
DISCRETE
APPLIED

ELSEVIER Discrete Applied Mathematics 75 (1997) 201-216
MATHEMATICS

(p - l)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective

Igor Averbakh,“. * Oded Bermanb

a Mathematics Department, Western Washington University, Bellingham, WA-98225-9063, USA

b Faculty of Management, University of Toronto, Toronto, Ont., Canada MSS I V4

Received 17 February 1995; revised 17 June 1996

Abstract

Suppose p traveling salesmen must visit together all points/nodes of a tree, and the objective
is to minimize the maximum of lengths of their tours. For location allocation problems (where
both optimal home locations of the salesmen and their tours must be found), which are
NP-complete, fast polynomial heuristics with worst-case relative error (p - l)/(p + 1) are

presented

Keywords: Traveling salesman; Approximate algorithms; Complexity

1. Introduction

We consider minmax p-traveling salesmen problems (p-TSP) on a tree, that can be

interpreted as follows. There are p identical service units (servers), initially situated at
some points of the tree (home locations). They are required to visit (serve) some set DP
of demand points (each point from DP must be visited by at least one server)

and return back to their home locations; DP is either the set of all nodes or the set of

all points of the tree. The objective is to minimize the maximum of lengths of their

tours. For the sake of convenience this interpretation will be used throughout the

paper.
Problems of this type arise in many services such as repair and maintenance,

delivery and customer pick-up. The minmax objective may be motivated, first, by the

desire to distribute the workload to the servers in a “fair” way, second, by natural

restrictions such as limited working day of the servers. The minmax p-TSP on

a general network with a priori given single home location for all servers (depot) was

*Corresponding author. E-mail: averbakh@lake.scar.utoronto.ca.

0166-218X/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved
PII SOl66-218X(96)00096-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82388988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

202 I. Averbakh, 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216

studied in [3,2]. Franka et al. [2] discussed tabu search heuristics as well as an exact

algorithm based on the solution of a closely related Distance Constrained Vehicle

Routing Problem [S]. These approaches, although do not have any theoretical

worst-case guarantees, perform satisfactorily in practice; Franka et al. [2] report

solving to optimality problems involving up to 50 nodes. Frederickson et al. [3]

studied worst-case behavior of several heuristics; in particular, they suggested a tour-

partitioning heuristic which has a worst-case relative error of e + 1 - l/p, where e is

the worst-case error for the corresponding single-server algorithm (which is used as

a subroutine). Thus, if the single-server TSP can be solved to optimality, the tour-

partioning heuristic of [3] for the minmax p-TSP with a single given depot has

a relative error not greater than 1 - l/p.

Averbakh and Berman [l] studied the minmax 2-TSP (two servers) with given

home locations on a tree. For this (NP-complete) problem they presented a linear-

time heuristic with worst-case relative error f for the case of equal home locations and

3 for the case of different home locations.

In this paper, we study the location-allocation (or routing-location) version of the

minmax p-TSP on a tree, where home locations of servers are not given in advance

and should be chosen along with servers’ tours. This version of the problem is less

restrictive, since the assumption of given locations clearly reduces flexibility in

choosing tours. For this NP-complete problem, we develop fast heuristics with

a worst-case relative error of (p - l)/(p + 1).

2. Problem formulation and notation

Consider a tree T = (V, E) with I/ the set of nodes and E the set of (undirected)

edges, IV1 = n. T will also denote the set of all points of T. Throughout the paper, the

term “subtree” is used in the topological sense, i.e. T' is a subtree of T iff T' is

a connected subset of T (not necessarily closed). For any subtree T ' c T, let L(T ')

denote the total length of T '; L denotes the total length of T (the sum of the lengths of

all the edges).

The subtree visited by a server in his service tour is referred to as allocation for that

server.

The TSP for the case of a single server on a tree is trivial: it is well-known that any

depth-first tour solves the problem, and the length of the optimal tour is equal to twice

the total length of the tree. Without loss of generality, we assume that the service tour

of each server is a depth-first tour within his allocation with length equal to twice the

total length of the allocation. Due to this assumption, the considered problems can be

formulated in graph-theoretic terms, and we use total lengths of allocations instead of

lengths of service tours.

We consider location-allocation problems, where it is required to find optimal

home locations and the corresponding optimal allocations given a set HL of possible

home locations and the set DP of demand points.

