Engineering Science and Technology, an International Journal 18 (2015) 256—269

HOSTED BY

Engineering Science and Technology,

journal homepage: http://www.elsevier.com/locate/jestch

Contents lists available at ScienceDirect

an International Journal

Full length article

Adaptive workflow scheduling in grid computing based on
dynamic resource availability

@ CrossMark

Ritu Garg', Awadhesh Kumar Singh

Computer Engineering Department, National Institute Of Technology, Kurukshetra, Haryana, India

ARTICLE INFO

Article history:

Received 13 October 2014
Received in revised form

19 December 2014

Accepted 5 January 2015
Available online 4 February 2015

Keywords:

Grid computing

DAG grid workflow

Adaptive workflow scheduling
Re-scheduling

Resource monitoring

ABSTRACT

Grid computing enables large-scale resource sharing and collaboration for solving advanced science and
engineering applications. Central to the grid computing is the scheduling of application tasks to the
resources. Various strategies have been proposed, including static and dynamic strategies. The former
schedules the tasks to resources before the actual execution time and later schedules them at the time of
execution. Static scheduling performs better but it is not suitable for dynamic grid environment. The lack
of dedicated resources and variations in their availability at run time has made this scheduling a great
challenge. In this study, we proposed the adaptive approach to schedule workflow tasks (dependent
tasks) to the dynamic grid resources based on rescheduling method. It deals with the heterogeneous
dynamic grid environment, where the availability of computing nodes and links bandwidth fluctuations
are inevitable due to existence of local load or load by other users. The proposed adaptive workflow
scheduling (AWS) approach involves initial static scheduling, resource monitoring and rescheduling with
the aim to achieve the minimum execution time for workflow application. The approach differs from
other techniques in literature as it considers the changes in resources (hosts and links) availability and
considers the impact of existing load over the grid resources. The simulation results using randomly
generated task graphs and task graphs corresponding to real world problems (GE and FFT) demonstrates
that the proposed algorithm is able to deal with fluctuations of resource availability and provides overall
optimal performance.
© 2015 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

(workflows) are one of the typical application models used in sci-
entific and engineering fields requiring large amount of bandwidth

Recently, the rapid development of networking technology and
web has led to the possibilities of using large number of
geographically distributed heterogeneous resources owned by
different organizations. These developments have led to the foun-
dation of new paradigm known as Grid Computing [9,15]. Grid
Computing is a type of parallel and distributed system that involves
the integrated and collaborative use of resources depending on
their availability and capability to satisfy the demands of re-
searchers requiring large amount of communication and compu-
tation power to execute advanced science and engineering
applications. Precedence constrained parallel applications

* Corresponding author.
E-mail addresses: ritu.59@gmail.com (R. Garg), aksinreck@rediffmail.com
(AK. Singh).
Peer review under responsibility of Karabuk University.

http://dx.doi.org/10.1016/j.jestch.2015.01.001

and powerful computational resources. To achieve the promising
potential of distributed resources, effective and efficient scheduling
algorithm is important. The grid scheduler acts as an interface
between user and distributed grid resources. The workflow
scheduling in grid is one of the key challenges, which deals with
assigning workflow tasks to the available grid resources while
maintaining the task precedence (dependency) constraints and to
meet the quality of service (QoS) demands of the user like mini-
mizing the overall execution time.

In general, scheduling tasks on distributed grid resources be-
longs to a class of NP-hard problems [16]. So heuristics or ap-
proximations are the preferred options to obtain near optimal
solutions. Many heuristics have been devoted to this problem as
discussed in literature [2,7,21,30] considering that accurate pre-
diction is available for computation cost and communication cost of
resources. However, in real environment, it is difficult to accurately
predict the values due to heterogeneous and dynamic

2215-0986/© 2015 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ritu.59@gmail.com
mailto:aksinreck@rediffmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2015.01.001&domain=pdf
www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch
http://dx.doi.org/10.1016/j.jestch.2015.01.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jestch.2015.01.001
http://dx.doi.org/10.1016/j.jestch.2015.01.001

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269 257

characteristics of the grid environment. The dynamicity of the grid
resources is due to both the network connectivity and computa-
tional nodes.

As the grid resources are not dedicated, and can be used by the
other users simultaneously, which leads to load variations on re-
sources. The local tasks have more priority and handled first in
comparison to grid tasks. The fluctuations in the resource avail-
ability (computing speed of the host and links bandwidth) due to
resource's local loads and competition from other users cause the
original schedule to become sub optimal. If for instance, load of the
processor increases, the execution time of the tasks assigned to it
will increase. Further, sudden increase in link load, increases the
data transfer time between computers where dependent tasks re-
sides. In case of grid applications especially for long running jobs
(days or weeks), the performance degradation caused by load over
resources is unacceptable. It leads to the necessity of relocating the
tasks to other resources. Hence, it is a key challenge to maintain an
application performance during its execution, if their resources
suddenly receive high workload.

In order to ensure high performance in dynamic and unreliable
grid environment, we considered the adaptive scheduling [19]
where scheduling policy change dynamically as per the previous
and current behavior of the system to cope with the variations in
the resource availability. Here, initial scheduling of all the tasks is
performed statically and then rescheduling of unexecuted tasks is
performed when required. The ability to discover and monitor the
status of resources at run time is fundamental for the adaptive
operation of the grid here.

In this paper, we proposed a novel Adaptive Workflow Sched-
uling (AWS) algorithm for grid applications consisting of workflow
tasks (dependent tasks) to meet the performance requirements
based on QoS information like availability along with the accessi-
bility of the resources as indicated by service level agreement (SLA).
It considers the processors (computing speed) and network links
(bandwidth) availability by monitoring the load over non-
dedicated grid processing nodes and network links. The proce-
dure involves static task scheduling, periodic resource monitoring
and rescheduling the remaining unexecuted tasks in order to deal
with changes/fluctuations occurring at run time and to achieve
minimum execution time (makespan) of the workflow grid appli-
cation. The procedure of proposed AWS differs from other ap-
proaches in literature by considering the dynamic availability of
resources, both computing nodes and communication links due to
existence of local load or load by other users. It considers (i)
Degradation of resource performances especially computing speed
of nodes and network links bandwidth as per SLA, as a source for
triggering rescheduling. (ii) Evaluate the benefits of rescheduling
considering cost of reevaluating the schedule and overhead due to
transfer of data. (iii) Availability of newly added resources.

The AWS algorithm is efficient one as it achieves minimum
execution time of the application with the help of rescheduling the
computation away from: overloaded computing nodes, nodes with
overloaded communication links that can slow down the compu-
tation and it also considers the addition of new nodes to increase
the performance of the application. Further, algorithm also pro-
vides load balancing by supporting rescheduling of tasks form
overloaded resources.

The rest of the paper is organized as follows. We briefly mention
the related work in Section 2. Section 3, describes the mathematical
model, including the resource model, task model along with the
problem definition. Thereafter, in Section 4, we explain the pro-
posed Adaptive workflow Scheduling algorithm. Section 5 includes
the pseudo code of the algorithm and detailed example. Section 6
discusses the simulation and result analysis. Finally section 7,
gives the conclusion.

2. Related work

The problem of scheduling in grid, for workflow (DAG-based)
tasks has already been addressed in the literature. Most of the
related work attempt to achieve the minimum execution time
(makespan) on heterogeneous grid environment. To schedule
scientific workflow applications, Heterogeneous Earliest Finish
Time (HEFT) [29], is the most popular list based heuristic. It orders
the workflow tasks based on priorities and then assign them to
suitable resources to achieve high performance. Similarly another
list based heuristics Min—min, Max—Min [22], Critical-Path-on-a-
processor (CPOP) [29] are studied to achieve high performance.
The PCH algorithm [5] uses a hybrid clustering-list-scheduling
strategy, where tasks with heavy communication cost are group-
ed together and assigned to the same resource in a cluster. It aims
to reduce the schedule length by reducing the communication
cost. Further, the paper [14] describes the design, development
and evolution of the Pegasus Workflow Management System,
which maps abstract workflow descriptions onto distributed
computing infrastructures in order to achieve reliable and scalable
workflow execution.

