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Abstract

A general version of the Radé—Kneser—Choquet theorem implies that a piecewise constant sense-
preserving mapping of the unit circle onto the vertices of a convex polygon extends to a univalent
harmonic mapping of the unit disk onto the polygonal domain. This paper discusses similarly gen-
erated harmonic mappings of the disk onto nonconvex polygonal regions in the shape of regular
stars. Calculation of the Blaschke product dilatation allows a determination of the exact range of
parameters that produce univalent mappings.
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1. Introduction

A harmonic mappin@f the unit diskD onto a region in the plane is a complex-valued
harmonic function. Every harmonic functigf(z) in D has a unique representatigh=
h + g, whereh and g are analytic inD and g(0) = 0. By a theorem of Lewy [6], the
Jacobian of a locally univalent harmonic mapping never vanishes. If weftakk®esense-
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preserving so that its Jacobiajk’|2 — |g’|2 is positive everywhere i), then itsdilatation
w = g'/ 1 is an analytic function withw (z)| < 1 inD.

Our point of departure is the classical theorem of Radé [7], Kneser [5], and Choquet
[1] (see also [2]). Suppos® is a convex domain bounded by a Jordan curyeand let
w = f(e'") be a sense-preserving homeomorphism of the unit cifabeto I'. Then the
Poisson extension

2
1122
f(Z)—E/F-,_Z'z f(e )dt

0

is a univalentharmonic mapping o) onto £2. The proof generalizes to show that for
any piecewise constant sense-preserving mapireg T onto the vertices of a convex
polygonal regiorg2, the Poisson extension represents a univalent harmonic mapplihg of
onto £2. Suppose in particular tha? is a regular polygon witlm vertices at thenth roots

of unity o, &2, ..., o™, wherea = ¢27'/™  Recall the formula

7 —eiT T—o0
u(@) = (arg{ | }_ )
—eo 2
for the harmonic measure in the disk of the boundaryéft ¢'7) extending counterclock-

wise frome’® to ¢!, wheres < v < o + 27. Let 8 = /a = ¢/™/™. Then if the boundary
correspondence is prescribed by

f(eit)zotk forene(akB,akﬂ)’ k:l,Z,...,m

the harmonic extension takes the form (cf. [2])
2k+1
z—
f@)= Za arg{ §2k 1} (1)

sincea + a® + --- + o™ = 0. It can also be shown that the dilatation of the function
f defined by (1) isv(z) = 2. More generally, Sheil-Small [8] has shown that for any
harmonic extension of a piecewise constant boundary functionmthlues, the dilatation
is a Blaschke product witlk — 2 factors, some of which may, however, have their zeros on
or outside the unit circle. For mappings onto convex polygons, all zeros of this Blaschke
product lie in the unit disk.
Hengartner and Schober [4] obtained a result in the converse direction, to the effect that
a univalent harmonic mapping “onto” a convex domain must in fact be a mapping onto an
inscribed polygon if its dilatation is a finite Blaschke product (see also [2, Section 7.4]).
We begin with the observation that the harmonic extension of a piecewise constant
boundary function is univalent iy if and only if all zeros of its dilatation lie ifD. We
then focus on regions in the shape of regular stars and determine the precise range of
parameters for which the harmonic extension is univalent.
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2. Criterion for univalence

Suppose now tha® is a general polygon with vertices, c», .. ., ¢, taken in counter-
clockwise order on the boundafy = 92. For

O<rp<n<---<ty=ty+ 2m,
let the points
bkzeitk, k=0,1,...,m,

determine an arbitrary partition of the unit circle intosubarcs. Note that,, = bg. Given
the boundary correspondence

f(e)=ck fore’ e br—1.bp). k=1,2,....m,

construct the harmonic extension

z2—bi1

f(z)=%2ckarg{ﬂ}—é, zeD, )
k=1

1 m
t=o > crargiby /bi-1).