I Auerbakh, 0. Berman J Discrete Applied Mathematics 75 (1997) 201-216 203

Problem 1 (Location-atfocation minmax p-TSP). Given an integer p 2 2, sets

HL c T and DP c T, find locations a,, . . . , up E HL (not necessarily different) and

closed subtrees Fr, . . . , Fp c T (allocations) such that DP c Flu ... uFp and

ai E Fi, i = 1, . ,p, SO as to minimize max{L(F,), . . . , L(F,)).

We distinguish between four variants of Problem 1 with notation “Problem l-

X 1 IX,“, where X1 = T/ if HL = V and X1 = E if HL = T, X2 = V if DP = I/ and

X2 = E if DP = T. For example, if HL = V, DP = T, then Problem 1 is referred to as

Problem l-V/E. When a variant of the problem is not specified, reported results

pertain to all the four variants.

We use the following notation and definitions. For any two points a, 6~ T, let

d(a, b) denote the distance between a and b. For an edge (cl, u2) let ~(1;~) uz; r) denote

the point of edge (ul, u2) which is r units away from ~~(0 < r < d(cl, c,)),

.Y(L., , 0,; 0) = t’, , x(ul, vZ; d(ul, vZ)) = c‘~. For any constant y > 0 a finite set r c T is

referred to as “y-dividing set”, if after deleting all the points off from T tree T will be

divided into connected components of lengths not greater than y. A ;I-dividing set r is

called a minimum y-dividing set, if it contains the minimum number of points (among

all y-dividing sets). For any node U, connected components of set T ‘\(t’> are referred to

as c-branches, and for another point c, let B(o, c) denote the unique u-branch that

contains c (notice that u$B(u, c)). For any edge (a, b) it is assumed that points a, b

do not belong to the edge; [a, b] denotes edge (a, b) with its end points a, b. For

any two points c, d of the tree, let P(c, d) denote the path between c and d. L&
denotes the optimal objective value for Problem l-E,/& L&, L;!E, L;!, are defined

analogously.

3. An auxiliary problem

We start with the following auxiliary problem.

Problem 2 (Minimum y-dividing set problem). Given jt > 0, find a minimum y-dividing

set r for tree T.

Consider an algorithm for solving Problem 2.

Algorithm 1. We will use an auxiliary tree p = (9,8), which will be changed during

the action of the algorithm (before each step, current tree p represents the part of

T that has not been examined yet). At the beginning P = I/, E = E, r = 8. At every

step of the algorithm nodes u E P of tree $ have labels s(u). Initially, all the labels are

equal to 0.

Step k, k = 1, 2, Case 1. Current tree 7? has more than one node. Take any end

node w of current tree $. Let ~1 be the node of current tree $ adjacent to node w.

204 I. Averbakh, 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216

Substep 1. If s(w) > y, then put node w into set r. Change label s(w) as follows:

s(w) = 0 and go to substep 2.

If s(w) < y, go to substep 2.

Substep 2. If s(w) + d(w, u) < y, then delete edge (w, u) with node w from tree $ and

change label s(u) as follows: s(u): = s(u) + s(w) + d(w, u). Go to step k + 1.

If s(w) + d(w, v) > y, then put points x(w, u; y - s(w)), x(w, v; 2y - s(w)), . . . , x(w, v;
(r(d(w, 4 + w)hi - 1)~ - S(W)) consecutively into f (in total r(d(w, u) +

s(w))/yl - 1 points). Delete edge (w, u) with node w from ? and change label s(v) as

follows:

s(v): = s(v) + d(w, v) + s(w) - d(w> 4 + s(w) _ 1 y

Y 1 1.
Go to step k + 1.

Case 2: Current tree $ is a node u.

If s(v) > y, put node v into r and STOP.

If s(v) d y, then STOP.

The description of the algorithm is completed.

Lemma 1. The number of steps of Algorithm 1 is n.

Proof. Trivial since at each step except the last step exactly one edge from ? is

deleted.

Lemma2. (a) lrl Gr L/y I-- 1;

(b) r is a minimum y-dividing set for T.