The critical issue in list heuristics for DAG scheduling is the
accurate prediction for both the computation and the communi-
cation costs. However, in a real grid environment, system is less
reliable and more dynamic: individual resource capability varies
over time due to internal or external factors, thus, it is difficult to
estimate these values accurately. To deal with resource dynamicity,
two types of approaches are proposed in literature: dynamic
scheduling and adaptive scheduling. In dynamic scheduling, all
tasks are scheduled at run time while in adaptive scheduling; an
advance static schedule is generated using available estimates and
schedules responds to changes at run time with the help of
rescheduling. GrADS [4] is the typical rescheduling mechanism
which schedules workflow grid tasks based on three popular
heuristics of Min—min, Max-min and Suffrage. It focuses on itera-
tive workflows, allowing system to perform rescheduling at each
iteration. Rescheduling is activated by contract violation between
user and resource provider. If the performance is expected by
migration, then unexecuted jobs are migrated to new mapped
resources.

Other rescheduling methods proposed are AHEFT [31] and
SLACK [26]. In AHEFT, author proposed an adaptive rescheduling
algorithm based on static strategy. Here the workflow planner
adapts to grid dynamics with the help of run time executor.
Rescheduling is performed on the basis of FEA, which is the earliest
time when output file is available for dependent tasks, if perfor-
mance increase is there. While in SLACK [26] it is using the concept
of spare time, which does not affect the schedule length of the
workflow. If execution time of task goes beyond the spare time then
only selective rescheduling event is triggered. The major drawback
of these studies is that rescheduling is performed on periodic basis
on performance degradation. Moreover, during rescheduling initial
information of grid resources is used, without reflecting dynami-
cally updated information.

Another approach to deal with dynamic performance changes of
grid resources is proposed in [6] which uses the path clustering
heuristic (PCH) to generate the initial schedule and then round
based approach is used to reschedule. On each round some of the
tasks based on a criterion are sent to execute and then performance
of the resource is measured in that round. If performance is below
the threshold value, then the algorithm reschedules the non
executed tasks. In [11] the author proposed the adaptive list
scheduling service algorithm (ALSS) for workflow tasks in order to
deal with dynamic nature of service oriented grid environment.
Low overhead rescheduling is considered only for services on the

258 R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

critical path of the workflow. In paper [27], three algorithms
namely incremental algorithm, divide and conquer algorithm and
genetic algorithm have been developed for deciding when and
where to reschedule tightly coupled parallel applications in dy-
namic grid environment. A rescheduling plan consists of potential
points in application execution for rescheduling and schedule of
resources for execution between two consecutive rescheduling
points. Both application and resource dynamics are considered in
this paper. In these studies, the performance of the executing tasks
is monitored continuously; if it is degraded rescheduling is per-
formed without considering the dynamically updated resource
status.

Further, there are another set of the approaches [3,28] which
deals with dynamicity of resources, for executing workflow tasks in
grid. They consider the effect of presence of load (local loads or load
by other users) on the availability of resources (processors or links)
for user's application tasks. In Ref. [28], the author schedules the
tasks considering the exiting load over processors and network
links. Similarly, in Ref. [3], the author considers the resource
availability (especially bandwidth) at run time and initiates task
migration after evaluating its benefits.

In [10], the author proposed the adaptive scoring job scheduling
algorithm to schedule independent set of tasks composing of
compute intensive and data intensive jobs. When the job scheduler
receives the new jobs, it assigns them to the most appropriate re-
sources according to their cluster score. Local update and global
update are used to get the newest status (cluster score) of resources
in Grid environment. However, it does not handle the performance
degradation of the already scheduled jobs due to dynamic load.
Paper [25] introduced the dynamic critical path based workflow
scheduling algorithm for grid namely DCP-G that provides efficient
schedule in static environment. Further, it adapts to the dynamic
grid environment, where resource information is updated after
fixed interval and rescheduling (Re-DCP-G) is performed if neces-
sary. It also describes the outlining of hybrid heuristic algorithm
that combines the features of the adaptive scheduling technique
with meta-heuristics for optimizing execution time and cost in
dynamic cloud environment. In paper [24], rescheduling approach
is used for large scale distributed system (Re-LSDS) to support fault
tolerance and resilience.

To the best of our knowledge, proposed AWS is different from
others in considering the issues of: Effects of existing load on
processors and network links on the computation and communi-
cation cost, consideration of dynamic resource availability as the
source for triggering rescheduling and availability of newly added
resources. Here the initial static schedule of tasks is generated by
considering the availability of resources (computing speed of the
hosts or links bandwidth) after considering the existing local load.
Then resource discovery and monitoring component periodically
monitors the changes in the availability of the resources (due to
change of load or registering new resources) and triggers the
rescheduling phase for remaining unexecuted tasks to escort with
dynamically updated resource information.

3. Problem statement and preliminaries

In this section, we describe the formal definitions for grid re-
sources, workflow tasks and problem considered in this study.

3.1. Resource model

In our grid computing model, we considered the groups of
interconnected geographical distributed resources, where groups
may be LANSs, clusters, or individual nodes as shown in Fig 1. Here

Cluster

Fig. 1. Example of grid computing network model.

each resource in the group is autonomous and associated with
different processing capabilities.

At each group, there is a local scheduler which is responsible for
distributing tasks of workflow application among the resources of
the group. Further, there is a global scheduler responsible for
distributing the tasks among the different groups. The proposed
algorithm distributes the tasks at the local level to all the available
resources.

We consider the grid network G; = (R, L), consisting of m
number of fully interconnected heterogeneous and dynamic
computing nodes represented as set R = {ry, 12 ... rp}. Fully inter-
connection means that a route exists between any two processors
and inter-processor communication is heterogeneous in nature.
The terms node, host and processor within this article, represents
the computing nodes and are used interchangeably. The resource
model may have different properties as in [28]:

e Processing capacities/computing speed (CPU_speed) of the host
in terms of MIPS (Millions of instructions per second) and

e Bandwidth linkage between any two processors, where BWj; is
used to represents the bandwidth/data transfer rate of the link
between processors 15 and rj in terms of Mbps.

o Existing workload on processor (load), which is the important

parameter used to decide the allocation of tasks to the proces-

sor. The more is the pre-assigned workload, the higher will be

the execution time of the task.

Existing load on the network (linkload), which is another

important parameter affecting the communication time be-

tween dependent tasks. Increase in the network load, increases

the data ready time for the task over specific host, thus increases

the overall makespan of the application.

We consider that each processor has queue of grid tasks in first
come first served (FCFS) fashion waiting for their turn to execute.
The workflow execution manager inserts the ready tasks to this
queue and task executions once started on the processor is
considered to be non pre-emptive. However in the dynamic envi-
ronment of the grid, the availability of the computing speed of the
processor varies with time due to the existence of local workload or
load by other users, sharing the processor execution with policy
supported by processor operating system. Local tasks have higher
priority than grid workflow tasks. Thus, the available computing
speed (ACPU_speed) of the processor for grid tasks is the excess
computing power of the processor which is available for current
task execution.

ACPU_speed; = CPU_speed;* (1 — load;) (1)

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269 259

Similarly, load over non dedicated network links varies with
time [22] and it affects the communication time between depen-
dent tasks of the workflow. Thus, load over network links affect the
overall makespan of the application. So, available bandwidth (ABW)
of the link for inter process communication of grid tasks is repre-
sented by

ABW ; = BW; ;*(1 — linkload, ;) (2)

3.2. Workflow model

Many important grid applications in e-science and e-business
fall in the category of workflow applications; a directed acyclic
graph (DAG) is the standard way to represent a workflow. In this
representation, parallel application/job consisting of bag of tasks
with precedence constraints (dependency) and is represented as
DAG [17,29], G¢ = (T, E) where:

o T is the set of vertices representing n different tasks t; € T,
(1 <i < n) that can be executed on any available processor.

e Eis the setof directed edges e;j=(t;, ;) € E,(1<i<n,1<j<n,i
j) representing dependencies among the tasks t; and t;, indi-
cating a task tj cannot start its execution before t; finishes and
send all the required output data to task t;.

e The weight w(t;) is assigned to task t; represents the size/
computing demand of ith task and expressed as number of in-
structions (MI) to be executed by the task and

e Weight w(e;) assigned to edge e;; represents the amount of data
required to be transfer from task ¢; to t; if they are not executed
on the same resource.

