must be well-typed with respect to a polymorphic type
system [4].

With the aim of increasing the efficiency of goal solving, T OY also provides
capabilities for constraint programming, and programs can use constraints
within the definitions of both predicates and functions. Constraints are inte-
grated as functions to make them first-class citizens what means that they can
be used in any place where a data can (e.g., as arguments of functions). This
provides a powerful mechanism to define higher order constraints. The con-
straints that have been integrated and supported by the system in recent years
include symbolic equations and disequations [2], linear and non-linear arith-
metic constraints over the real numbers [12], and finite domain constraints [9].
Now, T OY also incorporates a solver to manage set constraints [6].

It is well-known that constraint solving defined on specific domains (e.g.,
reals, finite domain, sets, etc.) can help to speed up the goal resolution, and
also opens up the range of problems that a system can efficiently attack. How-
ever, it also presents evident drawbacks as, in practice, constraints are often
not specific to any given domain, and thus the formulation of real problems
has to be artificially adapted to a domain that is supported by the system.
Many problems are more naturally expressed using heterogeneous constraints,
involving more than one domain. Precisely, this problem can be smoothed via
solver cooperation and T OY has recently incorporated a mechanism to sup-
port it [5,7]. A detailed description of the mechanism involving three specific
domains, namely Herbrand, real, and finite domains, is given in [8].

This document belongs to this collection of papers-illustrating-T OY-features.
However, the reader should note that, even though many features of T OY have
already been reported in a number of papers, this paper presents original ma-
terial and highlights some of the recent acquired capacities of T OY by means
of examples. In particular, the paper focuses in the solver cooperation mech-
anism including the cooperation between the finite domain and set solvers
that has recently been integrated into T OY [6]. Besides illustrating the new
features of the T OY system, an additional goal of this paper is to show that
this system constitutes an adequate framework on which experimentation with
solver collaboration can be carried out.
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1.1 T OY Distribution

From http://toy.sourceforge.net the preferred distribution for T OY can
be downloaded. There are some possibilities: Choose either a binary distribu-
tion (a portable application that does not need installation) or a source-code
distribution (which requires SICStus Prolog previously installed). Therefore,
almost any platform can run T OY (e.g., the system can be started as a Win-
dows application or in a Linux console). It features a command interpreter
for submitting goals and system commands. In addition, it has been con-
nected to ACIDE [15], a graphical and configurable integrated development
environment.

1.2 An Overview of T OY
T OY computations solve goals and display computed answers. T OY solves
goals by means of a demand driven lazy narrowing strategy [13] combined with
constraint solving. Answer constraints can represent bindings for logic vari-
ables, as in answers computed by a Prolog system. Some features of T OY are:

(i) Curried Style. This allows that partial applications of curried functions
can be used to express functional values as partial patterns.

(ii) Non-deterministic Functions. These are introduced either by means of
defining rules with overlapping left-hand sides or using extra variables in
the right-hand side that do not occur in the left-hand side.

(iii) Sharing for values of all variables which occur in the left-hand sides of
defining rules and have multiple occurrences in the right-hand side and/or
the conditions. Sharing implements the so-called call-time choice seman-
tics of non-deterministic functions.

(iv) Higher-Order Functions in the style of Haskell, except that lambda ab-
stractions are not allowed. In T OY , higher-order can be naturally com-
bined with non-determinism.

(v) Dynamic Cut. Optimization that detects deterministic functions at com-
pile time, and the generated code includes a test for detecting at run-time
the computations that can actually be pruned [3].

(vi) Finite Failure. The primitive Boolean function fails is a direct counter-
part to finite failure in Prolog.

2 A Constraint Functional Logic Programming Scheme

T OY implements a Constraint Functional Logic Programming scheme CFLP (D)
over a parametrically given constraint domain D, proposed in [14]. CFLP (D)
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is a logical and semantic framework for lazy Constraint Functional Logic Pro-
gramming over D, which provides a clean and rigorous declarative semantics
for CFLP languages.

In particular, D is the coordination domain C introduced in [7] as the
amalgamated sums of the domains to be coordinated, D1, . . . , Dn, along with
a mediatorial domain M which supplies special communication constraints,
called bridges, used to impose the equivalence between values of different base
types.

The Cooperative Constrained Lazy Narrowing Calculus CCLNC(C) pre-
sented in [7] provides a fully sound formal framework for functional logic pro-
gramming with cooperating solvers over various constraint domains. CCLNC(C)
has been proved fully sound w.r.t. the CRWL(C) semantics [14].

3 Cooperation in T OY: Bridges and Projections

The current downloadable version of T OY (see Section 1.1) comes equipped
with solvers corresponding to three constraint domains:

(i) Herbrand, with equality and disequality constraints.

