URL: http://www.elsevier.nl/locaf:e/entcs/volume44.htrﬁl 25 pages

Transformation of SDF' syntax definitions
in the ASF+SDF Meta-Environment

Ralf Lammel !

CWI & Vrije Universiteit
Amsterdam, The Netherlands

Guido Wachsmuth 2

Fachbereich Informatik
Universitat Rostock
Rostock, Germany

Abstract

We describe FST—a, Framework for SDF Transformation. FST supports the adap-
tation (in a broad sense) of grammars based on the syntax definition formalism SDF.
We further describe the prototype implementation of FST in the ASF+SDF Meta-
Environment. Grammar transformations form an important concept of grammar
reengineering, implementation, recovery and others. Tool support for grammar
transformations is essential to automate the corresponding processes.

1 Introduction

Adaptation of grammars

Grammars are software artifacts. They are of prime importance in many ap-
plication domains, especially in the domain of generic language technology.
By grammars, we mean concrete syntax definitions, abstract syntax defini-
tions, intermediate and exchange formats. Like any software, grammars need
to be developed and maintained. Since grammars serve usually as important
contracts for other software components, grammars should be adapted with
care. This paper reports on FST—a Framework for SDF Transformation. As
the name points out, the syntax definition formalism SDF [9,22] is the gram-
mar notation covered by FST. The framework essentially provides a suite of

! Email: Ralf.Laemmel@cwi.nl
2 Email: guwac@informatik.uni-rostock.de

(©2001 Published by Elsevier Science B. V. Open accessunder CCBY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/3.0/

Ladvilvidy AL VAl o4 id

operators to describe grammar transformations. The resulting style of gram-
mar programming can be conceived as transformational grammar program-
ming. The operator suite and all other FST concepts were prototyped in
ASF+SDF. The resulting algebraic specification is executable in the (new)
ASF+SDF Meta-Environment [11,5].

Transformation sample

We will use the VS COBOL II language [10] as the running example of the
paper. Grammar transformations have been used extensively in correcting
and completing the grammar contained in the standard. The corresponding
grammar recovery project is described in [14].

Let us consider one specific problem in the standard. The sort Subscript
was, for example, used but not defined. The sort is meant to describe proper
forms of subscripts for data items in the VS COBOL II language. Instead of
proper subscripts, a related construct was defined via the sort Subscripting.
The problem with the available definition of Subscripting is that it defines
the complete form of a data name reference with a subscript involved. Con-
sequently, we need to identify that part of Subscripting which corresponds
to Subscript. This idea can be expressed in a precise manner by the trans-
formation in Figure 1. The first transformation step folds the relevant part
to a new nonterminal. For convenience, the focus for the transformation is
made explicit. The second step is meant to unify the introduced and the
required sort. The remaining steps rename the candidate to the proper name,
and eliminate the obsolete nonterminal Subscripting.

FST—A Framework for SDF Transformations

The concepts offered by FST are illustrated in Figure 2. The figure actually
depicts the modular hierarchy of the FST prototype in the ASF+SDF Meta-
Environment. The primary concepts offered by FST are operators. There
are primitive operators like add for adding productions, replace for replacing
phrases (i.e., extended BNF expressions) within productions, substitute for
replacing sorts. Using combinators, derived operators can be defined which are
meant to embody proper steps of transformations. There are several groups of
derived operators, namely operators for grammar refactoring, for construction
and destruction of grammars. Furthermore, FST provides several supplemen-
tary concepts to enable transformational grammar programming. We need,
for example, a concept of focus to restrict the focus for the application of
transformations. We also need a concept of condition to formulate pre- and
post-conditions of transformations.

Structure of the paper
In Section 2, the platform for the prototype implementation of FST, especially
the relevant formalisms, are explained. In Section 3 and Section 4, the various

10

S LAdvalvild AANLS vy lAauvidviviau o4 id

Available definition of Subscripting

Condition-name | Data-name " ("

(Integer
| (Data-name ("+" | "-" Integer)?)
| (Index-name ("+" | "-" Integer)?))+

")" -> Subscripting

Transformation

focus on sort Subscripting do
fold (Integer

| (Data-name ("+"|"-" Integer)?)

| (Index-name ("+"|"-" Integer)?))+
to Subscript-candidate;

unify Subscript to Subscript-candidate;
rename Subscript-candidate to Subscript;

eliminate Subscripting;

Resulting definition of Subscript

(Integer
| (Data-name ("+"|"-" Integer)?)
| (Index-name ("+"|"-" Integer)?)

)+ -> Subscript

Fig. 1. A grammar transformation for VS COBOL II

concepts offered by FST are defined in some detail. For convenience, we
separate basic concepts and derived operators. In Section 5, we report on
applications of grammar transformations. The paper is concluded in Section 6.

Acknowledgement The work of the first author was supported, in part, by the
Dutch Research Organisation NWO, in the project 612.014.006 “Generation of Pro-
gram Transformation Systems”. The work of the second author was supported by
Universiteit van Amsterdam, Programming Research Group, through a grant for
a research visit. We are grateful for Paul Klint’s support of this project. We are
grateful to Jan Heering, Merijn de Jonge, Jan Kort, Jurgen Vinju, Joost Visser,
and Dave Wile for discussions on this project.

2 Prototyping FST in ASF+SDF

FST has been prototyped in the ASF+SDF Meta-Environment. In the present
section, we explain this environment. By coincidence, SDF is also the grammar
formalism of choice for FST. First, the SDF syntax definition formalism is
briefly described. Then, ASF(+SDF) used for the (algebraic) specification of
the grammar transformations is briefly described. Finally, the recent extension
of ASF+SDF by traversal functions is motivated. Traversal functions allow
us to describe grammar transformations much more concise.