Proof. For each point z included in r by Algorithm 1 we define a corresponding

subtree Q(r) which will play an important role in further constructions. To define

subtrees Q(r), r E r, consider a new auxiliary tree F, which is initially equal to T and is

changed during the action of Algorithm 1. Let zr, r2, . . . , rlrl be the points from set

r obtained by Algorithm 1, ordered according to their appearing in r during the

action of Algorithm 1. We delete subtree Q(z) from tree T as soon as point z is put into

r by Algorithm 1. This subtree is defined as follows. Suppose point r is put into r at

step k of Algorithm 1. If r is the last point rlrl from r, then Q(z) is the whole current

tree T (at the instant when r is put into r). If r # zlrl, then removing the point r from

current tree F (at the instant when z is put into r) divides F into several connected

components, and only one of these components has length greater than y. Let it be

component Y; we define Q(r) as F\ Y. Notice that some of sets Q(z) can be not closed.

An example of action of Algorithm 1 and the corresponding sets Q(r), z E r are

demonstrated in Appendix A.

I. Averbakh, 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216 205

Sets Q(z), T E r have the following properties:

Property 1. ZE Q(z) for all ZE r, and r is the only point from r in Q(z).

Property 2. Q(z’)nQ(z”) = 8, if r’ # t”.

Property 3. Each set Q(r) is a subtree of T with length not smaller than 7, and Q(r,, ,)

has length strictly greater than y.

Property 4. Q(~~)uQ(z~)u ..’ uQ(zjFi) = T.

Property 5. Subtree Q(r) has length s(r), if z was put into r at substep 1 or at the last

step; s(r) here is the label of z just before putting r into r. If T was put into r at substep

2 and r # rlrl, then Q(z) has length ;‘.

Property 6. Removing point r decomposes Q(r) into connected components of lengths

not greater than y.

Property 7. If rlrl is an interior point of an edge (rirl is the last point included in r),

then Q(T,~,) contains a node, and L(Q(tlri)) d 2;.

Property 8. For any re r such that T # sly, and r is an interior point of an edge,

UQ(4) = Y.
From Properties 1-4, we obtain the first statement of the lemma. From Property

6 and the definition of sets Q(r), we obtain that r is a y-dividing set. Now, it is easy to

see that for any other y-dividing set r’, each one of sets Q(r), r E r must contain at least

one point from r’. Using Properties 1 and 2, we obtain the second statement of the

lemma. 0

Lemmas 1 and 2 imply

Theorem 1. Algorithm 1 solves Problem 2 in time O(n + LLpf J).

4. A (p - l)/(p + l)-heuristic for Problem l-E/E

Using a reduction from the Multiprocessor Scheduling Problem [4] or from

problem Partition [4], it is fairly easy to prove the following.

Theorem 2. Problem 1 is NP-complete for each one of variants V/V, V/E, E/V, E/E for

any fixed p > 2. If p is variable, the problem is strongly NP-complete. The results hold

even for stars (trees where all edges have a common node).

206 I. Averbakh, 0. Berman 1 Discrete Applied Mathematics 75 (1997) 201-216

Thus, it would be interesting to obtain fast heuristics for solving the problem with
good guarantees for the worst-case performance.

Notice that in some cases optimal allocations Fi, i = 1, . . . , p inevitably have
intersections of non-zero lengths; for example, consider Problem 1 for the tree in
Fig. 1, p = 2. For any optimal allocations Fr , F2, edge (C, D) belongs to both of them.

Consider Heuristic Hl with running time complexity O(max{n, p}) which for
Problem l-E/E obtains an approximate solution with value L”’ not greater than
2L/(p + 1). Since L &E 2 L/p, the relative error (LH1 - L&)/L& for the heuristic’s
performance is not greater than (p - l)/(p + 1).

The idea of Heuristic Hl is as follows. First, using Algorithm 1, we obtain
a minimum L/(p + 1)-dividing set r(1 rj 6 p according to Lemma 2). The points from
F divide tree T into subtrees of lengths not greater than L/(p + 1). Second, each one of
these subtrees is assigned to one of the points from r incident to that subtree, so that
each subree is assigned to exactly one point from r and the total length L, of subtrees
assigned to any z E r is not smaller than L/(p + 1) (subtrees assigned to z will be
served by servers located at 7). Third, for any r E r, max{ 1, rL,/(L/(p + 1))l - l}
servers are located at z (there will be not more than p servers in total) and the subtrees
assigned to z are distributed to these servers in such a way that the allocation of each
server has length not greater than 2L/(p + 1).