(ii) Real Arithmetic, with arithmetic constraints over real numbers.

(iii) Finite domain, with constraints over integer numbers.

The Herbrand Solver is always available, and the real and finite domain
solvers can be optionally loaded. A beta version of T OY (available soon) now
also includes a solver to handle set constraints that allows constraint solving on
intervals of sets of integers. The set constraint domain has been implemented
in the beta version which has not been yet released.

With the aim of extending the system applicability, a mechanism for solver
cooperation on these domains has been recently incorporated. This mecha-
nism has two main pillars: bridges, necessary for solver communication, and
projection, that improves the efficiency of some programs.

A bridge is a special kind of ‘hybrid’ constraint which allows the communi-
cation between two constraint domains and instantiates a variable occurring
at one end of a bridge whenever the other end becomes ground. The next
examples show this communication between FD and R.

Example 3.1 In the cooperation finite domain-real domain, a bridge con-
straint (identified by the function #== /2; see the code below) can be used
to impose an integral constraint over its right (real) argument. As an example,
suppose we want to know whether two different lines can meet at one integer
point. A line can be described algebraically by the linear equation y = m * x

+ b, and the corresponding T OY program and goal are as follows, where the
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symbol <== starts the conditional guard, == represents the equality constraint,
and -> stands for a substitution.

Program

meetLines M1 B1 M2 B2

== (X,Y)

<== X #== RX,

Y #== RY,

RY == M1*RX + B1,

RY == M2*RX + B2

Goals Solutions

meetLines 2 4 1 2 == L L->(-2, 0)

meetLines 1 1 1 2 == L no (parallel lines)

meetLines 1 1 3 2 == L no (real point)

�

Projection takes place during goal solving whenever a constraint is sub-
mitted to its solver. At that moment, projection builds a mate constraint
which is submitted to the mate solver (think, for instance, of a finite domain
solver as the mate of a real solver, and vice versa). Projection rules described
in [5,7] relying on the available bridges are used for building mate constraints
between the finite and real domains. The next example shows how projection
builds and posts new mate constraints.

Example 3.2 Suppose we want to calculate the intersection of a triangular
region (defined in the continuous plane) with an (N×N)-size square discrete
grid (defined in the discrete plane). A T OY goal that solves the problem,
for any given even integer number N, is shown below; the triangular region
is described by the inequalities in the real domain whereas the square grid is
described by the finite domain constraints (i.e., those labeled with # and the
function labeling/2).

Goals Mate Constraints Solutions

X#==RX, Y#==RY X->2000, RX->2000

RY >= (4000/2)-0.5, ⇒ Y #>= �4000/2-0.5�, Y->2000, RY->2000

RY-RX <= 0.5, ⇒ Y #- X #<= �0.5�,
RY+RX <= 4000+0.5, ⇒ Y #+ X#<=�4000+0.5�,
domain [X,Y] 0 4000, ⇒ 0<=RX, RX<=4000,

labeling [] [X,Y] 0<=RY, RY<=4000

X#==RX, Y#==RY X->1999, RX->1999

RY >= (4000/2)-1, ⇒ Y #>= �4000/2-1�, Y->1999, RY->1999

RY-RX <= 0.5, ⇒ Y #- X #<= �0.5�, X->2000, RX->2000

RY+RX <= 4000+0.5, ⇒ Y #+ X#<=�4000+0.5�, Y->1999, RY->1999

domain [X,Y] 0 4000, ⇒ 0<=RX, RX<=4000, X->2000, RX->2000

labeling [] [X,Y] 0<=RY, RY<=4000 Y->2000, RY->2000

X->2001, RX->2001

Y->1999, RY->1999

In this example, mate constraints generated during goal solving, allow the
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finite domain solver to drastically prune the domains of X and Y. Therefore,
if we have a huge grid and a tiny triangle and the projection is enabled, then
the computation time is notably reduced. Note that not all the constraints
are projected; for example, the labeling constraint. �

The new bridge constraint for the cooperation finite domain-set domain is
provided via the infix function: #--/2, where its left argument is an integer and
the right one is a set, which follows the datatype declaration data setOfInt

= set [int]. The next example shows its behaviour when projection has
been both disabled and enabled.

Example 3.3 The following table shows a goal with projection disabled,
where no mate constraints have been created. Here, FDVar in Min..Max

stands for a domain constraint stating that the value of FDVar must be in the
integer closed range [Min,Max]. Also, SVar in Min..Max is a domain con-
straint stating that SVar must contain, at least, the elements in the set Min,
and, at most, the elements in the set Max.

