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The study of peristaltic flow of a Carreau fluid in a compliant rectangular channel has
been analyzed in this article. The assumptions of low Reynolds number and long wavelength
approximation are utilized here to simplify the complicated governing equations for the three
dimensional flow geometry. The resulting highly non-linear partial differential constitutive equa-
tions are solved jointly by homotopy perturbation and Eigen function expansion methods. The
effects of various physical parameters on velocity distribution have been observed graphically for

both two and three dimensional aspects. The trapping scheme has also been discussed by plotting

stream lines.

© 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.

1. Introduction

The study of peristaltic flows plays a vital role in physiology
and industry because of its large number of applications and
in mathematics for its complicated geometries and non-linear
problems. In physiology, it is applied by many systems in the
living body to propel or to mix the contents of a tube. The
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peristaltic mechanism usually follows in urine transport from
kidney to bladder, swallowing food through esophagus,
chyme motion in the gastrointestinal tracts, vasomotion of
small blood vessels, movement of Spermatozoa and the hu-
man reproductive tract. Theoretically and mathematically,
the complete exact solutions of peristaltic flow problems are
quite complex to evaluate even in viscous fluid theory. How-
ever, by applying certain physical simplifications such as long
wavelength and low Reynolds number approximations, the
authors successfully calculate only limited exact and analyti-
cal solutions. The study of peristaltic flows of non-Newtonian
fluids has achieved considerable attention in the past few
years. There are several investigations to study the different
aspects of peristaltic flows with different flow geometries.
Mention may be made to the interesting works of [1-14]. Re-
cently, Abd Elnaby and Haroun [15] have presented a new
model for study the effect of wall properties on peristaltic
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transport of viscous fluid. Basically the study of compliant
wall is useful for controlling the muscles tension. The action
of these muscles has been discussed mathematically by a set
of equations which are related to compliant wall displace-
ment [16,17]. Srinivasvas and Kothandapani [18] have exam-
ined the combined effects of heat and mass transfer on MHD
peristaltic flow through a porous space with compliant walls.
However, all the studies are discussed for two dimensional
channels. In peristaltic problems only a limited attention
has been given to the study of three dimensional channels
or in a rectangular channel [11-14,19-21]. However, the peri-
staltic flow of Newtonian or non-Newtonian fluid in a rectan-
gular channel with compliant walls is not discussed so far.
Due to a large number of applications of peristaltic phenom-
enon in industry, clinical equipment and engineering, the
researchers and developers are keen to concentrate on the
peristaltic flows of non-Newtonian fluids in three dimensional
channels. Motivated from the above recent development in
the field of peristalsis, this study is presented to evaluate
the peristaltic flow of Carreau fluid in a rectangular channel
having flexible walls. The governing equations of a Carreau
fluid are simplified by using assumption of low Reynolds
number and long wavelength approximation. The reduced
equations are finally solved analytically by homotopy pertur-
bation and Eigen function expansion methods. The physical
features of all the related parameters have been highlighted
through graphs. The trapping phenomenon is also discussed
at the end of the paper.

2. Mathematical formulation

Let us take the peristaltic transport of an incompressible
Carreau fluid in a cross section of rectangular duct having
the channel width 2d and height 2a. The Cartesian coordinate
system is being taken for the geometry [19]. The walls of the
channel have the property of being compliant. The flow is
assumed to be produced by the sinusoidal waves having long
wavelength 1. The peristaltic waves on the walls are described
as

z="h(x,t) = ta+tbcos {2771 (x— cz)} ,

where a and b are the amplitudes of the waves, ¢ is the
velocity of the propagation, ¢ is the time and x is the direc-
tion of wave propagation. We assume that the lateral veloc-
ity is zero as there is no change in lateral direction (y-axis).
Let (u,0,w) be the velocity for a mentioned geometry. The
governing equations for the flow under observation are sta-
ted as

in which p is the density, p is the pressure and S is the stress
tensor for Carreau fluid, which is defined as [11]
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dp
dp
5, =0 (12)

From above equation, it is observed that p is not a function
of z. Now from Eq. (10), we obtains
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The corresponding boundary conditions (in non-dimen-
sional form) for rectangular duct are given as

u=—laty==land u=—1at z = £1 £ n(x,1). (14)

The governing equation for the flexible walls [21] may be
described as

L(n) =p—p, (15)

where n(x, 1) = ¢ cos2n(x — t) and L is an operator, which is
used to represent the motion of stretched membrane with vis-
cosity damping forces such that
o o o s
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In the above equation, m is the mass per unit area, D is the
coefficient of the viscous damping forces, B is the flexural
rigidity of the plate, T is the elastic tension per unit width in
the membrane, K is spring stiffness and p, is the pressure on
the outside surface of the wall due to tension in the muscle,
which is assumed to be zero here. The continuity of stress at
z =41 4 # and using Eq. (10), yield
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where  Ey =md’c/2’n,  E,=Dd’/u)?, E; = Bd[cul’,
SEy = Ta* Jew)? and Es = Ka®/ep). are the non-dimensional
elasticity parameters.