Observe thatf (0) = ¢, and that¢ belongs to the convex hull of the regian, although it
need not lie ins2.
According to a result of Sheil-Small [8], the dilatation of any functjoof the form(2)
is a Blaschke product with at most— 2 factors of the form
{—z
(Z) == 1~
Q=17 kI#
Some zerog of the dilatation may be situated outsifle However, the following theorem
gives a criterion for the univalence ¢f

Theorem 1. Let f be a harmonic function of the forif2), constructed as above from a
piecewise constant boundary function with values onrtheertices of a polygonal re-
gion £2, so that the dilatatiorw of f is a Blaschke product with at most — 2 factors.
Theny is univalent inD if and only if all zeros ofv lie in D. In this case,f is a harmonic
mapping ofD onto £2.

Proof. Suppose first that is univalent inD. Observe that the finite Blaschke product
can have no zeros on the unit circle, siggé€z) = ¢ when|¢| = 1. If » has a zero at some
point ¢ outsideD, then it has a pole at/ € D. If it also has zeros i, then there are
points inD where|w(z)| < 1 and other points whera (z)| > 1. The Jacobian of then
changes sign i, which contradicts to Lewy’s theorem. Thusfifis univalent, there are
only two possibilities. Either all zeros af lie in D, or all lie outsideD. But if all zeros

of w lie outsideD, then|w(z)| > 1 in D and f has negative Jacobian, contradicting its
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construction from a sense-preserving boundary function. Therefore, all zevano$t lie
in D.

Conversely, if all zeros ok are inD, then|w(z)| <1 in D and an application of the
argument principle for harmonic functions [3] shows thfais univalent inD and it maps
D onto £2. To be more specific, choose an arbitrary paigte £2 and letC, be the path in
DD consisting of arcs of the unit circle alternating with small circular arcs of radalsout
the pointshy. If ¢ is sufficiently small, the image curvg(C,) will have winding number
+1 about the pointvg. Since|w(z)| < 1 insideC,, it follows from the argument principle
that f(z) — wp has one simple zero insidé,. Thus 2 C f(D). If wo ¢ £2, a similar
construction shows thatg ¢ f (D). Thus f mapsD univalently onto2. 0O

3. Star mappings

We now specialize the construction to harmonic mappings onto regions in the shape
of regular stars. For > 2, our target regiof2 will be ann-pointed star with its “inner
vertices” at the pointsa® for k = 1,2,...,n, wherea = ¢/"/" and O< r < 1, and its
“outer vertices” at the pointg®+1. Thus the inner vertices lie in the directions of the
nth roots of unity, at distance from the origin, whereas the outer vertices lie on the unit
circle. Simple geometric considerations show tf2ais convex if and only if cogr/n) <
r < 1. We will explore the behavior of the canonical harmonic mapping earies and
the star changes shape. With= /a = ¢/™/2*, we first prescribe the symmetric boundary
correspondence

2k it 2k @ 2k
ity _ Jra®, el e(a®p,a®p),
fleh) = {O[Zk-q—l’ et € (%18, g%+1p), ®3)
wherek =1, 2, ..., n. Then the harmonic extensionlibis
‘3 1 n kil 7 — a2k+113
f@)= o arg _ 4+ =) ¥ tlagt— L. (4)
Z /3 T = 7 — 0(2k+1,3

For cogm/n) < r <1 the target regio2 is convex and the Rad6—Kneser—Choquet theo-
rem ensures that mapsD univalently ontos2. We shall see, however, that the univalence
persists for a larger interval including valuesrothat generate nonconvex configurations
of £2. In fact, we will determine the exact range of values of the paramdtarwhich f
is univalent. The transition from univalence to nonunivalence will be explained in terms of
the dilatation off, which we now calculate.

First note thatf has the canonical decompositigh= A + g with

h(z) = ZaZ"Io - Z 2t i P
< g 0‘2k,3 277 gz _a2k+1IB’

n 2k+1,3

r % - 5 1 2%+1
- | log>— %7
g(2) Zm']; og Ry 27112 og Spwy;
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Now calculate the derivatives

2k

W r—a a% F—a o
@ = 2mi Zz—aZkﬂ_ 2mi Zz—aZk,B_’
k=1 k=1

— 2k n &Zk

- n
, r—a a r—a
- - _ 5
§@ 2mi Zz—aZk,B 2mi kZ_;z—azk,B ®)

using the identities? 8 = «%*18 anda2*+D g = o 2%+18. In view of the partial fraction
expansions

e o
n_ ; in — Z—Oé2k,3’ "+ ink_lZ_O[ZkIB—,

7" —i

anz ﬂ anz _/3 n &Zk

Z"—i ZZ—(XZkﬂ Zn+i_;k§lz_a2k5’ (6)
these formulas reduce to

() = n (14+r)Im{g} — (1 —r)Rep}"