Goal Solutions

F1 #--S1, F2 #--S2, S1 in (set [2,4])..(set [2,3,4,5,6]),

domain [F1,F2] 1 1000, S2 in (set [2,4])..(set [2,3,4,5]),

domainSet [S1] (set [2]) F1 in 1..1000,

(set [2,3,4,5,6]), F2 in 1..1000

domainSet [S2] (set [2,4])

(set [1,2,3,4,5,7,9]),

subSet S2 S1

Next, enabling projection, we get a more constrained answer because of
the projection due to the constraints domainSet and subSet. Here, it can be
seen a finite domain interval constraint which is expressed by means of integer
closed intervals and unions of integers (1..5 represents the set containing
integers from 1 to 5, and ∨ is set union).

Goal Mate Const. Solutions

F1 #--S1, F2 #--S2, S1 in (set [2,4])

domain [F1,F2] 1 1000, ..(set [2,3,4,5,6]),

domainSet [S1] (set [2]) ⇒ F1 in 2..6 S2 in (set [2,4])

(set [2,3,4,5,6]), ..(set [2,3,4,5]),

domainSet [S2] (set [2,4]) ⇒ F2 in (1..5) F1 in 2..6,

(set [1,2,3,4,5,7,9]), ∨{7}∨{9} F2 in 2..5

subSet S2 S1 ⇒ subset F2 F1

�

We have borrowed the idea of constraint projection from [11], adapting it
to our CFLP scheme and adding bridge constraints as a novel technique which
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makes projections more flexible and compatible with the type discipline.

4 Getting Started with the T OY System

Whichever method you use to start T OY as described in the manual [1], you
get a banner and a system prompt as displayed in the bottom panel of Figure
1.

Fig. 1. A Screenshot of Toy running into ACIDE.

This figure shows T OY running into ACIDE [15], a configurable IDE (In-
tegrated Development Environment) consisting of three main panels. The
left panel shows the organization of the current project, the MDI windows to
the right are the opened files, which may belong to the project (files can be
opened without assigning them to the project). Below, the T OY console panel
is shown, which allows the user to interact by means of typed commands and
expressions. Both shell and project panels can be hidden and, moreover, it is
not mandatory to work with projects if they are not needed. The menu bar in-
cludes some common entries about files, edition, projects, views, configuration
and help. In addition, there is a fixed toolbar which includes common buttons
for file and project-related basic operations: New, Open, Save, and Save All
(this last one only for files). Next to the fixed toolbar, there is the configurable
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toolbar, which in this case includes the most usual T OY commands.

The last line in the console panel (Toy>) is the T OY system prompt, which
allows writing commands, executing goals, and computing expressions. The
typical way of using the system is to write T OY program files (with default
extension .toy) and consulting them before submitting goals. Following this,
you write the program in a text file, and then you use the following command
in order to compile and load the T OY program:

Toy> /run(Filename)

Where Filename is the name of the file, as bothIn.toy (the default extension
.toy can be omitted). If the file is located in the distribution directory, you
can also type:

Toy> /run(bothIn.toy)

Otherwise, when the file is located at another path, you can firstly change
to the new path using the command /cd(Path), where Path is the new direc-
tory (relative or absolute). However, things are much easier from the ACIDE
environment since you can simply push the button run and get the file com-
piled and loaded. In addition, solvers can be activated by pushing the buttons
cflpr, cflpfd, and cflpset.

5 Examples

The main part of the demonstration will be devoted to display examples of
T OY programs to solve cooperation problems, as those described in the fol-
lowing.

5.1 Scheduling Tasks Problem via Cooperation between solveFD and solveS

t13
m1

t21
m1

t32
m2

t42
m2

Fig. 2. Precedence Graph.

The tasks scheduling problem requires resources to complete, and consists
of fulfilling precedence constraints. Figure 2 shows a precedence graph for four
tasks which are labeled as tXY

mZ , where X stands for the identifier of a task t,
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Y for its time to complete (duration), and Z for the identifier of a machine m
(a resource needed to perform task tX). In this case, this problem is solved
using the cooperation of solveFD and solveS with the program below. The
constraint functions and operators that belong to the finite domain are: sum,
#=, and #<, and set constraint functions are: domainSet, cardinalSet, and
intersectSet. Bridges between finite domain variables and set variables are
established by the function #--/2 in such a way that a goal F #-- S projects
constraints involving the variable S into constraints involving the variable F.

durationList :: [int]

durationList = [3,1,2,2]

% Auxiliary Functions

listFrom1To :: int -> [int]

listFrom1To X = take X (iterate (+ 1) 1)

