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ABSTRACT

The phage growth limitation system of Streptomyces coelicolor A3(2) is an unusual bacteriophage defence
mechanism. Progeny ¢C31 phage from an initial infection are thought to be modified such that
subsequent infections are attenuated in a Pgl™ host but normal in a Pgl~ strain. Earlier work identified
four genes required for phage resistance by Pgl. Here we demonstrate that Pgl is an elaborate and novel
phage restriction system that, in part, comprises a toxin/antitoxin system where PgIX, a DNA
methyltransferase is toxic in the absence of a functional PglZ. In addition, the ATPase activity of PglY
and a protein kinase activity in PgIW are shown to be essential for phage resistance by Pgl. We conclude
that on infection of a Pgl™ cell by bacteriophage ¢$C31, PglW transduces a signal, probably via
phosphorylation, to other Pgl proteins resulting in the activation of the DNA methyltransferase, PgIX
and this leads to phage restriction.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

Modification

(http://creativecommons.org/licenses/by/4.0/).

Introduction

Bacteria have evolved a plethora of diverse mechanisms to
evade killing by bacteriophages. The mechanisms can act at any
stage of the phage life cycle from preventing phage adsorption
right through to inhibition of cell lysis and release of progeny
phage (Hoskisson and Smith, 2007). The phage growth limitation
(Pgl) system of Streptomyces coelicolor confers resistance against
the temperate bacteriophage $C31 and its homoimmune relatives
(Chinenova et al., 1982; Laity et al., 1993). This system is called
‘growth limitation’ as phage infecting a Pgl™* strain for the first
time undergoes a normal single burst to produce progeny phage
but the progeny is attenuated for growth in a second round of
infection. The progeny is however able to form normal plaques on
a Pgl~ host (Fig. 1). The mechanistic explanation of the Pgl
phenotype proposed by Chinenova et al. (1982) is that during
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the initial round of infection the progeny phage are modified and
then restricted in the second round of infection. This system
differs fundamentally from typical R-M systems, where, if the
phage DNA becomes modified, there can be an escape from
restriction and rapid spread of infection through sensitive bacteria.
In Pgl, however, even if modification fails during the first burst, it
is likely that it will occur in subsequent cycles thereby severely
limiting spread of infection (Fig. 1; Sumby and Smith, 2002).
Furthermore Pgl may confer an added advantage to a clonal
population as being Pgl™ amplifies phage that might infect and
kill phage-sensitive competitors.

Previous work has identified four genes, located in two operons
(pgIWX and pglYZ) 6 kbp apart, required for Pgl in S. coelicolor
(Bedford et al., 1995; Laity et al., 1993; Sumby and Smith, 2002).
Bioinformatic searches on the products of the pgl genes revealed
several protein motifs (Fig. 2). The product of PglX is predicted to
bind AdoMet and has an N®-adenine DNA methyltransferase motif,
PglW is a putative serine/threonine protein kinase that contains a
typical Hanks-like protein kinase domain, PglY possesses putative
Walker A and Walker B motifs for the binding and hydrolysis of
ATP/GTP and PglZ is predicted to have a conserved alkaline
phosphatase-like fold (Pfam: PF08665). While the predicted func-
tion of PgIX as a DNA methyltransferase fits well with the
proposed mechanism by Chinenova et al. (1982) the Pgl system
appears to involve additional activities that are novel to R-M
systems, not least the putative kinase activity of PgIW.

0042-6822/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A schematic of the Pgl phenotype, based on the model of Chinenova et al.
(1982). The white-filled, phage-like particles represent unmodified phage, and the
black-filled, phage-like particles represent modified phage. Pgl™ (black) and Pgl~
(grey) host mycelia are represented as curved lines.
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Fig. 2. Predicted functional motifs in the Pgl proteins as revealed by Prosite or
InterProScan searching (Apweiler et al., 2000; Hulo et al., 2008). PgIW contains
three predicted motifs; NERD (Nuclease-related domain; 12-130 aa); an atypical
tyrosine kinase domain (195-490 aa); a Hanks-like serine/threonine protein kinase
domain (537-704 aa). PglX contains a SAM-dependant methyltransferase motif
(209-748 aa) and an N6-adenine methyltransferase motif (NPPY; 378-381 aa). PglY
contains Walker A and Walker B motifs (75-82 aa and 285-289 aa, respectively).
PglZ contains a predicted alkaline phosphatase fold (525-792 aa), annotated as
‘PglZ domain’ in Pfam (PF08665).