Fig. 2 shows an example of DAG. Each node weight represents
the size of task (w(t;)) and each edge weight represents the inter-
tasks communication data (w(ej;)). The task without any prede-
cessor is called an entry task and the task without any successor is
called an exit task. We assume that a DAG has one entry and one exit
task. If a DAG has more than one entry or exit tasks then, one entry
and exit task is added to DAG along with edges connecting them to
original entry and exit tasks with zero weights respectively. The

Fig. 2. An example Workflow.

Table 1
Parameters used in the mathematical models.
Parameters Definitions
Gy = (T, E) DAG representing Workflow application
n Number of tasks
ti i computing tasks
e;j = (L, tj) Dependency edge from task ; to t;
w(t;) Size of ith task
w(ejj) Size of data transfer corresponding to edge e;;
G= (R, L) Grid network consisting of computing nodes and
links between them
m Number of computing nodes/processors
I j™ computing node
CPU_speed; Computing speed/capacity of jth node (MIPS)
BW; Bandwidth of link between rs and r; nodes (Mbps)
ACPU_speed; Available computing speed/capacity of jth node
load; Existing local load over jth node

ABW;
linkload

Available bandwidth of link between r; and r; nodes
Existing local load over link between rs and r; nodes

parameters used here in the mathematical modeling are shown in
Table 1.

Before giving the formal definitions of the research issues, the
important parameters and notations used for scheduling (inspired
by our previous work [17,18]) are formally defined as follows:

o Execution time or Computation cost of task

w(t)

ET(65) = 50p0 speed; (3)

where ET(t;1;) represents the execution time of task t; on resource r;
with ACPU_speed; representing available computing capacity in
MIPS for grid tasks.

e The Estimated Start Time

.\ _ [RAT(rj), if t;is entry task
EST (ti,1y) = {max{RAT(rj)7DRT(ti7rj)}, otherwise }

(4)

where EST(t;r;) represents the estimated start time of tasks t; on
resource rj. Here RAT(rj) represents the resource available time and
DRT(t;r;) represents the data ready time for task t; over resource rj
and is defined as

DRT (tj,1;) =
(v r]) b Enl;l'%g(fi)

{ EFT (tp,15)

if rs=1;
{EFT(tp, rs) + C;Jl}} , otherwise
(5)
where pred(t;) is the set of immediate predecessor tasks of task t;.

e The Estimated Finish Time

EFT(t“ r]) = EST(t,, r]) + ET(I’,7 r]) (6)

where EFI(t;r;)) represents the estimated finish time of a task t; on
some resource ;.

e Overall makespan of grid workflow

makespan = EFT (teyr, 1) @

260

where EFI(texi1j)) represents the estimated finish time of the exit
task on some resource rj, considering the start time of the workflow
as zero.

3.3. Problem statement

The problem addressed in this study, is the scheduling of set of
precedence constraint tasks (Workflow tasks) on to the set of dy-
namic heterogeneous resources (hosts and network links). The
scheduling performs the mapping of n number of workflow tasks to
the set of m number of available grid resources/processors with the
aim to achieve high and stable execution performance (i.e. mini-
mizing the makespan) without violating the precedence con-
straints (dependency constraint). The makespan is the amount of
time from start of the entry task to the completion of the exit task
shown by Eq. (7). Since the grid resources are highly dynamic and
non-deterministic in nature so it is hard to guarantee the makespan
minimization when there are fluctuations in resource availability.
To overcome this limitation an adaptation strategy is required. We
consider two common situations and adaptation to them.

- Performance fluctuation of resources: The performance of grid
resources is sensitive to the local workload as it degrades the
performance of workflow application. In order to adapt to this
situation, we considered the rescheduling when the local load of
resources (hosts, links) increases beyond threshold. With the
help of rescheduling, we are able to achieve the minimum
makespan in dynamic grid environment.

- Appearance of new resource: When new resource enters into
the grid system, it is likely to increase the performance of the
application. To adapt to the current situation where Grid Infor-
mation Server (GIS) notifies the existence of new node, we
considered the rescheduling of the remaining unexecuted tasks
ifitis beneficial (i.e. compensates the overhead of rescheduling),
thereby reducing the makespan of the application.

4. Proposed adaptive workflow scheduling (AWS) algorithm
4.1. AWS architecture and its components
Fig. 3 shows the architecture of proposed adaptive workflow

scheduling strategy. There are two main components: Resource
Discovery and Monitoring, Workflow Task Scheduler.

Resources

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

4.1.1. Resource discovery and monitoring

It is responsible for discovering and monitoring of grid resources
in highly dynamic environment of grid. It continuously collects the
information about the available grid resources consisting of
computing units and the bandwidth linkages (as in [20,23] as well
as discover the new ones. The information includes the type of
resources, computing capacity/speed (CPU_speed) of the processor,
available bandwidth of the links (BW), their internal scheduling
policies and current workload (load or linkload) conditions etc.
Further, it sends the status information to the Grid Information
Server (GIS) close to the Workflow Task Scheduler. Hence, the GIS
maintain the up-to-date database about the available grid re-
sources. If the current local workload of the resources (load or
linkload) increases significantly (goes beyond the specific
threshold) or new resources has been added then it immediately
notifies/trigger the event to the Execution Manager. In order to
adapt to the newly updated grid information the Execution Manager
requests the Workflow Task Scheduler for rescheduling the
remaining unexecuted tasks of the workflow. The Execution Man-
ager is responsible for getting the task input file ready and
executing the task on the scheduled resources.

4.1.2. Workflow task scheduler

It is responsible for scheduling workflow tasks. It receives DAG
from user. Based on the currently available information in GIS, it
instantiates static scheduling phase with the aim of achieving
optimal performance i.e. minimum execution time for the entire
workflow and submits it to the Execution Manager. It then dis-
patches the ready tasks according to the execution order of
workflow tasks based on their priority, to the appropriate re-
sources as per the schedule and stores the intermediate results
back. When Resource Discovery and Monitoring component notifies
either overload or new resource event to the Execution Manager, it
triggers the rescheduling requests for remaining unexecuted tasks
to the Workflow Task Scheduler. The new schedule generated on
rescheduling is then submitted to the Execution Manager for
further processing, if it compensates for the rescheduling
overhead.

4.2. Detailed working of AWS procedure

AWS is an adaptive scheduling strategy with the aims to mini-
mize the execution time (makespan) of the workflow application. It

Resource
Discovery &
Monitoring

Event
Trigger

A

Execution
Manager
Submits DAG T # il
User > Workflow Task Grid
< Scheduler Information
Result < > Server

Fig. 3. Adaptive workflow scheduling architecture.

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

considers the available computing power of each processor and
available bandwidth of network links rather than actual computing
power and link bandwidth in order to reflect the impact of existing
workload. Proposed AWS has three phases: (i) Resource discovery
and monitoring phase, (ii) static task scheduling and (iii) resched-
uling phase. First of all resource discovery and monitoring phase
discovers the set of available resources and their load conditions.
Further, it is a continuous phase which periodically monitors the
fluctuations in the resource availability. Then initial static sched-
uling is performed to effectively map the workflow (DAG) tasks to
the appropriate resources and submits the schedule to Execution
Manager for further processing. The Execution Manger then sends
the ready tasks to the scheduled resources and tasks starts
executing. The proposed algorithm in dynamic grid environment
periodically listens the Resource Monitor, if any abnormality of the
resource happens (i.e. load increases significantly over host or link
i.e. Ejpad) or new node (Enew) gets added. At this, with the help of
triggering event, AWS adapts to the changes in the grid environ-
ment by initiating rescheduling phase for the remaining unexe-
cuted tasks and tries to attain the optimal scheduling performance.
Fig. 4 shows the flow diagram of the procedure for AWS.