3. Solution of the problem

Eq. (13) can be integrated to reduce the order of the partial dif-
ferential equation as follows
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where D is a constant of integration to be evaluated. The solu-
tion of the above non-linear and non-homogeneous partial dif-
ferential equation with boundary conditions (14) and (18) has

been calculated by using Homotopy perturbation method
(HPM), which is defined as [22,23]
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Velocity profile for different values of n for fixed y=1, f=1.5 We=09, ¢ =0.1, x=0.5, =04, E, =0.1, E;, =0.2,

E;=0.01, E4 =0.2, Es = 0.3. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 2 Velocity profile for different values of E| for fixed y=1, n=0.1, We=0.9, ¢ =0.1, x=0.5, r =04, f=1.5, £, =0.2,
E; =0.01, E;, =0.2, Es = 0.3. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 3  Velocity profile for different values of E, for fixed y=1, n=0.1, We=0.2, $ =0.1, x=0.5, t =04, E; =0.1, f = 1.5,
E; =0.01, E;, =0.2, Es = 0.3. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 4 Velocity profile for different values of E; for fixed y=1,n=0.1, We=0.2, $ =0.1, x=0.5, t =04, E, =0.2, E; =0.1,
p=0.5, E,=0.1, Es = 0.3. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 5 Velocity profile for different values of We for fixed y=1, =09, f=0.5, ¢ =0.1, x=0.5,t =04, E, =0.1, E;, =0.2,
E;=0.01, E, =0.2, Es = 0.3. (a) For 2-dimensional and (b) for 3-dimensional.
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Figure 6 Stream lines for different values of We. (a) For We = 0.1, (b) for We = 0.4, (c) for We = 0.7, (d) for We =0.9. The other
parameters are y=1, ¢ =0.1,t=0.5,n=0.1, =15, E, =02, E, =0.2, E; =0.01, £, =0.2, Es = 0.3.
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Figure 7 Stream lines for different values of E. (a) For E; = 1, (b) for E; = 1.2, (¢c) for E; = 1.4, (d) for E; = 1.6. The other parameters

arey=1,¢=0.1,t=05n=0.1, We=09, f= 1.5 E, =02, E; =0.01, E; =

in which ¢ is embedding parameter which has the range
0< q<l For our convenience, we have assumed

L=F5

the selected operator is chosen as

42 az as the linear operator. The initial guess for

1
up=—1+22 =K +—(1-)7%. (21)
B
According to the perturbation technique, let us define
v=v+qv, + ¢ +--- (22)

Substituting Eq. (22) into Eq. (20) and then comparing the
like powers of ¢, one obtains the following problems with the
corresponding boundary conditions

L(vy) — L(up) =0, (23)
vo=—1aty==l, (24)
vo=—1atz==l=+n(x,1), (25)

0.2, Es =0.3.
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st () o (5 (2))
1 2 we (?;ZO (%Vy‘)) ) - D> —0, (26)

vp=0aty==l, (27)
vy =0, at z=+£1 £ 5(x,1). (28)
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From Eq. (23), we have
Vo = Uy

:—l+zth2+%(lfy2). (29)

With the help of Eq. (29), Eq. (26) can be written as
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Figure 8 Stream lines for different values of E,. (a) For E, =0.5, (b) for E, =0.7, (¢) for £, =0.9, (d) for E; = 1.1. The other
parameters are y =1, ¢ =0.1, t = 0.5, n =0.1, We =0.2, E; =0.1, p = 1.5, E; =0.01, E; = 0.2, Es = 0.3.
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The solution of the above non-homogeneous linear partial
differential equation is calculated as
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Finally, the HPM solution upto first iteration leads us to
the original solution (when g—1)

N———

u(-’ﬁ}hzy t) =V + i, (32)



482

A. Riaz et al.

(a)-f

4

|

°

>/

°
o
W
°
»
s
=
°
o
-

[
.