Transcriptional analysis of pgl genes indicates that both oper-
ons are transcribed, even in the absence of phage infection
(Bedford et al.,, 1995; Sumby and Smith, 2002). While transcrip-
tional up-regulation of these genes is plausible during infection,
we cannot rule out a role for the control of protein function
through phosphorylation given that PglW is a predicted protein
kinase. Indeed it has been shown that two isoforms of PglZ were
detected with different isoelectric points in 2D-PAGE gels, sug-
gesting that this protein could be post-translationally modified
(Hesketh et al., 2002).

Another feature of the Pgl system is that it is subject to high
frequency phase variation in which a Pgl™* strain gives rise to a
Pgl~ strain with a frequency of 1072 to 103 and Pgl~ to Pgl*
with a frequency of 1073 to 10~% (Chinenova et al., 1982; Laity
et al,, 1993). The phase variation has been attributed to a variation
in length of a G tract in pglX (Sumby and Smith, 2003). Switching
the phage resistance on and off may help to ease the strong
selection within the phage population to mount a counter defence
(Bayliss et al., 2006).

Here we set out to test the major bioinformatic predictions of
Pgl protein functions. In the process we identified a toxin/antitoxin
system comprising a toxic PglX protein, shown to be a DNA
methyltransferase, and an antitoxin, PglZ. We also demonstrate
that the protein kinase activity of PglW, and the Walker A motif of

PglY are required for a functional Pgl system. We present a model
as to how the Pgl proteins might confer phage resistance in S.
coelicolor through an elaborate and novel R-M-like system.

Results

We set out to test whether mutations in the predicted func-
tional motifs of the Pgl proteins were required for the phage
defence phenotype (Fig. 2). The strategy used was to generate
knock-out or null mutations in each pgl gene and then comple-
ment these null mutants with either wild type (wt) or mutant
alleles introduced ectopically into the chromosome using the $C31
int/attP system (Bierman et al., 1992). Where possible we obtained
further proof of Pgl protein function by heterologous expression of
Pgl protein in Escherichia coli and biochemical assay of the partially
purified extracts.

PglX is a DNA methyltransferase

Bioinformatic analysis of the PglX sequence suggested the
presence of an N®-adenine methyltransferase motif (NPPY) at
378-381 aa (Roth et al., 1998; Scavetta et al., 2000; Fig. 2). A
ApglX null mutant, SPHX, was constructed using REDIRECT tech-
nology that involves recombineering of the kanamycin-resistant
cosmid SCIF2, replacing the pglX coding sequence (SCO6627) with
an apramycin resistance gene. The apramycin resistance gene is
flanked by loxP sites and also contains an origin of transfer (oriT) to
enable conjugation of the cosmid into the Pgl* S coelicolor strain,
M145 (Gust et al., 2003; Redenbach et al., 1996). Double crossovers
that retain the apramycin marker but had lost the kanamycin
resistance marker were then infected with Cre-phage in a tran-
sient infection to remove the apramycin resistance marker
(Khodakaramian et al., 2006). SPHX was sensitive to $C31 and
could be complemented by the introduction of pPS8003 encoding
a His-tagged version of PglX (Fig. 3A; Sumby and Smith, 2002).

To test whether the putative methyltransferase domain of PgIX
was necessary for Pgl function, the tyrosine residue (Y381) of the
conserved NPPY motif was targeted by site directed mutagenesis
(Sumby and Smith, 2002). This tyrosine residue in other methyl-
transferases is structurally essential for catalysis where it is required
for flipping out the target base from the DNA double helix prior to
methylation (Roth et al., 1998). The resulting plasmid, pPH1002
(encoding PglIXY*81A_Hiss) was conjugated into SPHX (apglX) to test
in vivo activity of the mutated pglX allele. PgIX¥>3'# did not restore
phage resistance to SPHX suggesting that the putative methyltrans-
ferase motif is essential for the Pgl system (Fig. 3A).