Heuristic Hl. (1) Algorithm 1 with y = L/(p + 1) is applied to tree T and a minimum
L/(p + 1)-dividing set r with corresponding sets Q(z), z E r (see the proof of Lemma 2)
isobtained(pointsofT = {zl,rZ, . . . , zlrl} are ordered according to their appearance
in F in the course of Algorithm 1).

(2) For each z E r, n(z) = max{ l,r((L(Q(r))/(L/(p + 1))l - 1) servers are located at
z, where L(Q(z)) is the length of set Q(z). The servers located at z will serve together the
set Q(r) (with its boundary points).

(3) According to Property 6 of sets Q(z) (see the proof of Lemma 2), set Q(z) is
a union of several branches (see Fig. 2) of lengths not greater than L/(p + 1) having

Fig. 1. For any optimal allocations FI, F,(p = 2) edge (C, D) belongs to both of them.

I. Averbakh, 0. Berman / Discrete Applied Mathematics 79 (1997) 201-216 207

Fig. 2. T and set Q(T). Q(T) (depicted with solid lines) is the union of three branches having common point T.

the only common point r. The total length of these branches is equal to L(Q(z)) and is

not greater than (n(z) + l)L/(p + 1). These branches (with their boundary points) are

assigned to n(r) servers situated at T so that: (a) each branch is assigned to exactly one

server; (b) allocation of each server has length not greater than 2L/(p + 1). The

branches are assigned in consecutive order; a branch is assigned to any server which

can accept it without exceeding limit 2L/(p + 1) for the length of his allocation.

The description of Heuristic Hl is completed.

Illustrating examples for Heuristic Hl are provided in Appendix B.

Taking into account Property 3 of sets Q(z) (see the proof of Lemma 2), we have

L n(r) __ \
L

P+l
< L(Q(T)) d (44 + 1) -

p+ 1’
TEr;

by summing up these inequalities for all z E r we obtain

and

c 47) < p + 1 < c (II(T) + 1). (1)

The first inequality in (1) must be strict because for the point rlrl (the last point

included in r), n(rl,OLl(p + 1) < L(Q(zlrl)) (since L(Q(tl,,)) > L/(p + l), according

to Property 3 of sets Q(z)). Therefore,

Thus, Heuristic Hl obtains an approximate solution for Problem l-E/E. Since each

server’s allocation has length not greater than 2L/(p + 1) and Lf,E z L/p, the relative

208 I. Averbakh, 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216

error for the heuristic performance is not greater than (p - l)/(p + 1). This bound is

tight and cannot be improved; an example of tightness - a tree consisting of only one

edge of length L (for this example (L”’ - L&)/L&r = (p - l)/(p + 1). Thus, the

following theorem is proved.

Theorem 3. Heuristic Hl jinds an approximate solution to Problem l-E/E in time

O(max{n, p}) with worst-case relative error (p - l)/(p + 1). The value of the obtained

solution is not greater than 2L/(p + 1).

Corollary. L& < 2L/(p + 1).

The bound in the Corollary from Theorem 3 is tight, as the example of a star tree

with common node a and p + 1 edges of equal lengths demonstrates. The length of

each edge is equal to L/(p + l), and at least one server must serve two edges.

Notice that Heuristic Hl can leave some servers idle (i.e. to use less than p servers).

To be rigorous, the idle servers may be located at arbitrary nodes of the tree with

allocations consisting of single nodes.

5. A (p - l)/(p + 1)-heuristic for Problem l-V/E

Consider Problem l-V/E, where all servers have to be located at nodes but must

serve together all points of tree T. Clearly, the optimal value LfiE for Problem l-V/E

is not less than max{L/p, 1,,,/2}, where l,,, is the length of the longest edge of T.

Below we present Heuristic H2, which finds an approximate solution to Problem

l-V/E with value LH2 not greater than max { 1,,,/2,2L/(p + 1)); therefore, the relative

error is not greater than (p - l)/(p + 1). We also show that this is the worst-case

relative error.

First, notice that according to Property 7 of sets Q(r) (see the proof of Lemma 2)

and according to the description of Heuristic Hl, if rlrl is an interior point of an edge,

then only one server is located at rlrl and the allocation of that server contains a node.

Therefore, we can relocate that server at a node without changing any allocations.