4.3. Static task scheduling

The procedure for static workflow task scheduling includes two
steps: (i) assigning priorities to the tasks in order to ensure task
dependency and (ii) mapping the tasks to the available resources in
order to minimize execution time.

4.3.1. Assigning priority or task ordering

Precedence constraints (dependency constraints) for set of
parallel tasks can be guaranteed by executing predecessor tasks
before the successor ones. To achieve this goal, we need to generate
the ordered task sequence. Here, the ordered task sequence is
generated based on b-level priority. The b-level [1] of a task is the
length of longest path from the task to exit task. Thus the priority of
the task is defined as

priority(t;) = § w7~ =5 Lo
ET(t,)+tjenslu%z<(ti) Gij) + priority(t;) ¢,

otherwise

EFT(ti, TJ),
min
VQER

map(t;) =1; where,

>

t; e succ(t;)

Cis + ET(6:))

EFT(ti’ rj) + |succ(t;)]

Where succ(t;) is the set of the immediate successors of task t;,
ET(t;) is the average computational cost/execution time calculated

261

as (9), CT, is the average communication cost of edge e;; calculated
as (10). The communication cost for the tasks allocated to the same
resource is assumed to be zero.

ZRET([},T’]’)

< TjE

B - " ©)
> Gy

b Tser,lter,SFL

="K 1o

Priorities of the workflow tasks are computed upwards starting
from exit task. Finally, tasks are sorted in decreasing order of their
priorities and the sorted tasks represent the task scheduling
sequence.

4.3.2. Mapping

We are selecting the best available resource for each task of the
workflow in the task ordering sequence obtained in previous step
to create an optimized schedule.

The available computing capacity of the resources is initially
obtained after considering the current workload. We then selects
the task form the task ordering sequence and maps it to the
resource which minimizes the estimated start time (EST) of its
successor tasks. In literature, popular list based heuristic HEFT [29]
maps the selected task to the resource which provides minimum
estimated finish time (EFT) considering the computation cost of the
task only. But since communication cost with dependent tasks
could severely affect the overall makespan of the workflow, so it
must be considered along with the computation cost. Thus, we
select the resource for the task, which minimizes the EST of its
successor tasks instead of EFT of current task. To accomplish this,
EFT of the task over all resources are calculated along with the

if ¢; is exit task

(8)

average communication and computation cost with the dependent
tasks.

if t; is exit task

(11)
otherwise

As soon as the initial schedule is generated, it is submitted to the
execution manager for processing of the workflow tasks.

262 R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

4.4. Rescheduling

Due to dynamic environment of the grid, the status of the re-
sources changes with time. To provide the high and stable perfor-
mance, the grid scheduler must adapt to the changes in the run
time environment of the grid, such as variations in resource avail-
ability (processor and link) and its performance. In order to provide
adaptability to the changes in resource availability, resource dis-
covery and monitoring component periodically monitors the re-
sources. It makes a request to the workflow grid scheduler for
initiating the rescheduling mechanism for remaining unexecuted
tasks by event triggering, when either load over resources (pro-
cessor or link) increases (Ejpag) beyond the threshold or if new
resource (Epew) gets added at run time.

Based on the current status information of the processors and
links, new mapping is produced for remaining unexecuted tasks.
The benefits of rescheduling are balanced by the overheads, which
may include transmission of output data to the dependent tasks at
the newly mapped resources. The new schedule is worth

Resource Discovery
& Monitoring

v

Schedule application
graph(DAG) to
shared grid resources

.

Send ready tasks to
the resources and
start execution

v

While (DAG
not finished)

Monitor Resources
(hosts and links)

If (Ejoad O Epew)
event triggered

Reschedule the
remaining tasks of
DAG

]

Fig. 4. The flow diagram of the procedure for AWS.

considering if reduction in execution time of the new schedule
compensates for these overheads.

Let makespan,. represents the makespan due to rescheduling
and is calculated as the sum of elapsed time from start of the
workflow (time taken by already executed tasks), makespan of the
new schedule (S’) for remaining unexecuted tasks and overheads
due to re-mapping.

makespan,e = elapsed_time + S’.makespan + overhead (12)

Further, makespanpeq represents the predicted makespan of the
original schedule, which is equal to the sum of the expected
makespan of the current schedule (S) and the delay from unexe-
cuted task due to increased workload. To calculate the delay, esti-
mated finish time of unexecuted tasks are re-estimated as per the
updated status of resources. So,

makespan,..q = S.makespan + delay (13)

If, makespan due to rescheduling (makespany.) is less than the
predicted makespan (makespanpred) then, new schedule is sub-
mitted for execution of remaining tasks. Rescheduling here plays
important role to achieve the minimum execution time as well as it
performs load balancing between grid resources.

5. Pseudo code for AWS

This section describes the pseudo code for AWS algorithm for
scheduling workflow tasks in dynamic grid environment.

Algorithm 1 describes the overall adaptive workflow sched-
uling algorithm considering the dynamic environment of the grid.
Initially, the first phase of ordering the task is performed. Line 2—7
assigns the priorities to the tasks starting from exit tasks after
calculating initial parameters. Then, line 8 generates the sched-
uling order sequence by sorting the tasks in the non increasing
order of their priorities. Lines 9—11, compute the mapping. Here it
maps grid tasks to the appropriate resource with the aim to
minimize the execution time. Finally the workflow task scheduler
dispatches the current schedule(S) to the Execution Manager,
which then dispatches the ready tasks to the mapped resources.
The task list and edge list is updated accordingly shown by line 16.
Periodic resource monitoring is performed here by Resource dis-
covery and monitoring component. If workload of the resources
increases significantly or new node gets added, then rescheduling
phase is triggered for the remaining unexecuted tasks as shown in
lines 17. For rescheduling, in line 19, the AWS algorithm is recur-
sively called for unexecuted tasks and current set of resources
with updated status information. If the performance gain is there
with rescheduling after compensating the overheads, new
schedule is submitted for processing.

The time complexity of the proposed AWS algorithm depends
upon the complexity of scheduling algorithm used for making
reschedule at each triggering event. The complexity of static
scheduling algorithm is dominated by the basic operations of: 1)
Calculating priority of the tasks O((n + e). m) and sorting the task
based on their priority O(nlogn), where n is the number of tasks, m
is number of processors and e is the number of directed edges. 2)
Calculating the estimated start time and estimated finish time of
the tasks over each processor O(e). 3) Mapping is then produced
with complexity of O(nm). 4) The procedure repeats for unexecuted
tasks when resource overload or new node event occurs. Therefore,
the overall complexity of the proposed algorithm is
O(trig_events.(n + e). m + nlogn)).

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269 263

Algorithm 1 Adaptive workflow scheduling(AWS) algorithm
procedure AWS (workflow G(T,E) and grid network G,(R,L))
Input: Task graph G, with set of tasks (T) and edges (E), grid network G, with set of computing nodes (R) and network
links (L)
Output: Scheduling the workflow tasks to minimize the makespan, considering the dynamic environment of grid
1. Compute the available computing capacity (ACPU speed) of the nodes from set R and the available
bandwidth(ABW) of the link among them after considering the existing load

for allt;e T do

compute average execution time E7(¢;)
for all ¢; ¢ E do

compute average communication time ?’J
for all ;¢ T do

for all ¢;& T}, do
0. forallr;e Rdo
1

SIS0 kW

estimated finish time.
12. update RAT(r;)=EFT(t;r;)
13. compute makespan corresponding to schedule S
14. While (S # @) begin

compute priorities priority(t;) of each task starting from #,,;,
sort all tasks into task ordering sequence 7, in non increasing order of their priorities.