11

Ladvilvidy AL VAl o4 id

Framework

/

ZigZag
/ \ -
Refactoring Construction Destruction

7\

Y ACCify DeY ACCify Alternation Move

—— 1

Combinators

Conditions

/

Coverage Primitives

Equivalence Yielders Substitute Replace Reset Add Sub

—

Auxiliary

Matching

/

Focus IdentifierGeneration

—

Properties

P

Bool Extended-SDF2-Grammar

Fig. 2. Concepts of FST

2.1 SDF

SDF [9,22] is a syntax definition formalism offering not just extended BNF
expressiveness but also constructs for modular syntax and disambiguation of
syntax. SDF is complemented by a parser generator pgen and a table-driven
parser sglr supporting scannerless generalised LR parsing [21,18]. A SDF
production is of the form Symbol* -> Symbol. Note that left-hand side and
right-hand side are flipped compared to standard BNF notation. Note also
that the right-hand side symbol is usually a sort if the production describes
syntax. In general, arbitrary symbols can occur on the right-hand side. This
would be useful for rewriting functions. Primitive symbols are sorts (Sort;

12

Ladvilvidy AL VAl o4 id

another term for nonterminals) and literals (Literal; another term for termi-
nals). Symbols are composed using extended BNF notation. We saw already
some grammar fragments in SDF notation in the introductory example in
Figure 1.

module Regular-Sdf-Syntax
imports Kernel-Sdf-Syntax IntCon

exports
context-free syntax
Symbol "?" -> Symbol
Symbol "+" -> Symbol
Symbol "x" -> Symbol
Symbol "|" Symbol -> Symbol {right}

context-free priorities

{Symbol "7 -> Symbol
Symbol "x" -> Symbol
Symbol "+" -> Symbol} >
Symbol "|" Symbol -> Symbol

Fig. 3. SDF syntax of SDF

Part of the syntax of SDF is defined in SDF notation itself in Figure 3. Note
that FST relies on SDF2 [22] rather than SDF1 [9] as it covers SDF2-specific
constructs, e.g., optionals and alternatives. The shown module fragment
lists some forms of compound symbols, namely optionals (cf. Symbol "?"),
plus-lists (cf. Symbol "+"), star-lists (cf. Symbol "*"), and alternatives (cf.
Symbol | Symbol). We also see an example of the declarative disambigua-
tion constructs offered by SDF. In the context-free priorities section the
binding of some operators is regulated. In particular, “?”, “*” and “+” bind
stronger than “|”.

SDF is indeed an excellent basis for syntax definition because of its or-
thogonality and expressiveness. Also, the available implementation does not
restrict grammars to LR(1) or any other subclass of context-free grammars.
Meanwhile, SDF grammars have been developed for many languages. SDF
is a challenging target for grammar transformations. Due to its complex-
ity (modules, extended BNF, permutation phrases, variables, disambiguation
constructs and others), many design decisions are due.

2.2 ASF+SDF

The formalism couple ASF+SDF supports algebraic specification (cf. [3] for
ASF) based on concrete syntax. ASF+SDF is supported within the ASF4+SDF
Meta-Environment [11,5]. ASF accomplishes conditional rewrite rules. Some
decent form of control can be specified, that is, one can point out default rules.

In Figure 4, we illustrate ASF+SDF with an excerpt from one module
of FST. Part of the module Combinators is shown. The module defines the

13

S LAdvalvild AANLS vy lAauvidviviau o4 id

module Combinators
imports Conditions Primitives
exports
sorts Trafo
context-free syntax
Trafo ";" Trafo -> Trafo {right}
"focus" "on" FocusYielder "do" Trafo -> Trafo
"if" Cond "then" Trafo "else" Trafo -> Trafo
Trafo "effectively" -> Trafo
"guard" Cond -> Trafo

equations
[IT-1] &SDF1 = IT(&Trafo0,&SDFO0,&Focus0),
&SDF2 = IT(&Trafol,&SDF1,&Focus0)

IT(&Trafo0; &Trafol, &SDFO, &Focus0)=&SDF2

[default-IT-6] IT (&Trafo0, &SDF0, &Focus0) = undefined
[guard-1] guard &Cond0 = if &Cond0 then id else fail

Fig. 4. ASF4+SDF module for combinators for grammar transformations

interpretation of combinators for grammar transformations. The SDF part
indicates that there are, for example, combinators for sequential composi-
tion (cf. ...; ...), focused transformation (cf. focus ...), and conditional
transformation (cf. if ...). The interpretation function for transformations
is IT. We only show two ASF equations for IT. They are tagged [IT-1] and
[default-IT-6]. The former defines the interpretation of sequential composi-
tion. The latter is a default rule to return undefined if none of the other rules
triggers. As for the conditional rewrite rule [IT-1], we see that premises and
conclusion are separated by ===...===, conditions are separated by comma.
Note that we usually use the sort identifier for the stem of many-sorted vari-
ables, e.g., the variable &Trafo0 is used as a place-holder for sort Trafo in the
rewrite rule [IT-1].

As an aside, algebraic specifications in the context of program transforma-
tion, analysis, interpretation and compilation are often conveniently written
in the constructive style. That is, there is a separation of constructors and
defined operations, and rewrite rules perform a kind of case discrimination on
constructor patterns. In fact, FST is written in the constructive style (4 dis-
ciplined default equations and use of implicit traversals) so that we can easily
claim confluence for our specifications. Since ASF+SDF favours concrete syn-
tax, constructors correspond to SDF productions, and SDF is also used to
declare profiles of ASF operations.

14

Ladvilvidy AL VAl o4 id

2.3 Traversal functions

The ASF+SDF formalism is currently being extended with support for traver-
sal functions facilitating concise definitions of traversals [4]. We use this ex-
tension for FST in order to specify several of the program transformations and
program analyses underlying FST. They key idea is that distinguished func-
tion symbols perform top-down traversals. The programmer provides rewrite
rules with such function symbols as outermost symbols to refine in a sense
the default traversal. This mechanism pays off if the traversal is specific for
few patterns. This is indeed very often the case in the context of program
transformation and analysis. Without explicit support, traversals are usually
encoded as explicit case discriminations.