From now on, we will refer to Heuristic Hl assuming that this minor modification is

performed (it will be necessary for purely technical reasons, specifically, for Observa-

tion 1 below to be true).

The approximate solution to Problem l-E/E obtained by Heuristic Hl has the

following property.

Observation 1. If k > 1 servers are located inside some edge (c, d) by Heuristic Hl (i.e.

at interior points of that edge), then the allocation of one of these servers contains

a node (either c or d), and allocations of the other k - 1 servers are subintervals of

edge (c, d). Allocations of all the k servers have lengths equal to L/(p + l), according

to Property 8 from the proof of Lemma 2 (see Fig. 3).

I. Averbakh, 0. Berman 1 Discrete Applied Mathematics 75 (1997) 201-216 209

Fig. 3. F,. Fz, F,-allocations of the servers located at a,, a2, a3, respectively; L(F,) = L(F,) =

I@,) = Li(p + 1).

Using Observation 1, it is not difficult to transform the solution obtained by

Heuristic Hl into an approximate solution to Problem l-V/E with value not greater

than max(l,,,/2,2L/(p + 1)) (and, thus, with relative error not greater than

(p - l)/(p + 1)). This is the main idea of Heuristic H2.

Heuristic H2.

Stage 1. Apply Heuristic Hl (with the modification mentioned above). Let

al, “. > a,,> FI, . . > Fp be the obtained approximate solution to Problem l-E/E.

Stage 2. If all locations ai, . . . , up are nodal, output the solution obtained in Stage 1.

Otherwise, for each edge (c, d) such that there are servers located inside (c, d), perform

the following:

1. If there is only one server located inside (c, d), then, according to Observation 1,

his allocation contains a node (say, c). Relocate the server at c without changing his

allocation.

2. If there are exactly two servers located inside (c, d), then, according to Observa-

tion 1, allocation of one of the servers contains a node (say, c) and allocations of both

servers have lengths equal to L/(p + 1). Moreover, it can easily be observed that both

allocations are adjacent (have a common point).

210 I. Averbakh, 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216

Delete both servers; instead of them, locate one server at c, and assign to him

allocations of both deleted servers. Thus, the length of the allocation of the new server

is equal to 2L/(p + l), and the total number of servers has reduced by 1.

3. If there are k > 2 servers located inside (c, d), then, according to Observation 1,

allocations of at least k - 1 of them are subintervals of (c, d). Delete these k - 1

servers; instead of them, locate one server at c and assign to him interval

[c, x(c, d; d(c, d)/2]; locate one server at d and assign to him interval

[x(c, d; d(c, d)/2), d]. The allocations of these two new servers have lengths not greater

than 1,,,/2, and the total number of servers has not increased.

The descsription of Heuristic H2 is completed.

If Heuristic H2 leaves some servers idle, they may be located at arbitrary nodes with

allocations consisting of single points.

Illustrating examples for Heuristic HZ are provided in Appendix B.

Theorem 4. Heuristic H2 jinds an approximate solution for Problem l-V/E in running

time O(max{n, p}) with worst-case relative error (p - l)/(p + 1). The value of the

obtained solution is not greater than max{E,,,/2, 2L/(p + 1)).

Proof. As follows from the above discussion, the value LH2 of the approximate

solution obtained by Heuristic H2 is not greater than max{1,.&2, 2L/(p + l)}, and

the relative error is not greater than (p - l)/(p + 1). This bound on the relative error

is achievable; an example of tightness-a path with p + 1 edges of equal lengths (for

this example (LH2 - G,E)lG,E = (P - W(P + 1).
Thus, (p - l)/(p + 1) is the worst-case relative error. q

Corollary. LciE < max {1,,,/2, 2L/(p + 1)).

Remark. It is not difficult to reduce the time complexity of Heuristic H2 to O(n), but

this does not seem to be an important improvement.

6. The case of nodal demand (DP = V).

Consider the Problem l-V/V. Heuristic H2 can be modified to obtain an approxim-

ate solution to Problem l-V/V with value not greater than 214~ + 1). Notice that if

F, is one of the allocations obtained by Heuristic H2 and L(e) > 2L/(p + l), then F, is

a subinterval of some edge [ui, uz] of tree T such that d(vI, u2) > 2L/(p + l), and

each one of nodes ul, u2 is a home location for some server. Also, no edge of length

greater than 2L/(p + 1) is served entirely by a single server. Therefore, an approxim-

ate solution to Problem l-V/V with value not greater than 2L/(p + 1) can be obtained

from the solution obtained by Heuristic H2 simply by deleting all interior points of all

edges that are longer than 2L/(p + 1) from all allocations. Modified in this way

Heuristic H2 will be referred to as Heuristic H2’.