M

(b)-F

-
T

9O

°

-

9 @

[3 0.2 0.4 0.6 0.8 1

M
S

-

-

Figure 9  Stream lines for different values of E;. (a) For E; = 0.01, (b) for E5 = 0.05, (c) for E; = 0.09, (d) for E5 = 0.13. The other
parameters are y =1, ¢ =0.1, t =0.5,n=0.1, We=0.2, E, =02, E;, =0.1, = 1.5, E, = 0.1, Es = 0.3.

where vy and v, are defined through Egs. (29) and (31). By
making use of these two equations in the above result, we ap-
proach to the following series solution for the velocity
distribution

1
“(x7y7271) :_1+22_/12+F(1 _yz)

> 1 <2ﬁ2b0m + a0m}~m + /Imb0m>
m=1 cosh (%) }1271

x cosh (%y) cos (%z). (33)

It is observed from the above problem that if we use the

limit f — 0, the rectangular duct becomes a two dimensional

channel. It is also measured that when f§ = 1, the rectangular

duct reduces to square duct. Further, it can be noted from

the present analysis that if we take Weissenberg number
We = 0, we return to the viscous fluid problem.

J’_

4. Results and discussions

4.1. The uniform velocity distribution

The analytical solutions obtained in above section are dis-
cussed graphically in this section. The graphs for velocity pro-
file and stream functions are sketched both for two and three
dimensions. Figs. 1-5 are plotted to see the effects of physical
parameters namely n, E|, E,, E3 and We on velocity profile. In
Figs. 1-3, the velocity profile is plotted against z-coordinate
with increasing magnitude of the parameters n, E; and E,,
respectively. It is observed that by increasing the values of
all these parameters, the velocity field decreases. However,
the variation in the magnitude of velocity is faster when seen
for E| as compared to n and E,. The graphs of the velocity field
for different values of F; and We are displayed in Figs. 4 and
5, respectively. It is noticed that velocity varies directly with Ej
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and We that is if someone increases the magnitude of these gi-
ven parameters, the velocity curves gets more height and adopt
uniform parabolic path throughout the channel. It is also con-
cluded from the results seen in Figs. 1-5 that the maximum
velocity is at the center of the channel for small values of all
the given parameters. Also the variation of velocity profile re-
mains symmetric and continuous throughout the channel for
all the time. The three dimensional analysis of the velocity is
also portrayed in (b) parts of the above mentioned figures.

4.2. Trapping scheme

The trapping phenomenon is described by plotting stream lines
and is shown through Figs. 6-9. The variation of circulating
bolus is presented for pertinent parameters, i.e., We, E|, E,
and FE;. The stream lines for different values of We are
sketched in Fig. 6. It is depicted from Fig. 6 that with the in-
crease in the parameter We, the number of trapping bolus de-
creases on the left side but increases on the opposite side of the
channel and size of the bolus is also changing oppositely in
both sides of the channel. From Fig. 7, it is evaluated that
the more bolus appears with increasing values of the parameter
E; and the size of bolus is also changing. Figs. 8 and 9 are
drawn to show the stream lines for the parameters E, and
E;. It is observed from Fig. 8 that the size of the bolus remains
same in left side of the channel but decreases in the other side
but the number of bolus does not vary. From Fig. 9, it is noted
that the number of bolus increases with the increasing magni-
tude of Ej; but size of the bolus is changing time by time with
E;.

5. Concluding remarks

In the present investigation, authors have made attempt to find
the analytical solutions for the peristaltic flow of Carreau fluid
in a three dimensional rectangular duct having compliant
walls. The considered flow is assumed to be incompressible
and unsteady and discussed in a three dimensional rectangular
coordinate system. The observations are produced under the
assumption of long wavelength and low Reynolds number
which justifies that the flow is laminar. The obtained governing
flow equations are highly non-linear partial differential equa-
tions which are solved with the help of well-known series solu-
tion technique namely homotopy perturbation method. The
effects of all pertinent parameters are included through graph-
ical treatment. From the above mathematical analysis, we have
derived that the velocity profile diminishes with the increase in
numerical values of n, E|; and E,, while opposite results are ob-
served for E3 and We. Moreover, the trapping bolus contracts
on right side but expands on left side with the variation of We
and Ej. It is also concluded from the above discussion that
trapping bolus shows inverse behavior with the change in val-
ues of E, and E,.
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