In Figure 5, one primitive transformation operator offered by FST is de-
fined. The operator performs sort substitution all over an SDF definition.
We will explain details of this specification in a second. Just note that the
transformation, which is applicable to the full SDF syntax, can be specified
with just three rewrite rules (refining an implicit traversal). The prototype
implementation of FST comprises many such traversals which benefit from
the extension for traversal functions. Disclaimer: The traversal extension
for ASF+SDF including the underlying notation is still subject to change. In
the current paper, we take a snapshot. The ultimate reference is [4] to be
published soon.

module Substitute
imports Focus

exports
context-free syntax
"substitute" "(" SDF "," Focus "," Sort "," Sort ")" -> SDF {traverse}
equations

[subst-1] &Module0= module &ModuleNameO &ImpSection*0 &SectionsO,
focused (&ModuleName0,&Focus0)=false

substitute (&Modulel,&Focus0, &Sortl, &Sort2)=&ModuleO

[subst-2] &Production0=&Symbols0 -> &Sort0 &AttributesO,
focused (&Sort0,&Focus0)=false

substitute (&Production0,&Focus0, &Sortl, &Sort2)=&Production0
[subst-3] substitute(&Sort0, &Focus0,&Sort0, &Sortl)=&Sorti

Fig. 5. Definition of sort substitution with traversal function

Traversal functions assume that the data structure to be traversed is passed
as the first parameter to them. There are two essential scenarios covered by
the current traversal extension. Firstly, one can model type-preserving func-
tions where the traversed type coincides with the result type. Secondly, one
can accumulate during traversal starting from a supplied initial value. Actu-
ally, both schemata can also be combined in a beneficial manner. Program

15

Ladvilvidy AL VAl o4 id

transformations adhere to the former scheme, whereas program analyses can
often be encoded following the latter scheme.

Substitution as described in Figure 5 is an example of the type-preserving
scenario. There are a few things worth mentioning. The function substitute
is attributed with {traverse} to indicate that it is a traversal function. Al-
though, the function substitute is declared for type SDF (see the first param-
eter), the function is implicitly overloaded for all sorts reachable from SDF. The
rewrite rules [subst-1] to [subst-3] deal with other types, namely Module,
Production, and Sort. The core rule is [subst-3]. Encountering a sort
during traversal which also coincides with the sort to be substituted, the sort
is rewritten to the new sort. The other two equations deal with focus issues.
The traversal should only descend into a module if the module is focused (cf.
[subst-1]). Similarly, the traversal should only descend into a production if
the nonterminal defined by the production is focused (cf. [subst-21).

3 Basic concepts of FST

We describe the basic concepts underlying our framework FST. Essentially, we
deliver a core language for grammar transformations. First, primitive gram-
mar transformations are identified. Then, some auxiliary concepts are sup-
plied, namely conditions, a focus concept, and yielders for symbolic operands
in transformations. Finally, transformation combinators are added.

3.1 Primitives

Grammar transformations can be constructed from a small set of primitives.
We will later see how combinators can be used to compose primitives, and
to constrain them by pre- and post-conditions. The primitives for grammar
transformations are declared in Figure 6. We use a dedicated sort Trafo to
describe forms of transformations.

There are simple grammar transformations for identity and failure denoted
by id and fail. There is an operator to discard the focused part of the given
grammar denoted by reset. There are operators add and sub to add and
to remove a production from a grammar. There are operators replace and
substitute to replace SDF symbols or to substitute sorts. Finally, there
are primitives to introduce, delete and rename modules. We declare an
interpretation function IT to interpret transformations, that is, to apply them
to a given grammar. The interpretation function takes a focus parameter
as argument. Thereby, a transformation can be restricted to apply only to
a certain part of the grammar. We only show the simple equation for the
operator substitute. Interpretation is ultimately defined in terms of the
traversal function which we defined before in Figure 5.

16

S LAdvalvild AANLS vy lAauvidviviau o4 id

module Primitives

imports Substitute Add Sub Replace Reset Yielders
exports

sorts Trafo

context-free syntax

"id" -> Trafo

"fail" -> Trafo

"reset" -> Trafo

"add" ProductionYielder -> Trafo

"sub" ProductionYielder -> Trafo

"substitute" Sort "by" Sort -> Trafo

"replace" SymbolsYielder "by" SymbolsYielder -> Trafo
"introduce" "module" ModuleName -> Trafo

"delete" "module" ModuleName -> Trafo

"rename" "module" ModuleName "to" ModuleName -> Trafo
"IT" u(u Trafo ||’n SDF ||,|| FOC'I.lS n)n -> SDF
equations

[IT-6] &SDFi=substitute (&SDFO0,&Focus0,&Sort0,&Sort1)

IT(substitute &Sort0 by &Sortl,&SDF0,&Focus0)=&SDF1

Fig. 6. Primitives

3.2 Focus

Transformational grammar programming is to a large extent concerned with
local changes. One way to realise this aspect in the framework is to restrict
grammar transformations so that they only apply in a certain focus. This
concept was already mentioned above for the primitive operator reset. The
operators replace and substitute are also often applied in a focus. In
Figure 7, all forms of focus and some helper functions are declared. The
actual application of a grammar transformation in a focus relies on the focus
combinator (cf. combinators in Figure 4).

As the first production in Figure 7 details, a focus is basically a compound
entity with one part declaring what modules are in the focus, and another
part for sorts. There are wild-card focus forms, that is, we can express that
all modules or sorts are focused. Finally, there are two auxiliary functions
focused(...) to check if a given module name or a given sort is covered by
the focus at hand.

3.3 Yielders

We can basically apply primitive transformation operators to concrete sym-
bols, productions and others. Often it is convenient to apply these operators
rather to symbolic operands. By symbolic we mean that we are concerned with

17

Ladvilvidy AL VAl o4 id

module Focus
imports Properties Bool
exports
sorts ModuleFocus SortFocus Focus
context-free syntax

"modules" ModuleFocus "sorts" SortFocus -> Focus
Error -> Focus

ModuleName+ -> ModuleFocus
"all" -> ModuleFocus

Sort+ -> SortFocus
"all" -> SortFocus

"focused" " (" ModuleName "," Focus ")" -> Bool
"focused" "(" Sort "," Focus ")" -> Bool

equations

Fig. 7. Focus

forms which are only turned into proper concrete symbols etc. by evaluation.
We call these forms yielders, and the corresponding function for evaluation
of yielders is called IY. This function is overloaded for each different type of
yielders. In a sense, yielders model basic operations for the types used in
grammar transformations.

In Figure 8, some forms of yielders and profiles for the overloaded evalu-
ation function IY are defined. One non-trivial form covered by the figure is
definition of s. This yielder evaluates to the definition of the sort s—if it
exists, and there is only a single production for s.