To assay DNA methyltransferase activity of PglX, attempts were
made to express a C-terminally His-tagged PglIX fusion in E. coli
and to enrich extracts by affinity chromatography. The 136 kDa
PglX-Hisg from E. coli was barely detectable using a 6 x His
antibody in Western blots of the enriched proteins (data not
shown). Nevertheless, low levels of methyltransferase activity
using $C31 DNA as a substrate were observed (Fig. 3B-D). In a
time course of methyltransferase activity, incorporation of >H-
methyl groups into TCA precipitable material increase over the
period of 60 min (Fig. 3C) and the level of incorporation was
dependent on the amount of protein added (data not shown). An
extract of PgIX¥381A_Hisg was prepared in an identical procedure
to the expression and enrichment of PgIX-Hisg, but methyltrans-
ferase activity was almost undetectable (Fig. 3B), ruling out the
possibility that the observed activity was due to endogenous E. coli
enzymes. Further controls confirmed that incorporation of label
into TCA precipitable material was dependent on DNA addition
and could be competed by addition of unlabelled AdoMet (Fig. 3D).
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Fig. 3. PgIX methyltransferase activity is required for the Pgl phenotype. (A) SPHX (ApglX) was challenged with 3 x 10? pfu/ml of $C31cA25, grown on J1929 (pglY~) Bedford
et al. (1995). Wild type Streptomyces coelicolor M145 (pglX™), SPHX pPS8003 (ApglX/pglX*) and SPHX pPH1002 (ApglX/pglX**$'") were challenged with 1 x 10° pfu ml~!
$C31cA25. (B) Methyltransferase activity of heterologously expressed PglX-Hisg (squares) and PglXY*#!A_Hisg (circles) using *H-AdoMet as the methyl donor to $C31cA25
DNA isolated from J1929 (pglY~) Bedford et al. (1995). Data are the mean of two replicate experiments. (C) Time dependent methyltransferase activity of PglX-Hisg on
$C31cA25 DNA isolated from J1929 (pglY~). Data are the mean of three replicate experiments and error bars represent the SD of the data. (D) Dependence of
methyltransferase activity of PglX-Hisg on protein, ¢C31cA25 DNA and competition by addition of 10 nM unlabelled AdoMet to indicate specificity of activity (data are the

mean of two replicate experiments).

These data strongly suggest that PgIX can methylate DNA in an
in vitro assay.

A pglZ null mutation is lethal in strains with a wild type pglX gene

In silico predictions on the function of PglZ are limited to a
region (527-704 aa) annotated as a ‘PglZ domain’ (Pfam: PFO8665),
which falls within a family of proteins called the ‘alkaline phospha-
tase clan’ (Finn et al, 2010; Fig. 2). We attempted to create a
knockout mutant of pglZ in M145. REDIRECT technology was used
to replace the pglZ ORF in the cosmid SC4G2, with the apramycin
marker generating a cosmid SC4G2:4pglZ::apra. When this cosmid
was introduced into M145 by conjugation, an extremely low
frequency of double recombinants (kanamycin sensitive, apramycin
resistant) was obtained (Table 2). Three putative M145::ApglZ

colonies were propagated and were found to be phage sensitive
as expected. However, introduction of pglZ-Hiss encoded by the
integrating plasmid, pPH1001, was unable to complement the
phage sensitive phenotype of any of these recombinants (Fig. 4A).
To demonstrate that pPH1001 was able to complement a pglZ~
defective allele, the plasmid was introduced into J1934, a Pgl™
strain constructed by Bedford et al. (1995) by insertional inactiva-
tion resulting in the deletion of the 3’ end of pglZ encoding the C-
terminal 130 amino acids (referred to as pglz!**%). The plasmid
pPH1001 complemented the pgiz'#3* allele J1934 to give phage
resistance (Fig. 4A). These data suggest that the M145::ApglZ strains
made by the REDIRECT approach had acquired a secondary muta-
tion, possibly in one of the other pgl genes.