//according to Eq. (9)

/laccording to Eq. (10)

/laccording to Eq. (8)

find map(t;) with Eq. (11) which represents the host for task # and add it to schedule S along with its

15. Dispatch each ready task #; (in the order of their priorities) to its assigned resource and remove mapping from S

16. T «T-{t} and E'«E-{e,;}
17. if (Ejuq OF Ey, 18 triggered), then

18. Update the status of resources as set R*.
19. Call S'=AWS(G(T",E"), G;*(R*,L*)
20. compute makespan,, and makespan,eq
21. if (makespan, < makespan,q) do

22. S=S" and submit new schedule

23. end while

24. end

/laccording to Eq. (12) & (13)

5.1. Detailed example

To understand the proposed AWS approach, let us consider a
case that there are two groups of resources in the grid each having
two computing nodes and links between them. The initial status of
each node is shown in Table 2a

Let the bandwidth of the link between two resources in the
same group is 120 Mbps and between two resources in distinct
groups is 100 Mbps. Let the variable amount of load exist over the
network links, as shown in Table 2b

Consider the sample workflow DAG application shown in Fig. 1.
The node weight in DAG represents the size of task on a10® Ml scale
and edge weight representing communication data in Gigabytes.

Table 2a
Initial status of computing nodes.
Group1l Group2
1 2 r3 Tq
Computing speed(CPU_speed) (MIPS) 4000 4500 6000 6400
Load(%) 30 25 25 20

Available Computing speed(ACPU_speed) (MIPS) 2800 3375 4500 5120

Table 2b
Initial status of network links.

ri—Ty T3—T4 Ti—T3 Ti—Tq Ta—I3 TI—Iy

Link Bandwidth (BW)(Mbps) 120 120 100 100 100 100
Link Load (%) 20 25 35 30 25 30
Available bandwidth(ABW) (Mbps) 96 90 65 70 75 70

We are considering four sets of experiments corresponding to
the DAG. First experiment determines the execution time of the
DAG under current resource availability and load conditions. Then
in the second & third experiment, the load over computing nodes
and links were increased to show the performance of adaptive
workflow scheduler under dynamic availability of resources.
Finally, the effect of newly added node is evaluated.

As per the first experiment, the computation cost of each task
over computing nodes and communication cost to transfer unit
data among them considered at current workload conditions is
shown in Table 3(a) and (b) respectively. Tasks ordering sequence is
to, tg, b, t4, t3, tg, tg, ts, t7, tg and final mapping is to— 14, t; =74, t2— 13,
t3— 1y, tg— T, ts—> 1, tg— 13, t7 >, tg— 1y, tg— 14 With makespan of
322.19 min.

Table 3a

The computation cost (min).
Tasks Resource nodes

T] r3 T4

to 130.95 108.64 81.48 71.61
t 142.85 118.51 88.88 78.12
ty 107.14 88.88 66.66 58.59
t3 107.14 88.88 66.66 58.59
ty 83.33 69.13 51.85 45.57
ts 77.38 64.19 51.85 42.31
ts 107.14 88.88 66.66 58.59
t7 65.47 54.32 40.74 35.80
ts 136.90 113.58 85.18 74.86
to 83.33 69.13 51.85 45.57

264 R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

Table 3b
The communication cost (min).

Node Links Communication cost per GB of data
r—T13 1.388
I3—ry 1.481
ri—rs 2.051
ri—T4 1.904
ro—r3 1.777
To—Ty4 1.904

In the second experiment, let the additional 25% load comes to
node r4 at 90 min, thus available computing power of it is reduced
to 3520 MIPS instead of 5120 MIPS. At this time tasks list contains
ts, ts, ts, t7, tg as unexecuted tasks. As per the AWS, the unexecuted
tasks are remapped to t5s—1y, ts— Ty, t7— 17, tg— 13, tg— 713 and the
new makespan is 329.63 min, which increases by 2.3% only. But if
re-scheduling has not been performed, then the makespan will be
376.92 min which is 16.98% more than original scheduling.

Next, we consider the effect of load on network link. Let at
90 min, additional 50% load comes at link between nodes r,-14 i.e.
additional stream of 50Mbps is added. As per the original schedule,
the makespan will be 366.15 min, which is 13.64% more than
original schedule. But in AWS with rescheduling the unexecuted
tasks, new mapping will be t; — 1y, ts—14, t7;— 1, tg— 13, tg—13 and
the overall makespan will be 327.40 min which increases by 1.61%
only.

In the final case, let us consider a new node with available
computing power of 5600MIPS (CPU_ speed = 7000MIPS with 20%
load) gets added at 90 min with available bandwidth to all the re-
sources as 80Mbps, then as per rescheduling of unexecuted tasks by
AWS, the new mapping will be t5—r3, tg—14, t7— 15, tg— 135 tg— T35
with makespan of 283.62 min, which reduces by 11.98%.

6. Simulation strategy
6.1. Simulation model

To verify the correctness and effectiveness of the proposed
adaptive workflow scheduling algorithm, we have conducted
extensive experiments and simulation based on GridSim [8] toolkit
and compares it with other popular heuristics for workflow
scheduling as HEFT [29], Min—Min [22], Max-Min [22], AHEFT [31],
Re-DCP-G [25] and Re-LSDS [24]. To simulate precedence constraint
tasks in workflows, we used the workflow models represented by
randomly generated task graphs and task graphs corresponding to
real world problems such as Gaussian Elimination (GE) and Fast
Fourier Transforms (FFT). We employed simulated parameters
generated by set of resources and randomly varying the structure
and properties of workflow task graph according to model
described in Sections 3.1 And 3.2 respectively. The workflow task
graph has following parameters:

e Number of tasks in the DAG (n)

e Communication to computation ratio (CCR): It indicates the
characteristics of input workflow application. Higher value of
CCR means data intensive application while lower value indi-
cated computation intensive application. Size of communication
data or message size can be determined from CCR values.
Shape parameter of the DAG (shape). The height/depth of the
DAG is randomly generated from uniform distribution with
mean equal to y/n/shape. The width of each level of the DAG is
randomly generated from uniform distribution with mean equal
to v/n. shape.

e Out degree representing the maximum out degree of tasks in
DAG. It is generated randomly from 1 to 5.

e The computation cost of each task t; on resource rj is selected
randomly by the uniform distribution with the mean equal to
the twice of specified average computation cost.

o The cost of each edge was selected randomly from the uniform
distribution across the mean equal to the product of average
computation cost and the communication to computation ratio
(CCR).

The parameters corresponding to grid resources or grid
computing environment are as follows:

e Number of processors (m) and their computing capacity/speed
(MIPS)

e Bandwidth of link between processors(Mbps)

e Existing load on processors (load)

o Existing load on network (linkload)

To represents the dynamic behavior of resources, additional
parameters required are as follows:

e Time interval to load change (y): Resource load changes after
fixed interval. Lower value of change interval indicates more
dynamic environment while higher the value of change interval,
more static is the environment.

e Amount of load change (3)

The values for above mentioned parameters are listed in Table 4.
6.2. Performance metric

The aim of scheduling algorithm considered here is to achieve
the minimum execution time (makespan), where makespan of the
input workflow application (DAG) represents the total time elapsed
between the start time of the first(entry) task to the completion
time of last (exit) task. We considered the start time of entry task as
zero and makespan can be calculated as the finish time of exit task.
The performance metric used to evaluate the proposed algorithm in
comparison to other algorithms is described below:

6.2.1. Improvement rate (IR)

It specifies the performance improvement rate of AWS algo-
rithm with respect to other algorithms and is measured as the
difference of the makespans over the makespan of AWS algorithm.
Reduction in the makespan of AWS algorithm over other considered
algorithms can be calculated by IR(%).