3.4 Conditions

A disciplined style of transformational grammar programming is achieved if
for each step the conditions of applicability are well-understood and enforced.
If we want to, for example, eliminate a sort, we pretend that it is not needed
anymore. Thus, in terms of pre- and post-conditions, we need to check that
the sort is fresh once we removed its definition. Several other properties for
sorts, modules, and symbols are defined in Figure 9. Conditions are used to
formulate conditional transformations based on if ... (cf. combinators in
Figure 4).
There are sort conditions to check if a sort is a

* fresh sort, i.e., it does not occur at all,
* bottom sort, i.e., it is used but not defined,
* defined sort, i.e., there is at least one defining production,

* top sort, i.e., it is not used, except maybe in its own definition.

As for modules, we can test if a module is empty and others. For two sequences

18

S LAdvalvild AANLS vy lAauvidviviau o4 id

module Yielders
imports Auxiliary
exports
sorts SymbolsYielder ProductionYielder
context-free syntax

Symbols -> SymbolsYielder

Pattern+ -> SymbolsYielder

"definition" "of" Sort -> SymbolsYielder

"permutation” "of" SymbolsYielder -> SymbolsYielder
SymbolsYielder "->" Sort Attributes -> ProductionYielder

"all" "sorts"-> SortFocusYielder
"sorts" Sort+ -> SortFocusYielder

"all" "modules" -> ModuleFocusYielder
"modules" ModuleName+ -> ModuleFocusYielder

SortFocusYielder "in" ModuleFocusYielder -> FocusYielder

"IY" "(" SymbolsYielder "," SDF "," Focus ")" -> Symbols
"IY" "(" ProductionYielder "," SDF "," Focus ")" -> Production
"IY" "(" FocusYielder "," SDF ")" -> Focus

equations

Fig. 8. Yielders

module Conditions
imports Covers Yielders
exports
sorts Cond Bool
context-free syntax

"fresh" "sort" Sort -> Cond

"bottom" "sort" Sort -> Cond

"defined" "sort" Sort -> Cond

"top" "sort" Sort -> Cond

SymbolsYielder "covers" SymbolsYielder -> Cond
SymbolsYielder "equal" SymbolsYielder -> Cond
"fresh" "module" ModuleName -> Cond

"defined" "module" ModuleName -> Cond

"empty" "module" ModuleName -> Cond

lIIC" II(|I Cond II’II SDF Il)!l _> Bool
"not" Cond -> Cond

equations

Fig. 9. Conditions

of symbols, we can check if they are equal modulo some simplification rules, or
if the first covers the second, that is, the first can be derived into the second.

19

Ladvilvidy AL VAl o4 id

The symbol A|A, for example, is equal to A. The symbols Ax B, for example,
cover the symbols A B. We should point out that many of these conditions
are implemented as traversal functions, in particular those conditions dealing
with sorts and modules in Figure 9. The function IC evaluates conditions. It
is convenient, to assume forms of conditions for the common logical operations
(cf. not ... in Figure 9).

3.5 Combinators

The module for combinators was already briefly explained in Section 2.2 (also
refer to Figure 4). We only want to summarise these combinators. Sequen-
tial composition of transformation t¢; and ¢, is denoted by ¢1;t,. To apply a
transformation ¢ in a focus f, we use the form focus on f do t. The focus pa-
rameter f is actually an expression yielding a focus. Thereby, we can express
things like “focus on all sorts reachable from ...”. Conditional transformations
are of the form if ¢ then t; else t5. Here, both t; and ¢, are transforma-
tions, and c is a condition. The concept of conditional transformation is used
to enforce pre- and post-conditions. We have an extra shorthand guard c to
prefix or postfix transformations by conditions, say guards. The shorthand is
defined as if c then id else fail (cf. rule [guard-1] in Figure 4). Finally,
there is the form ¢t effectively which behaves like ¢ but with the only excep-
tion that it fails if ¢ preserves the given grammar. We usually want to refuse
transformation steps which do not have any effect.

4 Derived operators

We define a number of derived transformation operators which correspond to
transformation techniques needed in actual transformational programming.
We describe groups for refactoring, construction, destruction. There also hy-
brids (cf. module ZigZag in Figure 2) which we will skip for brevity.

4.1 Refactoring

The group of transformations for refactoring comprises several semantics-
preserving transformations. By semantics-preserving we mean that the lan-
guage generated by the grammar is preserved. The corresponding formal
discussion can be found in [12]. The general idea of refactoring is to change
the structure of a grammar so that the grammar becomes more comprehensi-
ble, better accessible for subsequent changes, or feasible or more efficient for
implementation in a certain way. Several operators which we have identified
are also very common in other settings of semantics-preserving transforma-
tion, e.g., fold/unfold transformations in the context of logic and functional
programming [17].

The types of the refactoring operators are declared in Figure 10. For
brevity, we only show the actual definition of the operator rename. As the

20

S LAdvalvild AANLS vy lAauvidviviau o4 id

module Refactoring
imports Combinators Move YACCify DeYACCify Alternation
exports
context-free syntax

"rename" Sort "to" Sort -> Trafo

"fold" SymbolsYielder "to" Sort -> Trafo

"unfold" Sort -> Trafo

"introduce" Sort "as" SymbolsYielder -> Trafo
"eliminate" Sort -> Trafo

"equate" Sort "to" Sort -> Trafo

"simplify" SymbolsYielder "to" SymbolsYielder -> Trafo
"eliminate" "module" ModuleName -> Trafo

equations

[ren-1] rename &Sort0 to &Sortl =
guard fresh sort &Sortil;
substitute &Sort0 by &Sortl effectively;
guard fresh sort &Sort0

Fig. 10. Refactoring

rewrite rule [ren-1] details, the operator rename is derived from the primitive
substitute. The way the operator is constrained, it is made sure that the first
sort is consistently renamed to the second. As an aside, the post-condition
can only fail if the operator is applied in a (too restrictive) focus. All derived
operators are compositions of primitives constrained by guards to ensure pre-
and post-conditions.