1. Averbakh. 0. Berman J Discrete Applied Mathematics 75 llYY7) 201L216 211

The upper bound (p - l)/(p + 1) for the relative error is not guaranteed for

Heuristic H2’, because optimal value LciV for Problem l-V/V can be smaller than L/p.

Nevertheless, using Heuristic H2’ it is possible to obtain an approximate solution to

Problem l-V/V with worst-case relative error (p - l)/(p + 1) in polynomial time, if

p is fixed. We give a recursive description of the corresponding Algorithm 2-p.

Obviously for Problem l-V/V there exist optimal allocations FT, , F,* such that

either FTu . . uFd = T or set T\(FTu . uF,*) contains at least one edge of T.

Algorithm 2-2 (case p = 2). Tree T = (I/, E) of length L > 0 is given. Let II, . . , 1, _ 1 be

the edges of the tree. Any edge li divides tree T into two connected components G1 (li).

Gz(~). Let f(li) = max {L(G,(li))> L(G,(li))J.

Step 1. For all Ii, i = 1, . . . , n - 1 values ,f(li) are calculated.

Step 2. Heuristic H2’ is applied to tree T, p = 2. Let LH2’ be the value of allocations.

F;, F; obtained by Heuristic H2’ (LH2’ = max (L(F;), L(F”))).

Step 3. Calculate f* = min {f(lr), . ,.f(1,_ r), LH2’). If f* = LH2’, then take the solu-

tion obtained by Heuristic H2’ as an appoximate solution to Problem l-V/V. If

f* =f(li) for some i. take F, = G,(li), Fz = G,(li) as an approximate solution to

Problem l-V/V (with some nodal home locations a, E F1, a2 E F,).

Consider the general case of some fixed p > 2, assuming that Algorithm 2-t for

t = 2, . ,p - 1 is already defined.

Algorithm 2-p. Let II, . . . ,I,_ 1 be the edges of tree T.

Step 1. For each li, i = 1, . , n - 1 the following procedure is applied. Let edge li

divide tree T into two connected components Gr (Ii) and G,(li). Apply Algorithm 2-t

with t = 1, . . ,p - 1 to both GI(li) and G,(li) (we assume that Algorithm 2-t with

t = 1 applied to any tree G simply gives that tree G and its length L(G)). Let f;(G)

denote the value of allocations F Ir . . . , Fk obtained as a result of applying Algorithm

2-k to a tree G, f;(G) = max{L(F,), . . . ,L(F,)}. Let

f (/iI = fEll :Fp_ lI {max {ft* (GI (lt)), f,*-t(G2(li)))) (2)
,

and let t*(/i) be the minimizer in (2).

f* (1;) E Argmin {max {f:(Gr (li))> fp*-f(G2 (li)))).
tE(l,2.....p- 1;

Step 2. Heuristic H2’ is applied for tree T. Let LH2’ be the value of allocations

F;, . , Fb obtained by Heuristic H2’, LH2’ = max{L(F;), , L(Fi)).

212 I. Averbakh, 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216

Step 3. Calculate f* = min{f(li), . . . ,f(l”_i), L”*‘}. If f* = LH2’, then take the
solution obtained by Heuristic H2’ as an approximate solution for Problem l-V/V. If
f* =f(lj)fOrsoIIle jE{l, . . . , n - l}, then take the allocations obtained by Algorithm
2 - t*(lj) applied to Gi(lj) and obtained by Algorithm 2 - (p - t*(lj)) applied to
G,(lj) at step 1 as an approximate solution to Problem l-V/V.

Theorem 5. Algorithm 2 - p(p > 2) obtains an approximate solution to Problem l-V/V
with worst-case relative error (p - l)/(p + 1). The running time of the algorithm is

O(nP-‘) (p is assumed to be fixed).