The most likely site for a second site mutation is the G-tract
present within pglX that had been shown previously to inactivate
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B
Strain G-tract sequence Pgl
(1) M145 5’ GCGGCTGGGGGGGGAGA +
(ii) M145 ApglZ 1 5" GCGGCTGGGGGGG-AGA -
M145 ApglZz 2 5" GCGGCTGGGGGGG-AGA -
M145 ApglZz 3 5" GCGGCTGGGGGGGGAGA -
(iii) SLMW ApglZ 5" GCGGCTGGGGGGG-AGA -
(iv) SLMY ApglZz 5" GCGGCTGGGGGGGGGAGA -

11934 + 11934 +
pPH1007 pPH1008
(pg/ZDS35A) (pglz D694A)

Fig. 4. Residues in the conserved PglZ domain are required for the Pgl phenotype. (A) Strains (indicated) were challenged with 1 x 10* to 1 x 10° pfuml~! of $C31cA25
grown on J1929 (pglY ). (B) Alignment of G-tract in pglX in M145, ApglZ null mutants indicating the expansion or contraction of the G-tract in these strains. DNA sequences
starting at sequence coordinate 7353977 from (i) the reference parent strain M145 (Genbank accession: NC_003888), (ii) three independent ApglZ exconjugants from M145,
(iii) a ApglZ exconjugant from SPHW, (iv) a ApglZ exconjugant from SLMY. (C) Mutagenesis of conserved residues in PglZ fail to complement the pglZ mutant J1934. Strains
(indicated) were challenged with 1 x 10% to 1 x 10° pfuml~" of $C31cA25 grown on J1929 (pglY~).

Pgl (Sumby and Smith, 2003). Sequencing through the G-tract
indicated that in two of the three M145::ApglZ strains the number
of G residues had contracted (from 8 to 7 G nucleotides; Fig. 4B
(i) and (ii)), while in the third strain the G-tract was as for the Pgl™
wild type M145 (8 G nucleotides; Fig. 4B (i) and (ii)), however this
strain was also not complemented by pPH1001 indicating that the
secondary mutation must be elsewhere in the genes required for
Pgl. The provision (via integration of pPH1001) of a second copy of
pglZ in the Pgl™ wild type strain M145 enabled the disruption of
the native pglZ at a frequency of recombination that is typical
when an inessential gene is targeted, such as pglW by the cosmid
SCIF2:ApglW::apra (Table 2; Gust et al., 2003; Khodakaramian
et al., 2006).

To confirm the essentiality of an intact pglZ, we first performed
alignments of related PglZ proteins from the sequence databases
to identify conserved residues that we could target for mutagen-
esis. Alignment of PglZ homologues indicated the presence of
conserved residues D535 and D694. These residues fall within the
predicted alkaline phosphatase fold (525-792 aa; Fig. 2; Quevillon
et al., 2005). D535 and D694 in PglZ were both changed to alanine
by site directed mutagenesis in the plasmid pPS5045 and the
mutant alleles were subcloned into the integrating vector pIJ6902

(Huang et al., 2005) to generate pPH1007 (encoding PglzP>35A-
Hisg) and pPH1008 (encoding PglZP%%**_Hisg). After conjugation of
pPH1007 and pPH1008 into J1934, containing the pglz'-%34 allele,
the exconjugants failed to complement the Pgl~ phenotype
indicating that both pglzP>3>4 and pglzP%°#4 alleles were defective
(Fig. 4C). Plasmid, pPH1008 (encoding PglZP%94*_Hisg), was then
conjugated into M145 and exconjugants were used as recipients
for the SC4G2:ApglZ::apra cosmid, but the formation of the pglZ
knockout strains was again prevented (Table 2). These experi-
ments confirmed that the pglzP%°#4 allele was unable to confer
antitoxin activity in the presence of an otherwise intact Pgl
system.

These observations indicate that PglZ may be interacting with
PglX to inhibit a toxic activity. To test whether mutations in other
pgl genes would permit the disruption of pglZ, the cosmid, SC4G2:
ApglZ::apra, was conjugated into strains SPHX (ApglX), SPHW
(ApglW) and SLMY (ApglY) (Tables 1 and 2). Deletions of pglZ were
obtained at low frequency, similar to that observed for the deletion
of pglZ in a wild type background, except in SPHX (ApglX), where
deletion of pglZ was obtained at the normal frequency (Table 2).
The G tracts in one SPHW::4pglZ and one SLMY::ApglZ strains were
sequenced and they had suffered a contraction and an expansion,



104 PA. Hoskisson et al. / Virology 477 (2015) 100-109

Table 1
Streptomyces strains and plasmids used in this study.