Let us carry on with the other refactorings declared in Figure 10. There are
operators to fold and unfold productions. There are two other dual operators
to introduce and to eliminate sorts (say definitions). There is an operator
to equate two sorts because they are defined the same anyway, and there is an
operator to simplify SDF symbols. The operator eliminate is overloaded so
that one can also eliminate modules. Recall that the introduction of modules
was already covered by a corresponding primitive (cf. Figure 6).

Some of the slightly more complex refactorings are not declared directly in
the Refactoring module, but rather in the imported modules (cf. imports
in Figure 10). The module Move defines an operator move which facilitates
intra-modular and inter-modular moves of productions. Within a module,
moves are sometimes needed to enforce a certain favoured order. Inter-modular
moves are needed for modularisation or demodularisation. The concepts from
the other imported modules YACCify, DeYACCify, and Alternation will be
explained in the application section (cf. Section 5).

4.2 Construction and destruction

As a matter of fact, refactoring is not sufficient in transformational grammar
programming. When a grammar evolves during development or maintenance,
the grammar usually has to be changed in a more general way. We consider

21

S LAdvalvild AANLS vy lAauvidviviau o4 id

two deviations from refactoring. The first class covers so-called construction
operators. The other class covers the opposite concept, that is, destruction.
Let us first consider construction. The idea here is that these operators extend
the grammar, that is, they are in a sense constructive. There are in turn two
ways how construction can be performed. We might provide definitions for
undefined sorts. We might also generalise existing definitions.

module Construction
imports Combinators Move
exports
context-free syntax

"generalise" SymbolsYielder "to" SymbolsYielder -> Trafo
"include" SymbolsYielder "in" Sort -> Trafo

"resolve" Sort "as" SymbolsYielder -> Trafo

"unify" Sort "to" Sort -> Trafo

equations
[gen-1] generalise &SymbolsYielderl to &SymbolsYielder2 =
guard &SymbolsYielder2 covers &SymbolsYielderli;
replace &SymbolsYielderl by &SymbolsYielder2 effectively

[unify-1] unify &Sortl to &Sort2 =
guard bottom sort &Sortil;
guard not fresh sort &Sort2;
replace &Sortl by &Sort2;
guard fresh sort &Sortl

Fig. 11. Construction

In Figure 11, several forms of construction are defined. We can generalise
symbols. Note the pre-condition to ensure that the phrase corresponding
to the first operand indeed is subsumed by the phrase corresponding to the
second operand. Other ways of construction are to include a production, and
to resolve a so-far undefined sort. The last operator for construction which
we want to mention here is unify. The operator is supposed to connect, in a
way, a given bottom sort with another sort. Again, the guards convey essential
ideas. The pre-condition checks that the second sort is not fresh. Otherwise,
unification degenerates to renaming. There is also a post-condition for unify
checking that sort substitution was done in exhaustive manner, that is, the
focus was not set too specific.

In Figure 12, the opposites of the construction operators are declared.
Symbols can be restricted. Productions can be excluded (as long as the
underlying sort does not get undefined thereby). Definitions of sorts can
be entirely rejected. The definition of the operator reject is a suitably
restricted reset.

22

Ladvilvidy AL VAl o4 id

module Destruction
imports Combinators
exports
context-free syntax

"restrict" SymbolsYielder "to" SymbolsYielder -> Trafo
"exclude" SymbolsYielder "from" Sort -> Trafo

"reject" Sort -> Trafo

"reject" "module" ModuleName -> Trafo

"seperate" Sort "as" Sort -> Trafo

equations

Fig. 12. Destruction

5 Applications of FST

We discuss a few applications of grammar transformations. We illustrate the
applications with IBM’s COBOL dialect VS COBOL II. This, of course, does
not imply in any sense that our technology is restricted to COBOL-like lan-
guages. First, we study applications in the context of grammar implementa-
tion. Then, we deal with grammar recovery. Finally, grammar transformations
are considered in the context of grammar reengineering.

5.1 Grammar implementation

Transformations are useful in grammar implementation as we will indicate
with a few scenarios. Transformations can be used, for example, in conflict
resolution and disambiguation, YACCification, and grammar minimalisation.

Disambiguation

Grammars serving as references are tuned towards readability. When it comes
to parser implementation, the grammars at least need to be disambiguated.
Depending on the chosen parser technology, conflict resolution has to be per-
formed, too. Let us consider a typical VS COBOL II sample. According to
COBOL terminology, we should separate plain data items, and structured,
possibly nested record descriptions. The VS COBOL II standard [10] encour-
ages this separation by using two distinct identifiers, namely

* Record-description-entry and
* Data-item-description-entry.
Unfortunately, at some point the standard regulates that the syntax for such
entries is described by Data-description-entry. The latter nonterminal
describes flat entries which might be part of a record or not. Indeed, it is
hardly possible to syntactically separate data items and records because of

the way level numbers are used in COBOL to describe the nesting structure
of records. The input grammar fragment in Figure 13 is clearly ambigu-

23

S LAdvalvild AANLS vy lAauvidviviau o4 id

ous because of the coinciding definition of Record-description-entry and
Data-item-description-entry. To disambiguate the grammar, we perform
the transformation steps shown in the figure. Firstly, we unfold the definitions
of the aforementioned sorts. Secondly, we simplify the ambiguous expression
without affecting the generated language. Finally, we can eliminate the defi-
nitions of the obsolete nonterminals.

Ambiguous grammar fragment

&V.IF.'ILE" IISECTIDN" n . n

(File-and-sort-description-entry Record-description-entry+)*)?
("WORKING-STORAGE" "SECTION" "."

(Record-description-entry | Data-item-description-entry)*)?
("LINKAGE" "SECTION" "."

(Record-description-entry | Data-item-description-entry)*)?