Table 4
Simulation parameter values.
Simulation parameters Values
n 20,40,60,80,100(Random graphs) (Default value 60)

14,27,44,65,90(GE graphs) (Default value 44)
14,38,94(FFT graphs) (Default value 38)

CCR 0.2, 0.6, 1, 1.4, 1.8 (Default value 1)
m 5,10,15,20 (Default value 10)
Computing capacity 1000—8000(MIPS)
of resources
Bandwidth of links 100—120(Mbps)
Load 0—-30%
Link load 10—40%
Number of newly added 1,2,3,4,5

resources after

random interval
20,50,70,90 (min) (Default value 50)
10%, 25%, 40%, 55%(Default value 25%)

o =

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269 265

_ makespan(other) — makespan(AWS) 1

R(%) makespan(AWS)

00 (14)

6.3. Simulation result analysis

6.3.1. Test suitl

In this test suit, we used the workflow model represented by
randomly generated task graph (Random). The size of random task
graph was varied by considering the different number of tasks as
20, 40, 60, 80 and 100. The computation cost of each task t; on
resource 1j is selected randomly by the uniform distribution with
the mean equal to the twice of the average computation cost. The
cost of each edge was selected randomly from the uniform distri-
bution across the mean equal to the product of average computa-
tion cost and the communication to computation ratio (CCR).

6.3.1.1. Effect of varying the size of input graph. Firstly, we consider
the effect of varying the size of input graph over the makespan
considering 10 fixed number of grid hosts and is shown in Fig 5. The
figure clearly specifies that AWS performs best with respect to
other algorithms considered. Based on the makespan the
improvement rate IR as per (14) is calculated. AWS provides su-
perior performance to AHEFT by almost 8%—15% IR, Re-DCP-G by
5%—13% IR and Re-LSDS by 9%—16% IR in every case because it
considers dynamically changing host and link availability. As the
number of tasks are increasing, the improvement rate (IR) increases
because with large number of tasks there are more chances of
rescheduling. Other considered algorithms like Min—min, Max-
min, and HEFT perform badly because they does not consider dy-
namic load present at the resources.

6.3.1.2. Effect of varying the CCR value. In this experiment, we are
considering the effect of varying the CCR value of the workflow
application graph. The number of tasks considered is 60 by default
with 10 numbers of processors and the results are shown in Fig. 6.
When CCR is less than 1 i.e. in case of computation intensive task
graph there is minimum IR of 8% over AHEFT, 6% over Re-DCP-G and
8% over Re-LSDS. But when, CCR is more than one, in case of
communication intensive workflows, there is minimum improve-
ment rate i.e. IR of 16% over AHEFT, 14% over Re-DCP-G and 17% over
Re-LSDS because of consideration of the link load dynamicity in
AWS. It gives 9%—18% improvement over HEFT while in case of
Max-Min and Min—Min; it provides improvement of 13%—32%
because they give less consideration to communication overhead
while making mapping decision. Results indicate that the proposed
algorithm performs efficiently at all CCR values.

1700 -
1600 - —H—AWS
1500 -
?1400 i —&— AHEFT
'€ 1300 -
= 1200 - ——HEFT
%1100 -
& 1000 - —A—MinMin
s 900 -
2 800 - —>¢=MaxMin
700 -
600 - Re-DCP-G
500 -
20 40 60 80 100 Re-LSDS

Number of Tasks

Fig. 5. Makespan under different number of tasks (for random task graph).

1500 -
—H=AWS
1400
—o—AHEFT
< 1300 -
t I —m—HEFT
£ 1200 - o
8 == MinMin
(7] 4
% 1100 == MaxMin
= 1000 - / Re-DCP-G
900 | @ Re-LSDS
800
0.2 0.6 1 1.4 1.8
CCR

Fig. 6. Makespan under different CCR (for random task graph).

6.3.1.3. Effect of varying the number of processors. We evaluated the
performance of the algorithm by varying the number of processors for
fixed 60 numbers of tasks at CCR is equal to 1. The results are shown in
Fig. 7, which clearly manifests that the performance of the algorithm
improves, as the numbers of resources are increasing with the help of
rescheduling. As depicted in Fig. 7, the performance improvement of
AWS over other algorithms varies from 3% to 9% only, at less number of
resources. This is due to the fact that, with less number of resources,
choice of selecting better resource during rescheduling phase is quite
limited. As the numbers of resources are increasing, the performance
improvement of AWS over other algorithms improves. But when the
large (abundant) numbers of resources are available, the IR increases
slowly. It may be because of frequent rescheduling with high over-
heads. Thus, after compensating the overheads slow increase of IR is
there with large number of resources.

Further, we considered the effect of dynamic nature of grid, by
varying periodically the load over resources (hosts and links).

6.3.1.4. The effect of time interval to load change. The time interval
of load change indicates the dynamicity of the grid environment.
Results from Fig. 8, clearly manifests that at lower value (20 min) of
load change interval (i.e. load changes more frequently or highly
dynamic grid environment), the proposed algorithm performs
better than other algorithms. The proposed AWS provides IR of 20%
over AHEFT, 40% over HEFT, 38% over Min—Min, 36% over Max-Min,
15% over Re-DCP-G and 21% over Re-LSDS respectively. The per-
formance of AWS with respect to HEFT, is more significant, as it is
static algorithm and do not consider the change of load at run time.
As the load change interval increases, (indicating static grid
environment), the performance improvement is still there but

1500 -
=¥ AWS

1400 -

= 1300 | —o—AHEFT

% 1200 - == HEFT

(5]

2 1100 - —te=MinMin

=<

S 1000 - —>=MaxMin
300 1 Re-DCP-G
800 Re-LSDS

5 10 15 20
Number of hosts

Fig. 7. Makespan under different number of hosts (for random task graph).

266 R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

1500 ~

——=AWS
1400 -
_ ——AHEFT
< 1300 -
£ 1200 - =H=HEFT
©
& 1100 - —de—MinMin
<
g 1000 - == MaxMin
300 1 —@—Re-DCP-G
800
Re-LSDS

20 50 70 90
Time interval to load change

Fig. 8. Makespan under various time interval of load change or frequency of load
change (for random task graph).

comparatively less. At maximum time interval (90 min) of load
change, the IR is in the range from 5% to 19% only.

6.3.1.5. The effect of amount of load change. Fig. 9 illustrates the
effect of amount of load change. When the heavy amount of
sudden load comes to the resources, they become inefficient.
Rescheduling is highly desirable in that case, in order to provide
better resources for remaining unexecuted part of the application.
Thus the proposed AWS, with the help of rescheduling gives high
improvement rate of 42%, over HEFT when large amount of load
(i.e. 55%) changes dynamically. Compared to AHEFT, Min—Min,
Max-Min, Re-DCP-G and Re-LSDS the IR is about 11%—19%, 23%—
36%, 21%—33%, 8%—14% and 12%—20% respectively at different
amount of load change.

6.3.1.6. Effect of number of newly added resources at run time.
Lastly, we evaluated the algorithm, considering the number of
newly added resources periodically to the resource pool at run
time. As shown in Fig. 10, the proposed AWS algorithm provides
better performance improvement, with the increase of number of
newly added resources. It provides the peak performance im-
provements of 35% over HEFT, when number of added resources are
5. This is due to the fact that HEFT does not consider the newly
added resources at all.

Overall, the results clearly specifies that our proposed algorithm
outperforms the other algorithms in all the cases and is the suitable
algorithm for workflow scheduling in dynamic grid environment,
where the number of resources and load on them are changing
dynamically.

1500 -
1400 - —H=AWS
< 1300 - == AHEFT
E
E 1200 - == HEFT
©
Qo
$ 1100 7 == MinMin
(1]
= 1000 1 == MaxMin
900 -
~@—Re-DCP-G
800
10% 25% 40% 55% Re-LSDS

Amount of load change

Fig. 9. Makespan under different amount of load change (for random task graph).

1300 -
== AWS
1200 -
= == AHEFT
£ 1100 -
< ¢ ; ——HEFT
S 1000 - o
] == MinMin
s 900 -
= == MaxMin
800 -
=@-Re-DCP-G
700
Re-LSDS

1 2 3 4 5
Number of newly added resources

Fig. 10. Makespan under different number of newly added resources at run time (for
random task graph).