Proof: The second statement of the theorem can easily be proved by induction (notice
that step 1 of Algorithm 2-2 can be performed in O(n) time using standard bottom-up
dynamic programming). To prove the first statement, we start from the case p = 2 and
then use induction on p. Let FT, F,* be optimal allocations for Problem l-V/V(p = 2)
such that either FzuFT = T or T\(FTuFz) is an edge of T. If T\(FyuF,*) is an edge
li, then f(li) is calculated at step 1 and f* =f(li), i.e. Algorithm 2-2 obtains an optimal
solution to Problem l-V/V. If T = FTuFz, then optimal value Lciv = max{L(FT),
L(Fz)} is not smaller than L/2, and f* is smaller than 2L/3 since Heuristic H2’ at
p = 2 obtains a solution with value not greater than 2L/3. Therefore, the relative error
is not greater than 3. This is also the worst-case relative error; an example of tightness
_ a star with six edges of equal lengths (in the worst case Heuristic H2’ assigns four
edges to one server and two edges to the other server).

Now consider the general case p = m > 2, assuming that for p < m the theorem is
proved (this is the induction hypothesis). Let Ff, . . . , Fz be any optimal allocations
for Problem l-V/V such that either Fyu ... uFz = T or T\(FTu ... uFz) contains
at least one edge li of T. In the latter case, according to the induction hypothesis

f(li) d (1 + (m - 2)/m) max{L(F?), . . . , L(Fz)},

because f(li) is the value of allocations obtained either by Algorithm 2 - t*(li) applied
to G,(li) or by Algorithm 2-(m - t*(li)) applied to G2(li) and 1 < t*(li) < m. Therefore,
in this case Algorithm 2-m obtains an approximate solution with a relative error not
greater than (m - 2)/m.

Consider the other case where FTu ..’ uFi = T. Then the optimal value

L&V = max{L(FT), . . . , L(Fi)} 1s not smaller than L/m, and f* is not greater than
2L/(m + 1) (since Heuristic H2’ obtains an approximate solution with value not
greater than 2L/(m + 1)) and therefore the relative error is not greater than
(m - l)/(m + 1). This is also the worst-case relative error; an example of tightness
_ a star with m(m + 1) edges of equal lengths. The theorem is proved. 0

Remark. Notice that the case E/V needs no special consideration: any E-optimal
solution to Problem l-V/V is also an s-optimal solution to Problem l-E/V, and
therefore all results of this section can also be applied to the case E/V.

I. Averbakh, 0. Berman 1 Discrete Applied Mathematics 75 (1997) 201-216 213

7. Conclusions and future research

In this paper, linear-time heuristics with worst-case relative error (p - l)/(p + 1) for

(NP-complete) Problems l-E/E and l-V/E are obtained. An approximate algorithm

with complexity O(n) and worst-case relative error (p - l)/(p + 1) is developed for

Problem l-V/V.

As a possible direction for future research, it is interesting to try to find polynomial

heuristics for Problem 1 with worst-case relative error smaller than (p - l)/(p + 1) (or

to prove that such polynomial algorithms do not exist). Also, it would be interesting to

answer the question: Is Problem 1 NP-complete in the strong sense for a fixed p >, 2 or

there exists a pseudopolynomial algorithm?

Acknowledgements

This research was supported by a grant from Natural Sciences and Engineering

Research Council of Canada (NSERCC).

Appendix A

An illustrating example for Algorithm 1 and sets Q(). Consider the tree T = (V, E)
shown in Fig. 4, a; L = 17, = 5. At the beginning r = 0, s(A) = s(B) =

s(C) = s(D) = s(E) = 0, 7 = T. After the first step (node A is taken) tree ? is shown in

Fig. 4, b; s(B) = 1, s(C) = s(D) = s(E) = 0; r = (x(A, B; 5)). After the second step

(node D is taken) tree f is shown in Fig. 4, c; s(B) = 4, s(E) = s(C) = 0,

r = {x(A, B; 5)). After the third step (node E is taken) tree T is shown in Fig. 4 d;

s(B) = 8, s(C) = 0, r = {x(,4, B; 5)). After the fourth step (node B is taken) tree F is

shown in Fig. 4, e; s(C) = 4, r = (x(A, B; 5), B). After the fifth step r = (x(A, B; 5), B).

End.

QM% B; 5)) = CA, ~6% B; 5)1,

Q(B) = Cx(A B; 5), NCR BICJJ% WCC, Bl {W, B; 5)$.