-> Data-division-content

Data-description-entry -> Data-item-description-entry
Data-description-entry -> Record-description-entry

Semantics-preserving transformation

focus on sort Data-division-content do
unfold Record-description-entry;

focus on sort Data-division-content do
unfold Data-item-description-entry;

focus on sort Data-division-content do
simplify Data-description-entry | Data-description-entry
to Data-description-entry;
eliminate Record-description-entry;

eliminate Data-item-description-entry;

Disambiguated grammar fragment

&I-IF-‘ILEII |ISECTIONII n -H
(File-and-sort-description-entry Data-description-entry+)*)?
("WORKING-STORAGE" "SECTION" "."
Data-description-entry*)?
("LINKAGE" "SECTION" "."
Data-description-entry*)?
-> Data-division-content

Fig. 13. Disambiguation sample for VS COBOL II

YACCification

If the parser description language at hand does not support extended BNF, or
if the actual application of a grammar requires that only simple BNF forms
are to be used (e.g., in the case of standard attribute grammars), then we

24

Ladvilvidy AL VAl o4 id

[optional] eliminate-optional &Symboll use &Sortl =
introduce &Sortl as &Symboll;
include in &Sorti;
replace &Symboll? by &Sortl effectively

Fig. 14. Elimination of optionals (from module YACCify)

need to perform an adaptation for elimination of extended BNF patterns (op-
tionals, lists, and nested alternatives). We call this kind of transformation
YACCification (cf. module YACCify in Figure 2). To eliminate, for example,
an optional, we resort to a scheme where an optional is modelled with an aux-
iliary nonterminal. This simple idea is illustrated with the derived operator
eliminate-optional in Figure 14.

The elimination of all extended BNF phrases can be done by the repeated
application of operators like the one given. Another possibility is that YACCi-
fication is done automatically in exhaustive manner. Then, unique sort names
for the auxiliary nonterminals have to be generated (cf. concept IdentifierGen-
eration in Figure 2). The resulting grammar will however be less readable.
Therefore, it is often favourable to leave it in the responsibility of the gram-
mar programmer to flatten the grammar step by step using transformations.
Thereby, sensible sort names and phrases can be identified.

Grammar minimalisation

The scenario of grammar minimalisation is less of a standard idea. By mini-
malisation we mean a kind of grammar specialisation according to an available
code base. Such a minimalisation is motivated by applications from automated
software renovation [20,14], where one needs to implement, program transfor-
mations or source-to-source translations. Automatic grammar minimalisation
helps to reduce the effort in this domain. If the code base at hand covers
only a smaller part of the full grammar, this can be measured and made ex-
plicit in a minimised grammar. The resulting grammar serves as a much more
precise contract for grammar-based tools. The effort for developing tools for
automated software renovation indeed strongly depends on the number of pat-
terns to be handled, and on the fact if the necessity to handle a certain pattern
can be safely and easily determined and maintained. The idea of automated
grammar minimalisation is illustrated in Figure 15.

We do not explain here how coverage measurement is to be performed (cf.
[13] for the underlying theory). Once the coverage is available, the grammar
can be specialised by restrict, exclude, and eliminate. To gain some
precision, a “context-dependent” coverage notion can be taken into account
where coverage of productions is measured relative to the occurrence in which
the relevant nonterminal occurs. To realise this more precise measurement in
the minimalised grammar, applications of fold and unfold are also due.

25

Ladvilvidy AL VAl o4 id

Full grammar

Y

Parser
generator
Coverage Grammar
Code Parser AST accumulator | overage | Minimiser

Minimised grammar

Fig. 15. Grammar minimalisation

5.2 Grammar recovery

The transformation from the introduction provides a good example for gram-
mar recovery. In the example, the aim was to recover the correct definition
of subscripts from IBM’s VS COBOL II standard. A global account on gram-
mar recovery is given in [14]. To recover a relatively correct and complete
VS COBOL II grammar from the raw grammar contained in IBM’s standard,
we had to perform about 300 transformation steps. We can hardly include all
the transformations verbatim. Let us describe the kinds of correctness and
completeness problems we encountered:

Preparation As a result of the extraction from a semi-formal language refer-
ence, some sort names were entirely unsuitable because some of them had to
be generated or composed using heuristics. Also, some obviously redundant
or obsolete definitions could be removed.

Connectivity The introductory example from Figure 1 was an example for
connectivity problems: A sort for a certain construct is not defined, although
the intended construct is subsumed by some other sort. This problem pops
up for IBM’s VS COBOL II reference because the developers preferred to
define some constructs rather in their context than separately. This style
was chosen for a debatable convenience of reading, but it destroys the con-
nectivity of the grammar.

Lack of definition The definitions of certain sorts were entirely missing in
the grammar contained in the standard, e.g., arithmetic expressions. The
definitions are then usually defined in natural language. With some decent
COBOL-knowledge one could turn the text into productions. We could not
identify a good reason to resort to textual explanations instead of concise
context-free grammar productions.

Extensions and relaxations Many symbols were too restrictive. A com-

26

S LAdvalvild AANLS vy lAauvidviviau o4 id

Restrictive grammar fragment

Alphabet-clausex*

Symbolic-characters-clausex*

Class-clausex*

Currency-sign-clause?

Decimal-point-clause? -> Special-names-paragraph-clauses

Generalising transformation

focus on
sort Special-names-paragraph-clauses
do
generalise
definition of
Special-names-paragraph-clauses
to
permutation of
definition of
Special-names-paragraph-clauses

Grammar fragment with permutation phrase

<< Alphabet-clausex*
Symbolic-characters-clausex*
Class-clausex*
Currency-sign-clause?
Decimal-point-clause? >> -> Special-names-paragraph-clauses

Fig. 16. Sample for introduction of permutation phrase

mon example is that certain constructs were obligatory in Standard COBOL,
but optional in IBM’s VS COBOL II. There are more difficult examples,
e.g., regarding abbreviated combined relation conditions. There are 12 in-
formal rules for how parentheses can be placed in abbreviations. Most
other problems for extensions or relaxations were easy to identify and im-
plement. A subclass of problems concerns permutation phrases [8], that
is, if the order of certain subphrases is immaterial. In Figure 16, we show
how a permutation phrase is enforced for the SPECIAL NAMES paragraph of
COBOL. We generalise the definition of the nonterminal for the rele-
vant clauses to the corresponding permutation phrase. Note that the form
permutation of ... is a form of yielder. The SDF notation for permuta-
tion phrases is << ... >>.

Grammar transformations trace adaptations of a grammar in a convenient
manner. In the VS COBOL II project, we modularised the transformation
script so that it becomes clear what transformation is concerned with what
problems. We have 15 subscripts which deal, for example, with the aforemen-
tioned class of problems called preparation, with certain parts of the COBOL

27

Ladvilvidy AL VAl o4 id

syntax, and other problems like the proper resolution of bottom sorts in terms
of lexical sorts.