Strain Genotype Pgl status References
M145 Prototrophic + Kieser et al. (2000)
J1934 Insertional mutation of PglZ — Bedford et al. (1995)
SLMW ApglW M145 isogenic — Khodakaramian et al. (2006)
SPHX ApglX M145 isogenic - This work
SLMY ApglY M145 isogenic — Khodakaramian et al. (2006)
SPHZ ApglZ M145 isogenic G-tract mutant — This work
SPHWZ ApglWZ M145 isogenic G-tract mutant - This work
SPHXZ ApglXZ M145 isogenic G-tract mutant — This work
SPHYZ ApglYZ M145 isogenic G-tract mutant — This work
Plasmid Description Reference
plJ6902 Integrating vector with thiostrepton-inducible promoter Huang et al. (2005)
pT7-7 E. coli expression plasmid Tabor and Richardson (1985)
pPS8002 pglW-Hisg in plj6902 Sumby and Smith (2002)
pPS8003 pglX-Hisg in pIJ6902 Sumby and Smith (2002)
pPS8008 Hise—pglY in pIj6902 Sumby and Smith (2002)
pPH1001 pglZ-Hisg in plJ6902 This work
pPH1002 pelX¥3¥1A_Hisg in plj6902 This work
pPH1003 Hisg-pglYX81A4-S82A in p1j6902 This work
pPH1005 pglzP>3>A_Hisg in pT7-7 This work
pPH1006 pglzP%94A_Hisg in pT7-7 This work
pPH1007 pglZP>35A_Hisg in plj6902 This work
pPH1008 pglzP5%*A_Hisg in pl]6902 This work
pPH1010 Hisg-pglY<8145824 in pT7-7 This work
pPH1012 pglWXS77A_Hisg in plj6902 This work
pPS5032 pglX-Hisg in pT7-7 This work
pPS5045 pglZ-Hisg in pT7-7 This work
pPS5012 pglW-Hisg in pT7-7 This work
pPS5025 pPS5012 with optimised codons in pgIlW This work
pPS5072 Hisg-pglY in pT7-7 This work
Table 2

Conjugation efficiency in various strains upon introduction of the PglZ deletion cosmid.

Strain Genotype Conjugation efficiency per recipient spore
M145 Parent 15%x10°%
SLMW ApglW M145 isogenic 2x1077
SPHX ApglX M145 isogenic 2x1074
SLMY ApglY M145 isogenic 2x1077
M145 (pPH1001) Parent, carrying an integrated ectopic copy of pglZ-His6 2x 1074
M145 (pPH1008) Parent, carrying an integrated ectopic copy of mutant pglz°®*#A-His6 3x1077

respectively (Fig. 4B (iii) and (iv)). These data are indicative of a
specific suppression of a toxic activity of PglX by PglZ. We
hypothesise that the pglz’-%34 allele in J1934 might retain the
protective activity required against an intact pglX.

PglW has kinase activity

If PglZ prevents the toxic activity of PglX, then the presence of a
signalling mechanism that regulates Pgl activity would enable tight
control of the system and prevent unwanted toxicity. Bioinformatic
analysis of the PgIW sequence reveals the presence of two putative
protein kinase domains; a tyrosine kinase domain at 195-490 aa
(Prosite; PSO0109) and a putative serine/threonine protein kinase
(STPK, Hanks-type) domain (Prosite; PS00108) at 530-816 aa
(Fig. 2). However only the putative STPK domain has a predicted
ATP binding site that includes the central core of the catalytic loop and
the invariant lysine. This residue (K677; Sumby and Smith, 2002) was
targeted by asymmetric PCR mutagenesis. It has previously been
shown that the equivalent residue to K677 is absolutely conserved
in the ATP binding domain of such proteins, and it is believed to be
essential for autophosphorylation and the phosphotransfer reaction
(Hanks and Hunter, 1995; Hanks et al., 1988; Young et al.,, 2003).

The resulting plasmid pPH1012 (encoding PgIW*577A_Hisg) was
conjugated into SLMW (4pglW) to test whether the pgIW*5"”A_His

allele could complement for the deletion of pgIlW and restore
phage resistance. The PglWX®77A_Hiss mutation resulted in a
phage-sensitive phenotype, indicating that the putative Hanks-
like protein kinase domain is both functional and required for a
Pgl™ phenotype (Fig. 5A).