6.3.2. Test suit2

In this test suit, we generated the task graphs corresponding to
real life problems such as Gaussian Elimination (GE) [13] and Fast
Fourier Transform (FFT) [12]. The structure of these task graphs is
fixed. In GE task graph, number of tasks are equal to (m?+m-2)\2,
where m is the matrix size, thus number of tasks chosen are 14, 27,
44, 65, 90 in GE task graph. In FFT task graph, the numbers of tasks
are equal to (2*m-1) +m*log,m, where m is any power of 2. Thus
number of tasks chosen is 14, 38, and 94 in FFT task graph. The
computation cost of each task t; on resource rj is selected randomly
by the uniform distribution with the mean equal to the twice of
specified average computation cost. The cost of each edge was
selected randomly from the uniform distribution with mean equal
to the product of average computation cost and the communication
to computation ratio (CCR).

Similar set of experiments were performed for GE and FFT task
graphs and the effect of (i) size of the graph, (ii) CCR, (iii) number of
resources, (iv) interval of load change, (v) amount of load change
and (vi) number of newly added resources were evaluated. Figs. 11
and 12 shows the experimental results for the GE and FFT tasks
graphs respectively. The results trends are similar to test suitl. It
can be seen that the proposed AWS performs better in comparison
to other algorithms, not only for random task graphs but also for
task graphs corresponding to real world problems of GE and FFT.

7. Conclusion

In this paper, we proposed the solution to address the dynamic
nature of grid environment and to efficiently utilize the resources
based on QoS information like availability along with the accessibility
as indicated by SLA. We proposed a novel adaptive workflow sched-
uling (AWS) algorithm, to schedule workflow application in dynamic
grid environment with the aim to achieve the minimum execution
time (makespan). The variation in the availability of grid resources at
run time has strong impact on the performance of the workflow
application. Thus, in order to provide adaptability to the changes in
resource availability in the dynamic grid environment, rescheduling is
triggered if the any abnormality of the resource happens (i.e. load
increases significantly over host or link) or new node gets added at run
time. Further, the algorithm also provides load balancing by sup-
porting rescheduling of tasks form overloaded resources. The proce-
dure of adaptive workflow scheduling differs from other approaches
in literature by considering the existing load over the resources both
computing nodes and communication links in order to generate the
availability of resources. Experiments are carried out to validate the
performance of the proposed algorithm by varying the workflow and

@ 1600
1500
1400

— 1300

1200

1100

1000

900
800
700
600
500
400

Makespan(min

R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

j

i AWS

e AHEFT

i HEFT

e MinMin

e axMin

w==@==Re-DCP-G

14 27 44 65 90
Number of Tasks

wssfus Re-LSDS

1100

1000 -

[0

o

o
1

~
o
o

Makespan(min)
(Vo]
o
o

4

i AWS

e AHEFT

e HEFT

e MinMin

eyt [VaXMin

«=@==Re-DCP-G

5 10 15 20
Number of resources

e Re-LSDS

(©) 1200

1100 -

Makespan(min)

[0
o
o

700

=

o

o

o
!

w

o

o
L

i\

i AWS

g AHEFT

e HEFT

s MinMin

eyt [VaXMin

=== Re-DCP-G

10% 25% 40% 55%

Amount of load change

e Re-LSDS

(b) 1200
1100

+=1000

o]
o
o

b

Makespan(min)
(e}
o
o

~
o
o

600

(d)
1200

1100

=
o
[=}
o

o
o
o

Makespan(min)

[0
o
o

700

® 1000

900

Makespan(min)
0
<]
S

700

600

i AWS

e AHEFT

e HEFT

e MinMin

e [V aXMin

=@ Re-DCP-G

0.6 1 1.4 1.8
CCR

©
N}

i Re-LSDS

7

e AWS

e AHEFT

el HEFT

s MinMin

et [V 2XMiN

=@ Re-DCP-G

20 50 70 90
Time interval of load change

wmiue Re-LSDS

)

e AWS

e AHEFT

e HEFT

iy MinMin

et [V 2XMin

w=@==Re-DCP-G

1 2 3 4 5

Number of newly added resources

Fig. 11. Effect of various parameters on Gaussian Elimination Task graph (GE).

s Re-LSDS

267

268 R. Garg, A.K. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

(@) 1600 -
1500 i AWS
1400 -+
= 1300 -+ g AHEFT
€ 1200 -
+ 1100 - == HEFT
2 1000 -
$ 900 - e MinMin
g 800 -+
700 -+ e MaxMin
600 -
500 - @ Re-DCP-G
400
14 38 94 e Re-LSDS
Number of Tasks
(c) 1050 -
i AWS
950 - e AHEFT
[=
£ i HEFT
c
3 850 L
a e MinMin
=
= 750 | e MaxMin
=== Re-DCP-G
650 cepee Re-LSDS
5 10 15 20
Number of resources
()
1200 ~
i AWS
1100 -+
< e AHEFT
E
£ 1000 1 =8 HEFT
o
& 900 - e MinMin
©
E 800 | W *MaXMin
=== Re-DCP-G
700

10% 25% 40%
Amount of load change

55% e Re-LSDS

(b) 1200 -
e A\WS
1100 -
e AHEFT
1000 -
emeffie HEFT

e MinMin

Makespan(min)
(o]
o
IS

A

800 -
e MaxMin
700
== Re-DCP-G
600
0.2 0.6 1 1.4 1.8 === Re-LSDS
CCR
(d) 1200 +
i AWS
1100 = AHEFT
c
£ 1000 | e HEFT
c
©
x e MinMin
< 900 -
'5“ e MaxMin
800 -+
== Re-DCP-G
700 Re-LSDS
20 50 70 90
Time interval of load change
®
1000 -+
i AWS
< 900 4 g AHEFT
£
T il HEFT
wv
< M e MinMin
(1]
= i
700 i M axMin
600 =@ Re-DCP-G

1 2 3 4 5
Number of newly added resources

e Re-LSDS

Fig. 12. Effect of various parameters on Fast Fourier Task graph (FFT).

dynamic grid system settings. The simulation results using randomly
generated task graphs and task graphs corresponding to real world
problems like GE and FFT demonstrates the 10%—40% performance
improvement (makespan minimization) of the proposed AWS algo-
rithm over other scheduling algorithms considered.

A good course of future research may include the development
of rescheduling approach considering the effect of dynamic
resource availability on the currently executing tasks along with the
remaining unexecuted tasks, in order to provide high and stable
performance to the workflow application.

References

[1] 1. Ahmad, Y.K. Kwok, M.Y. Wu, Analysis, evaluation, and comparison of algo-

rithms for scheduling task graphs on parallel processors, in: ISPAN, 1996, pp.

207-213.

R. Bajaj, D.P. Agarwal, Improving scheduling of tasks in a heterogeneous

environment, in: [EEE Transactions on Parallel and Distributed Systems, 15(2),

2004, pp. 107—-118.

[3] D.M. Batista, N.L. da Fonseca, F.K. Miyazawa, F. Granelli, Self-adjustment of
resource allocation for grid applications, Computer Networks 52 (9) (2008)
1762—-1781.

[2

[4] F. Berman, H. Casanova, A. Chien, K. Cooper, et al., New grid scheduling and

rescheduling methods in the GrADS project, Int J Parallel Program 33 (2—3)

(2005) 209—-229.

LF. Bittencourt, E.RM. Madeira, F.R.L. Cicerre, L.E. Buzato, A path clustering

heuristic for scheduling task graphs onto a grid (short paper), in: Proceedings

of the 3rd ACM International Workshop on Middleware for Grid Computing,

2005. Grenoble, France.

L.F. Bittencourt, E.R. Madeira, A performance oriented adaptive scheduler for

dependent tasks on grids. Concurrency and Computation, Practice Exp. 20 (9)

(2008) 1029—1049.