5.3 Grammar reengineering

Software reengineering for grammars can unsurprisingly be called grammar
reengineering. We refer to [20] for a global account on reengineering language
descriptions and related issues. The overall idea of grammar reengineering
is that syntax descriptions are reengineered in order to become fit for other
purposes, e.g., for redocumentation, and tool-generation. Reengineering com-
prises activities like the following:

* removal of semantic actions intertwined with a parser description,
* refactoring or normalisation in a broad sense,

* modularisation, and

deYACCification (introduction of optionals, lists and that alike).

Let us discuss some activities in detail.

Modularisation

Modular grammars are fully supported by SDF and the accompanying tools.
Modularity is useful simply for the reason that a modular grammar is usually
more comprehensible. Given a complex language like COBOL, the modular
hierarchy provides a good entry point to study the grammar and the language.
The module hierarchy which we derived for our VS COBOL II case is shown
in Figure 17. Modular grammars are also appropriate to cope with dialect
problems. Together with some features of SDF, modularisation also allows us
to separate the core syntax from declarations for disambiguation.

Modularisation is easily accomplished by transformations. Note that mod-
ularisation can be conceived as a form of refactoring because it does not affect
the language generated by the grammar. We have the operators introduce
and eliminate for the introduction and elimination of modules. We use the
operator move to move productions between the modules. In Figure 18, we
illustrate the introduction and inhabitation of one module for VS COBOL II,
namely the module for arithmetic expressions. If we do not want to enumerate
all sorts to be moved, we can also use a closure operator to include all sorts
reachable from some distinguished set.

FST supports modularisation and modular syntax not just in the sense
that corresponding operators are offered. The framework also takes care of
the module interfaces. The imports of modules, and the exports of sorts are
automatically derived from the productions at hand. This approach does not
just enforce consistent interfaces, but it also promotes a homogeneous style of
import and export.

28

Ladvilvidy AL VAl o4 id

Cohol

ProcedureDivision

\

ConfigurationSection DataDivision Statements

\ ,

FileAndSortDescriptionEntry Conditions

EnvironmentDivision

InputOutputSection DaaDescriptionEntry

ArithmeticExpressions

L~

DataReference

7

Fig. 17. Modular COBOL grammar

|dentificationDivision

introduce module ArithmeticExpression;

focus on module Cobol do

move

sorts Arithmetic-expression Times-div Power Basis
to

module ArithmeticExpression;

Fig. 18. Excerpt of the modularisation script for VS COBOL II

DeYACCification

Given a grammar which does not use extended BNF', one can derive a more
readable, richer grammar with optionals, list constructs, and others. This
has been, for example, suggested in [20]. We call the corresponding grammar
reengineering technique deYACCification (cf. module DeYACCify in Figure 2).
Clearly, this approach is the inverse of YACCification discussed earlier. The
technique is also related to the problem of the derivation of abstract from
concrete syntax studied in [23]. In Figure 19, we show some schemata for
deYACCification.

In the schemata, the sort variable (Y') is the place-holder for the auxiliary
nonterminal used in the puritanical notation (usually YACC). The replace-
ment is shown as a grammar transformation including elimination steps. As
for the schemata dealing with separated lists, we only eliminate (R) (which is
intended to cover the tail of a separated list) if it is a top sort.

29

Ladvilvidy AL VAl o4 id

Description Pattern Replacement
Optionals - (Y) replace(Y') by (X)?;
(X) = (Y) eliminate (V)
Star-lists =) replace(V) by (X)*;
(X) (Y) = () eliminate (V)
Plus-lists (X) =) replace(Y) by (X)*;
(X) (Y) = () eliminate (Y)
o ace(¥) by {(X) ()}
replace :
. Jeom s NN
eparated star-lists eliminate (Y');
(B if top (R) eliminate (R) else id
(S) (X) (R) = (R)
(X)(R) = () replace(Y’) by {(X) (S)}*;
Separated plus-lists — (R) eliminate (Y');
(S) (X) (R) — (R) if top (R) eliminate (R) else id

Fig. 19. Schemata for deYACCification

Normal-forms

Besides deYACCification, there are other schemata useful in grammar reengi-
neering. Sometimes we need to derive a flat definition of (X) from a non-flat
definition and vice versa. These concepts are illustrated in Figure 20 (and they
are exported by the FST module Alternation). By flat we mean that the (X)
is defined as list of top-level alternatives in one production. Consequently, by
non-flat we mean that (X) is defined by multiple productions, where each sin-
gle production has no top-level alternatives. A non-flat form is usually more
readable especially if the alternatives are complex. A flat definition is needed
if (X') should be unfolded.

(A1) = (X)

Fig. 20. Non-flat vs. flat definition of (X)

Implementation of schemata

Conceptually, it is clear that the schemata like those in Figure 19 and Figure 20
describe refactorings which are, of course, semantics-preserving. Technically,
schemata are not expressible in the current framework as derived operators
because the required kind of matching is not (yet) possible in FST. We only
can encode the transformation for replacement underlying a scheme as shown
in Figure 19. However, schemata can be encoded as rewrite rules (as opposed

30

Ladvilvidy AL VAl o4 id

to derived operators). Such a rewrite rule matches the given grammar against
patterns like those in Figure 19 so that schema variables get bound, and then
grammar transformations are performed using these bound variables. The
application of the “scheme as rewrite rule” idea is a bit tedious. We have to
enforce certain side conditions: We should not be sensitive w.r.t. the order of
the productions in the input scheme. We also have to test that the instantiated
rules from the input scheme are all productions for (Y').

Exhaustive scheme application corresponds simply to repeated application
of rewrite rules encoding a scheme. Note that a set of schemata, when consid-
ered as rewrite rules in a naive manner, might violate confluence. Consider,
for example, the given scheme for optionals. Its application might disable
intended applications of the scheme for separated lists.

6 Concluding remarks

We have reported on the design, the prototype implementation, and the ap-
plications of FST—a Framework for SDF Transformation. FST supplies
primitive operators, auxiliary concepts, and derived operators for refactoring,
construction, and destruction. The formal underpinnings of grammar adap-
tation are described in [12].