The gene encoding PgIW-Hisg was cloned into the E. coli
expression vector pT7-7 to generate pPS5012 and introduced into
E. coli BL21 DE3(pLysS). No expression of PglW-Hisg was detected.
Examination of the codon usage at the start of the pglW ORF
showed the presence of several codons that are rarely used in E.
coli. The first 19 codons were therefore optimised for expression in
E. coli generating the expression plasmid pPS5025. The frequency
of transformation of E. coli BL21 DE3 (pLysS) by pPS5025 was very
low and expression trials of the few colonies that were obtained
indicated the presence of insoluble and truncated proteins (data
not shown). It seems likely that PglW-Hisg is toxic in E. coli BL21
and only plasmids that have suffered mutations can be estab-
lished, explaining the poor transformation frequencies. At this
stage we do not understand the basis for the toxicity of PgIW
although PgIW has a putative, but as yet uncharacterised, N-
terminal nuclease-related domain (NERD) motif (Fig. 2).

The plasmid pPS5025 was used as a template in an in vitro
expression system to generate sufficient full length PgIW-Hisg to
test for autokinase activity (Molle et al., 2003). Incubation of
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Fig. 5. The conserved lysine in the STPK domain of PgIW is required for Pgl function. (A) Strains (indicated) were challenged with 1 x 10% to 1 x 10° pfu ml~' of $C31cA25
harvested following J1929 infection (PglY ™). (B) In vitro phosphorylation of PgIW. (i) Autoradiograph showing a time course of autophosphorylation of in vitro-synthesized
PglW incubated over 60 min in the presence of [y->2P] ATP. (ii) Autophosphorylation of in vitro-synthesized PgIW and lack of autophosphorylation activity of PglWX®77A in the
presence of [y->2P] ATP for 60 min. (iii) Confirmation of in vitro expression of PglW and PglZ by incorporation of >°S-methionine labelling to synthesised protein, followed by

SDS-PAGE and autoradiography.

PglW-Hisg with [y->2P] ATP resulted in autokinase activity of the
protein, resulting in incorporation of radioactive phosphate
(Fig. 5B). A control reaction, incorporating 3°S-methionine into
in vitro expressed PglW-Hisg showed that the autophosphorylat-
ing band had the same mobility as PglW-Hisg (Fig. 5B). The K677A
mutant allele of PgIW was also tested in the same assay for its
ability to autophosphorylate; however, no radioactive signal could
be detected, indicating that this residue is essential for the
autophosphorylation reaction (Fig. 5B). These data are consistent
with PglW forming part of a signal transduction system that
senses the modification state of phage DNA during infection of a
Pgl* cell.

PglY has ATPase activity

Bioinformatic analysis of the PglY sequence suggested the
presence of a Walker A (ATPase) motif (GSFGSGKS) at 75-82 aa
(Bedford et al., 1995). It has previously been shown that these
motifs are involved in nucleotide binding, and is found in many
protein families (Karata et al., 1999; Ramakrishnan et al., 2002).
We decided to test whether the ATPase motif is required for
resistance to $C31 as a means to determine the role PglY might
have in the Pgl phenotype.

The essential consecutive lysine and serine residues (K81, S82)
were targeted by site directed mutagenesis in the plasmid
pPS8008, which encodes PglY (Sumby and Smith, 2002). The
resulting plasmid pPH1003 (encoding Hisg—PglY81A/582A) \was
conjugated into SLMY (ApglY). The K81A/S82A double substitution
in PglY resulted in a phage-sensitive phenotype suggesting that
ATP binding and/or hydrolysis is essential for conferring resistance
to bacteriophage infection via the Pgl system (Fig. 6A).

N-terminally His-tagged PglY was expressed in E. coli and purified
by nickel affinity chromatography. A single band was observed at
~160 kDa; this band was excised and subjected to peptide mass

fingerprinting by MALDI-TOF mass spectrometry and positively
identified as PglY (top hit against the NCBInr protein database).
The same approach was subsequently used for purifying Hisg—
Pgly81A/S82A The His-tagged wild-type and mutant PglY proteins
were tested for their ability to bind and hydrolyse ATP. Hisg-PglY was
found to hydrolyse ATP with a substrate affinity (Ky;) for ATP of
0.5 mM, the Ky, of the mutant protein Hisg-PglY*®14/582A was 200-
fold higher (100 mM; Fig. 6B). These data indicate that PglY is a
functional ATPase. PglY nucleotidase activity was specific for ATP, and
was found not to hydrolyse the other nucleotides tested (AMP, ADP,
GMP, GDP, and GTP; data not shown). The non-metabolisable ATP
analogue, ADP-NP was tested for its ability to inhibit the activity of
PglY in vitro. The addition of equivalent molar amounts of ADP-NP
and ATP, and subsequent 2-fold dilutions of ADP-NP in each assay
resulted in a severely inhibited rate of hydrolysis of ATP, indicative of
ADP-NP binding and inhibition of activity.