T 72141 ’
') = " 2(1+r)|m{ﬂ}z —(1—r)Re{ﬂ}
§ie)= T n 41

Thus f has dilatation

g'(2) _ Z,1,2(144) Im{B}z" — (1 —r)Re(B}
h'(z) (1+r)Im{g} — (1 —r)Re(p}z"
n—2 ' —c

1—cz"’

w(z) =

(7)

=z

where
_(A-nRelp} 1-r =

S A om 11 2 ®

Note thatc > 0forO<r <1

4. Univalence of star mappings

On the basis of our dilatation formula (7) we can now determine the exact range of
parameters andr for which the functionf provides a univalent harmonic mapping of
D onto the corresponding star-shaped regionAccording to Theorem 1, this will be the
case if and only if all zeros of the functianlie in D. Thus we have arrived at the following
result.
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Theorem 2. Let f be the harmonic functio() in the unit diskD with boundary values3),
wheren > 2 and0 < r < 1. Theny is univalent inD if and only ifr; <r <1, where
1-sin®

= cos™

In this casef is a univalent harmonic mapping &f onto the star-shaped domaia with
verticesra® anda?+1 wherek =1,2,...,n.

Proof. In view of Theorem 1, it suffices to examine the zeros of the dilatatiofi,cds
given by the formula (7). Clearly, all zeros®flie in D if and only if ¢ < 1, wherer is given
by (8). If r = 1, thenc = 0 andw(z) = z%*~2, as predicted by the general considerations
of Section 1. The formula (8) shows that- O forr < 1, and that = 1 when
L 1-tanZ. _ 1-sin®
1+tang. cosT

=r1.

If ¢ =1, thenw(z) = z"~2, with all of its zeros at the origin. If; < r < 1, thenc < 1

and the formula (7) shows that has all of its zeros if. Thus ifr1 <r < 1, Theorem 1
says thatf mapsD univalently ontos2. If » < r1, thenc > 1 andw hasn zeros outsid@

in addition to a zero of order — 2 at the origin, so by Theorem 1 the functighis not
univalent inD. O

It should be observed that < cogx/n) for n > 3, since
1—sing <cosH, 0<6 <m/2.

For r1 < r < coq/n) the harmonic extensioff mapsD univalently ontos2 for some
values ofr wheres2 is not convex.

As an illustration of Theorem 2, let = 6, so thatr; = 1/4/3 = 0.577... and
cos/n) = +/3/2 =0.866.... Figure 1 shows the images undgrof concentric circles

0.75
0.5
0.25

|

0 M|

.

-0.25 41‘“
-0.5
-0.75

-0.750.50.25 0 0.250.50.75 -0.750.50.25 0 0.250.50.75

Fig. 1. Images of mapping for n = 6 andr = 0.3, 0.6.
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and radial segments, as producedMgthematicagraphics. For = 0.3 < r1, the mapping
f is not univalent and folding occurs near the inner verticeoforr = 0.6 > r1, the
figure confirms thaff is univalent althougls2 is not convex.

5. Unequal arcs

We now consider harmonic mappings whose boundary correspondence is a step func-
tion defined on a system of arcs of two different sizes. This construction will enable us to
produce a univalent harmonic mapping onto an arbitrarily prescribed star, with piecewise
constant boundary correspondence.

Again leta = ¢/™/" wheren > 2. Let = ¢P™/" andy = /1=P7/" for 0 < p < 1,
so thatfy = «. Givenr € (0, 1], let f be the harmonic mapping @ with boundary
correspondence

. rOle, el c (aZkB OIZk,B)
f(e”) = {aZkH, et e (a2k+1y aZkHy) ©)
wherek=1,2,...,n. Then
a2 n 2k+1
B 1 as Ty
fo)= Z % a Y += az"“argw. (10)
k=1

Note that8 = y whenp = i, and thenf reduces to the earlier form (4).