There is hardly related work on grammar transformations. There are some
folklore transformations, like EBNF to BNF reduction, elimination of left-
recursion, transformation to Chomsky-Normal-form, but previously, there was
no framework covering the transformations performed by grammar program-
mers manually otherwise. In the emerging XT project [24] for program trans-
formation, some grammar transformation tools are also included or developed.
The transformational style to grammar adaptation supported by FST has been
largely motivated by the general idea of transformational programming [16].

Operator suites and corresponding transformation systems exist for other
domains than grammar programming, e.g., in logic programming [1,7], or for
main-stream programming languages [2]. Operator suites and tool support
for program adaptation are also well-established concepts in object-oriented
programming. In [19,15], for example, refactoring tools are described.

The choice for the ASF4+SDF Meta-Environment as platform for a proto-
type implementation was driven by some of its key features. The integration
with the powerful syntax definition formalism SDF allows us to cover a rep-
resentative part of notation for concrete (and abstract) syntax. The algebraic
specification formalism ASF allows us to develop formal and executable spec-
ifications of the FST concepts. The recent addition of traversal functions
provides us with a means to define the many transformations and analyses in
FST in a concise manner.

A preliminary form of traversal functions based on generating the traversal
functions was described in [6]. The present implementation fully transparently
integrates traversal functions with ASF+SDF and the rewrite engine. The

31

Ladvilvidy AL VAl o4 id

design and the implementation is discussed in full detail in [4]. Many of
our grammar transformations and the contributing grammar analyses take
advantage of traversal functions. At the time of writing this article, FST
uses 24 traversal functions with only a few rewrite rules per function. The
SDF grammar itself has about 100 relevant productions. This is a remarkable
indication for the usefulness of the support for traversal functions. In worst
case, we would have to deal with about 2400 rewrite rules otherwise.

Finally, we want to point out a few directions for future work. We have
not yet fully understood the role of SDF disambiguation constructs in the
context of grammar transformations. A conceptual problem with the current
FST is that schemata as for deYACCification are not first-class citizens, i.e.,
they cannot be encoded as derived operators. We would like to extend FST so
that concepts of matching and iteration can be applied for operator definition.

References

[1] F. Alexandre, K. Bsaies, J.P. Finance, and A. Quere. Spes: A System for
Logic Program Transformation. In A. Voronkov, editor, Logic Programming
and Automated Reasoning, LPAR’92, volume 624 of LNCS, pages 445-447.
Springer-Verlag, 1992.

[2] I. Attali, V. Pascual, and C. Roudet. A language and an integrated environment
for program transformations. Rapport de recherche 3313, INRIA, December
1997.

[3] J. A. Bergstra, J. Heering, and P. Klint. The Algebraic Specification Formalism
ASF. In Algebraic Specification, chapter 1, pages 1-66. The ACM Press in
cooperation with Addison-Wesley, 1989.

[4] M.G.J. van den Brand, P. Klint, and J.J. Vinju. Term Rewriting with Traversal
Functions. Technical report, CWI, Amsterdam, 2001. in preparation.

[6] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-Environment: a component-based language
development environment. In Compiler Construction 2001 (CC 2001), LNCS.
Springer, 2001. To appear.

[6] M.G.J. van den Brand, A. Sellink, and C. Verhoef. Generation of components
for software renovation factories from context-free grammars. Science of
Computer Programming, 36(2-3):209-266, 2000.

[7] J. Brunekreef. TransLog, an Interactive Tool for Transformation of Logic
Programs. Technical Report P9512, University of Amsterdam, Programming
Research Group, December 1995.

[8] R.D. Cameron. Extending context-free grammars with permutation phrases.
ACM Letters on Programming Languages and Systems, 2(4):85-94, March 1993.

32

Ladvilvidy AL VAl o4 id

[9] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF — Reference manual. SIGPLAN Notices, 24(11):43-75, 1989.

[10] IBM Corporation. VS COBOL II Application Programming Language
Reference, 1993. Release 4, Document number GC26-4047-07.

[11] P. Klint. A meta-environment for generating programming environments. A CM
Transactions on Software Engineering and Methodology, 2(2), pages 176-201,
1993.

[12] R. Lammel. Grammar Adaptation. In Proc. Formal Methods Europe (FME)
2001, volume 2021 of LNCS, Springer-Verlag, 2001.

[13] R. Lammel. Grammar Testing. In Proc. Fundamental Approaches to Software
Engineering (FASE) 2001, volume 2029 of LNCS, Springer-Verlag, 2001.

[14] R. Lammel and C. Verhoef. Semi-automatic Grammar Recovery. Submitted,
available at http://www.cwi.nl/"ralf/, July 2000.

[15] I. Moore. Automatic Inheritance Hierarchy Restructuring and Method
Refactoring. In Proc. OOPSLA ’96: Object-Oriented Programming Systems,
Languages, and Applications, pages 235-250. ACM Press, 1996.

[16] H.A. Partsch. Specification and Transformation of Programs. Springer-Verlag,
1990.

[17] A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional
and Logic Programs. ACM Computing Surveys, 28(2):360-414, June 1996.

[18] J. Rekers. Parser Generation for Interactive Environments. PhD thesis,
University of Amsterdam, 1992.

[19] D. Roberts, J. Brant, and R.E. Johnson. A Refactoring Tool for Smalltalk.
Theory and Practice of Object Systems (TAPOS), 3(4):253-263, 1997.

[20] A. Sellink and C. Verhoef. Development, Assessment, and Reengineering of
Language Descriptions. In J. Ebert and C. Verhoef, editors, Proc. Fourth
European Conference on Software Maintenance and Reengineering, pages 151—
160. TEEE. Computer Society, March 2000.

[21] M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for
Practical Systems. Kluwer Academic Publishers, 1985.

[22] E. Visser. Syntaz Definition for Language Prototyping. PhD thesis, University
of Amsterdam, September 1997.

[23] D.S. Wile. Abstract Syntax From Concrete Syntax. In Proc. of the 1997
International Conference on Software Engineering, pages 472-480. ACM Press,
1997.

[24] XT: Program Transformation Tools, 2000-2001. http://www.program-
transformation.org/xt/.

33