T.D. Braun, HJ. Siegal, N. Beck, A comparison of Eleven static heuristics for

mapping a class of independent tasks onto heterogeneous distributed

computing systems, J. Parallel Dis. Comp. 61 (2001) 810—837.

[8] R.Buyya, M. Murshed, GridSim: A Toolkit for Modeling and Simulation of Grid

Resource Management and Scheduling, Vol. 14, 2002, pp. 1175—1220. http://

www.buyya.com/gridsim.

R. Buyya, S. Venugopal, A Gentle Introduction to Grid Computing and Tech-

nologies, CSI Communications, July 2005.

[10] R.S. Chang, C.Y. Lin, C.F. Lin, An adaptive scoring job scheduling algorithm for
grid computing, Information Sciences 207 (2012) 79—89.

[11] S.H. Chin, T. Suh, H.C. Yu, Adaptive service scheduling for workflow applica-
tions in service-oriented grid, J. Supercomputing 52 (3) (2010) 253—283.

[12] Y.C. Chung, S. Ranka, Applications and performance analysis of a compile-time
optimization approach for list scheduling algorithms on distributed memory
multiprocessors, in: Supercomputing'92., Proceedings, IEEE, 1992, pp. 512—521.

[13] M. Cosnard, M. Marrakchi, Y. Robert, D. Trystram, Parallel Gaussian elimina-
tion on an MIMD computer, Parallel Computing 6 (3) (1988) 275—296.

[5

[6

[7

(9

http://refhub.elsevier.com/S2215-0986(15)00008-7/sref1
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref1
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref1
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref1
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref2
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref2
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref2
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref2
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref3
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref3
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref3
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref3
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref4
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref4
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref4
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref4
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref4
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref5
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref5
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref5
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref5
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref6
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref6
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref6
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref6
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref7
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref7
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref7
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref7
http://www.buyya.com/gridsim
http://www.buyya.com/gridsim
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref9
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref9
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref10
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref10
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref10
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref11
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref11
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref11
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref12
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref12
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref12
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref12
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref13
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref13
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref13

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. Garg, AK. Singh / Engineering Science and Technology, an International Journal 18 (2015) 256—269

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.]. Maechling, K. Wenger,
Pegasus, a workflow management system for science automation, Future
Generation Computer Systems (2014).

I. Foster, C. Kesselman, The Grid2: Blueprint for a New Computing Infra-
structure, Elsevier, 2003.

M. Gareym, D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, WH Freeman & Co., San Francisco, 1979.

R. Garg, AK. Singh, Multi-objective workflow grid scheduling using e-fuzzy
dominance sort based discrete particle swarm optimization,
] Supercomputing 68 (2) (2014) 709—732.

R. Garg, AK. Singh, Reference Point based multi-objective optimization to
workflow grid scheduling, International Journal of Applied Evolutionary
Computation (IJAEC) 3 (1) (2012) 80—99.

E. Huedo, R.S. Montero, .M. Llorente, Experiences on adaptive grid scheduling
of parameter sweep applications, in: Proceedings of the 12th Euromicro
Conference on Parallel, Distributed and Network-based Processing, 2004, pp.
28-33.

B.B. Lowekamp, Combining active and passive network measurements to
build scalable monitoring systems on the grid, ACM SIGMETRICS Performance
Evaluation Review 30 (4) (2003) 19—26.

M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, R. Freund, Dynamic Matching
and scheduling of a class of independent tasks onto heterogeneous computing
systems, in: In 8th Heterogeneous Computing Workshop (HCW’99), IEEE,
1999, pp. 30—44.

A. Mandal, K. Kennedy, C. Koelbel, G. Marin,]. Mellor-Crummey, B. Liu,
L. Johnsson, Scheduling strategies for mapping application workflows onto

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

269

the grid, in: In Proceedings. 14th IEEE International Symposium on High
Performance Distributed Computing, 2005, pp. 125—134.

F. Montesino-Pouzols, Comparative Analysis of Active Bandwidth Estimation
Tools. In Passive and Active Network Measurement, Springer, Berlin Heidel-
berg, 2004, p. 175.

A. Olteanu, F. Pop, C. Dobre, V. Cristea, A dynamic rescheduling algorithm for
resource management in large scale dependable distributed systems, Comp.
Math. Appl. 63 (9) (2012) 1409—1423.

M. Rahman, R. Hassan, R. Ranjan, R. Buyya, Adaptive workflow scheduling for
dynamic grid and cloud computing environment, Conc. Comp. Prac. Exp. 25
(13) (2013) 1816—1842.

R. Sakellariou, H. Zhao, A low-cost rescheduling policy for efficient mapping of
workflows on grid systems, Scientific Programming 12 (4) (2004) 253—262.

H.A. Sanjay, S.S. Vadhiyar, Strategies for rescheduling tightly-coupled parallel
applications in multi-cluster grids, J. Grid Comp. 9 (3) (2011) 379—403.

P.K. Tiwari, D.P. Vidyarthi, Observing the effect of inter-process communica-
tion in auto controlled ant colony optimization based scheduling on compu-
tational grid, Conc. Comp. Prac. Exp. 26 (1) (2014) 241-270.

H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-complexity
task scheduling for heterogeneous computing, in: IEEE Transactions on Par-
allel and Distributed Systems, 13(3), 2002, pp. 260—274.

M. Wieczorek, R. Prodan, T. Fahringer, Scheduling of scientific workflows in
the ASKALON grid environment, SIGMOD 34 (3) (2005) 56—62.

Z. Yu, W. Shi, An adaptive rescheduling strategy for grid workflow applica-
tions, in: In IEEE International Parallel and Distributed Processing Symposium,
2007, IPDPS, 2007, pp. 1-8.

http://refhub.elsevier.com/S2215-0986(15)00008-7/sref14
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref14
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref14
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref15
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref15
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref16
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref16
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref16
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref17
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref17
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref17
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref17
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref17
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref18
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref18
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref18
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref18
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref19
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref19
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref19
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref19
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref19
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref20
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref20
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref20
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref20
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref21
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref21
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref21
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref21
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref21
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref22
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref22
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref22
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref22
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref22
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref23
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref23
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref23
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref24
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref24
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref24
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref24
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref25
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref25
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref25
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref25
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref26
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref26
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref26
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref27
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref27
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref27
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref28
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref28
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref28
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref28
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref29
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref29
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref29
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref29
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref30
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref30
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref30
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref31
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref31
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref31
http://refhub.elsevier.com/S2215-0986(15)00008-7/sref31

	Adaptive workflow scheduling in grid computing based on dynamic resource availability
	1. Introduction
	2. Related work
	3. Problem statement and preliminaries
	3.1. Resource model
	3.2. Workflow model
	3.3. Problem statement

	4. Proposed adaptive workflow scheduling (AWS) algorithm
	4.1. AWS architecture and its components
	4.1.1. Resource discovery and monitoring
	4.1.2. Workflow task scheduler

	4.2. Detailed working of AWS procedure
	4.3. Static task scheduling
	4.3.1. Assigning priority or task ordering
	4.3.2. Mapping

	4.4. Rescheduling

	5. Pseudo code for AWS
	5.1. Detailed example

	6. Simulation strategy
	6.1. Simulation model
	6.2. Performance metric
	6.2.1. Improvement rate (IR)

	6.3. Simulation result analysis
	6.3.1. Test suit1
	6.3.1.1. Effect of varying the size of input graph
	6.3.1.2. Effect of varying the CCR value
	6.3.1.3. Effect of varying the number of processors
	6.3.1.4. The effect of time interval to load change
	6.3.1.5. The effect of amount of load change
	6.3.1.6. Effect of number of newly added resources at run time

	6.3.2. Test suit2

	7. Conclusion
	References