The dilatation off = i + g is calculated as before, with minor adjustments. The formu-
las (5) forh’(z) andg’(z) remain valid, but now withg = ¢!?™/"_ Suitable modifications
of the partial fraction expansions (6) then lead to the expressions

n {(r — a)BelP” B (r —&),Beip”}

" — eipm 7 — e—ipT

h()—2

Ti

r—ap  (r—aw)p }

g@= omi {Zn _ elirm N — e—ipm
which produce the dilatation formula

§@ 7 —c

w(z) = W (z) =z 1—cz"’ (11)
wherec is now defined by
e e(py = MG =BTy Im{y" ) — rim{p" Y
ST T mic— Ay Imiy)+rimip)
. _l _ _ .
:Sln((l DA =p)r)—rsin((1- )pﬂ) (12)

sm( 1- p)n)+rsm( pr)

Observe that fop = 3 L the expression (12) reduces to (8).
With the dilatation formula in hand, the proof of Theorem 2 can be adapted to yield the
following generalization.
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Theorem 3. Let f be the harmonic functio(i0) with boundary value§9), wheren > 2,
0<r <1 and0 < p < 1. Letc be defined by12). Thenf is univalent inD if and only
if —1< ¢ < 1 Inthis casef is a univalent harmonic mapping @f onto the star-shaped
domain with verticesa? anda®*+1fork=1,2,...,n.

Consequently, the question of univalence comes down to the behavior of the function
¢(p) as defined by (12). It is easily seen th&0) = 1 andc(1) = —1. Straightforward
calculations lead to the simple formulas

/ . 71( 12 ) , . 71( 7T 1>
¢ (0)=msin—(cos— —r |, ¢ (1) =msin—|cos— — -
n n n n r

for the derivatives at the two endpoints of the intervad @ < 1. If r > coSw/n), then the
target region2 is convex andf is univalent for 0< p < 1, by the Rad6—Kneser—Choquet
theorem. However, if < cogn/n), we see that’(0) > 0 and therefore(p) > ¢(0) =1
for all p > 0 sufficiently small, so that the corresponding mappfhig not univalent. On
the other hand, for each> 0 we see that’(1) < 0 and so—1 = c(1) < c¢(p) < 1 for
all p < 1 sufficiently large. Thus for an arbitrary target regi@nit is possible to adjust
the boundary correspondence (9) to produce a harmonic fungtittrat maps the disk
univalently ontos2. These conclusions are summarized in the following theorem.

Theorem 4. Let 2 be an arbitrarily prescribed star-shaped domain witl> 2 and 0 <

r < 1. Then for allp < 1 sufficiently large, the functiorf defined by(10) is a univalent
harmonic mapping ob onto 2. If 0 < r < coYx/n), so thats2 is not convex, then for
eachp > 0 sufficiently small the functioyi is not univalent irD.

Intuitively, Theorem 4 is true because fprnear 1, relatively large boundary arcs are
mapped to the inner vertices; whereasriat cog/n) and p near 0O, relatively large arcs
are mapped to the outer vertices. Figure 2 illustrates Theorem 4 by displaying the same
regionss2 as in Fig. 1, but now for = 0.3 and p = 0.81 the mappingf is univalent,

N o A4
S 7

)

ST

AN

-0.75-0.5-0.25 0 0.25 0.5 0.75 -0.75-0.5-0.25 0 0.25 0.5 0.75

Fig. 2. Images for =6 andr =0.3, p =0.81;r = 0.6, p =0.2.
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(] C

Fig. 3. Graphs of = ¢(p) for n =6 andr = 0.3, 0.6.

whereas for = 0.6 andp = 0.2 it is not univalent. Graphs of the corresponding functions
¢(p) are shown in Fig. 3.

It is an interesting open question whether every simply connected domain with polyg-
onal boundary is the univalent image of some harmonic function with piecewise constant
boundary function.

Curiously, the analysis shows that= 0 and thusf has dilatationw(z) = z2"~2 in
certain cases of irregular boundary distribution; that isyferl andp # % According to
the formula (12), this happens precisely when

(o) -3 ))

1
r=sin’ cot<<1 - —>p7'[> + cos™. (13)
n n

n

Forn > 2 and O< r < 1, the relation (13) holds for some uniquely determinpeih the
interval 1 < p < 1. Forn > 2 and$ < p < 1, the formula (13) produces a radiugn the
interval O<r < 1.
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