Appendix B

Illustrating examples for Heuristics Hl and H2.

1. Consider Problem l-E/E with p = 4 for the tree in Fig. 5 (L = 20) and apply to it

Heuristic Hl. Let Algorithm 1 with = L/(p + 1) = 4 take the nodes in the following

order: a, b, c, d, e,f: Then r = {c, x(c, e; 4), x(c, e; 8), x(e,f; 1)); Q(c) = [a, c][b, c],

Qbk, e; 4)) = [c, x(c, e; 411 {c}, QMc, e; 8)) = Cx(c, e; 41, x(c, e; ~)I{x(c, e; 4)1,

QMe,f; 1)) = Cxk e; 81, elCe, dlCe,fl{ (x c, e; 8)). Heuristic Hl locates one server at

214 I. Averbakh. 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216

a) b)

B 4 C

\

4

E

c)

E

4

B-4

d)

Fig. 4. Illustrating example for Algorithm 1 and sets Q(z). Q(x(A, B; 5)) = [A, x(A, B; 5)];

Q(B) = C44 R 5), nluCn> Blu[& Wu[C, Bl\jxM B; 5)).

each one of the points of r, and the server located at r E r serves subtree Q(r) (with its

boundary points). The value of the obtained solution is L(Q(x(e,f; 1))) = 8. The

optimal value is 5; the relative error is (8 - 5)/5 = 3.

2. Consider the Problem l-V/E with p = 4 for the same tree and apply to it

Heuristic H2 (with the same order of taking nodes). Heuristic H2 locates two servers

at node c and one server at node e. The first server located at c serves subtree

F1 = [a, c]u[b, c]; the second server located at c serves subtree F2 = [c, x(c, e; S)];

the third server located at e serves subtree F3 = [x(c, e; 8), e]u[e, d]u[e, f]. The

value of the solution is 8.

3. Consider the Problem l-E/E with p = 6 for the tree demonstrated in Fig. 6

(L = 28) and apply to it Heuristic Hl. Let Algorithm 1 with y = L/(p + 1) = 4 take

I. Averbakh, 0. Berman / Discrete Applied Mathematics 75 (1997) 201-216 215

d

10

b

Fig. 5. Illustrating example for Heuristics Hl and H2.

3 3 all 3
.

al2

1

Fig. 6. Illustrating example for Heuristics Hl and H2.

the nodes in the following order: aI, a2, u3, a4, us, u6, a,, u8, ag, alo, a,,, u12. Then

I- = {%, as>a,rS> Q&I = Ca I> a~luCaz> a~luCa,> a,luCa, 051, Q(as) = [as, asI
UC% asMa,> a,l\bd> Q&I) = [as> ~IJ.JC~IO, a111 UC+, ~IIIuC~~, a,,l\(as>.
Heuristic Hl locates two servers at a5, one server at a8 and two servers at alI.

The corresponding allocations are: FI = [aI, as]u[az, a51 u[a3, a,], location

at a5; F2 = [ad, a5], location at a5; F3 = [a5, a8]u[a6, a8]u[a7, as], location at a8;

4 = [as, aII]u[a9,aII] u[aIo, all], location at all; F5 = [al,, a12], location at

a,,. One server is left idle. The value of the obtained solution is 8. Heuristic H2

obtains the same solution.

References

[l] I. Averbakh and 0. Berman, A heuristic with worst-case analysis for minmax routing of two traveling

salesmen on a tree, Discrete Appl. Math., forthcoming.

216 I. Averbakh, 0. Beman / Discrete Applied Mathematics 75 (1997) 201-216

[Z] P.M. Franka, M. Gendreau, G. Laporte and F. Muller, The m-Travelling Salesman Problem with
Minmax Objective. Centre de recherche sur les transports (Montreal), Publication # 869 (1992).

[3] G.N. Frederickson, MS. Hecht and C.E. Kim. Approximation algorithms for some routing problems,
SIAM J. Comput. 7, (1978) 178-193.

[4] M. Garey and D. Johnson, Computers and Intractability, (Freeman, San Francisco, 1979).
[S] G. Laporte, M. Desrochers and Y. Nobert, Two exact algorithms for the distance-constrained vehicle

routing problem, Networks 14 (1984) 161-172.