% Main Function

scheduling :: [setOf int] -> [int] -> bool

scheduling TasksSet TasksFD = true <==

TasksSet == [T1S, T2S, T3S, T4S],

TasksFD == [T1FD, T2FD, T3FD, T4FD],

% Bridges T1FD #-- T1S ... T4FD #-- T4S

foldl and true (zipWith (#--) TasksFD TasksSet),

% The time of execution of all tasks is, at most,

% the sum of the durations of all the tasks,

sum durationList (#=) Time,

% The time of execution of every task can be placed in the time

% interval defined from 1 to Time

domainSet TasksSet (set []) (set (listFrom1To Time)),

% The duration of a task corresponds to the cardinal of its set

map cardinalSet TasksSet == durationList,

% Precedences

fd_max T1FD #< fd_min T3FD,

fd_max T2FD #< fd_min T3FD,

% Machine m1 can be assigned to a single task at a time
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intersectSet T1S T2S (set []),

% Machine m2 can be assigned to a single task at a time

intersectSet T3S T4S (set [])

Some solutions to a goal for this problem are represented in Fig. 3, which
corresponds to selected answers given at the system prompt Toy(FD+R+S+p).
In this prompt, FD+R+S+p indicates that FD, R, and S constraints libraries are
loaded, and projection (p) has been enabled, respectively. The next interactive
session excerpt corresponds to the solution of the left-upper part of this figure.
Here, TiS are the S variables whilst TiFD are the FD variables.

  T4 

T2

T1

T4  T4 

T2 T3 T4

T1 T1 T3

 T4 

T2

T4

T1 T1 T3 T3

T1 T2

  T4 

T1 T1 T3

 T4 

Fig. 3. Some Solutions of the Scheduling Problem.

Toy(FD+R+Set+p)> scheduling [T1S,T2S,T3S,T4S] [T1FD,T2FD,T3FD,T4FD]

{ T2S -> [ 4 ],

T2FD -> 4 }

{ T1FD #-- T1S,

T3FD #-- T3S,

T4FD #-- T4S,

T1S in (set [])..(set [1,2,3,4,5,6,7,8]),

T3S in (set [])..(set [1,2,3,4,5,6,7,8]),

T4S in (set [])..(set [1,2,3,4,5,6,7,8]),

cardinalSet T1S 3,

cardinalSet T3S 2,

cardinalSet T4S 2,

T3S in ([],close):*:(min T4S)..top,

T4S in ([],close):*:(min T3S)..top,

T1FD in 1..3,

T3FD in 5..6,

T4FD in {1}\/{3} }
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This problem can be solved using only finite domain constraints [1], but
solver cooperation leads to a more natural formulation.

5.2 Electrical Circuit Problem requiring the Cooperation between solveFD and
solveR

Consider also a problem taken from [10], in which one has an electric circuit
with some connected resistors (i.e., real variables) and a set of capacitors (i.e.,
FD variables). The goal consists of knowing which capacitor has to be used
so that the voltage reaches the 99% of the final voltage within a given time
range. Particularly, we consider an instance of the problem (see Figure 4)
with a resistor R1 of 0.1 MΩ connected in parallel with a variable resistor R2
of between 0.1 MΩ and 0.4 MΩ, a capacitor K connected in series with the
two resistors. Also, capacitors of 1μF , 2.5μF , 5μF , 10μF , 20μF , and 50μF
are available. The considered range time is [0.5,1], i.e., the duration until the
capacitor is loaded is between 0.5 seconds and 1 second. Below we show a
very simple T OY program (and a goal solved at the command line level) to
solve this instance using distinct numerical solvers. Note that this problem
cannot be solved by a unique solver and thus requires solver cooperation.

ecircuit :: int

ecircuit = KI <== R1 == 10000,

10000 <= R2, R2 <= 40000, % R Constraints

R == R1*R2/(R1+R2), %

50000.0 <= R, R <= 80000.0, %

T == -(ln 0.01)*R*K/10000000.0, %

0.5 <= T, T <= 1.0, %

KI #== K, % FD-R Bridge

belongs KI [10,25,50,100,200,500], % FD constraints

labeling [ ] [KI] %

Toy(R+FD)> ecircuit == L % Goal solving

{ L -> 25 }

6 Conclusions and Further Work

This paper demonstrates, via examples, the potential of the cooperation mech-
anism available in the T OY system, a functional logic language that provides
four constraint computation domains (i.e., Herbrand domain, real numbers,
integers - the finite domain -, and sets of integers), and one domain (i.e., the
mediatorial constraint domain), for communicating the computation domains.
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R1

R2

K

Fig. 4. Electrical Circuit Problem.

As a novelty, the paper has also illustrated the collaboration between the fi-
nite and set domains. Moreover, it should be clear from our exposition that
T OY constitutes an appropriate setting to experimenting with solver collab-
oration.

As future work, we plan to optimize the set solver in T OY as well as for-
malize the cooperation between the Herbrand, finite domain and set domains
following the same approach described in [8] for the Herbrand, real and finite
domains.
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