Taken together these data indicate an essential role for the
ATPase activity of PglY in the Pgl system.

Discussion

Previous work describes the phenotype of Pgl in which an
infection of S. coelicolor Pgl* by phage $C31 undergoes a single
burst but subsequent infections by progeny phage of S. coelicolor
Pgl™ are attenuated (Bedford et al., 1995; Laity et al., 1993). A
logical mechanistic explanation of these observations is that the
phage is modified in the first infection but the second infection is
restricted. Modified phage is able to proceed through a normal
infection cycle in a Pgl™ strain. In this work we demonstrated that
PglX is indeed a DNA methyltransferase, as predicted by the
bioinformatics searches. A strong genetic interaction between pgiX
and pglZ implies that PglX is toxic and that toxicity is suppressed
in strains that are pglZ™* or contain the truncated pglz'#3* allele in
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Fig. 6. The Walker A motif of PglY is required for Pgl function. (A) Strains
(indicated) were challenged with 1 x 10° pfu ml~! of $C31cA25 harvested follow-
ing J1929 infection (PglY ™). (B) Release of Pi from ATP as a function of the PglY
ATPase domain in wild type Pgly and the PglY*®!A/582A mutant. Wild-type Pgly
(squares) and PglY8'A/S82A (circles). Data are mean of 3 replicate experiments.
(C) Hydrolysis of ATP in the presence of ADP-NP. 4 mM ATP (black triangles; 3 mM
ATP, 1 mM ATP-NP (circles); 2 mM ATP, 2 mM ATP-NP (grey triangles); 1 mM ATP,
3 mM ATP-NP (squares). Data are mean of three replicate experiments.

J1934. This interaction resembles a toxin/antitoxin system. Many
phage resistance mechanisms rely on some type of toxin/antitoxin
pair to enable phage restriction and host immunity (Makarova
et al., 2013). Examples include the restriction-modification sys-
tems where host protection from the endonuclease is usually
conferred by DNA modification. However S. coelicolor is unusual as
it is known to contain methyl-specific endonucleases (Gonzalez-
Ceron et al., 2009; MacNeil, 1988). It is therefore feasible that it is
the DNA methyltransferase activity of PglX that is toxic in S.
coelicolor and the antitoxin, PglZ, inhibits this. Although we have
shown that PglX has methyltransferase activity in vitro we were
not able to demonstrate the presence of methylated DNA from
progeny phage or from M145 (Pgl ™) undergoing an infection using
antibodies against DNA containing N®-methyladenine. Recently a
phage defence system from Bacillus cereus called bacteriophage
exclusion or BREX, has been described, that is mediated in part by
a homologue of PgIX (Goldfarb et al., 2014). In the BREX system the

target for the methyltransferase encoded by the B. cereus PglX
homologue was elucidated by PacBio sequencing. The target,
TAGGAG (the underlined A is methylated), is modified in unin-
fected cells, but infecting phage DNA was not modified despite
containing multiple target sites. In the BREX system phage
replication is prevented in the first infection, apparently through
cessation of phage DNA replication. Thus although BREX and the
Pgl systems are mediated by a core of orthologous proteins (PglX,
PglY and PgIZ in S. coelicolor and PglX, BrxC and PglZ in B. cereus) it
seems there are significant differences in their mechanisms of
resistance. We hypothesise that Pgl is adapted to cause phage
resistance in the context of a host in which there is no detectable
DNA methylation (using antibodies to DNA containing either C°-
methylcytosine or N®-methyladenine; data not shown) and in
which there appears to be general methyl-specific restriction
(Gonzalez-Ceron et al., 2009; MacNeil, 1988). In this context host
DNA might be unmethylated during growth of uninfected host
cells and the Pgl system would be inherently toxic unless the
methyltransferase activity is highly regulated. We propose there-
fore that any DNA methylation occurs only during phage infection.
The ATPase activity of PglY was also shown to be required for
phage resistance, possibly implying the need for a motor to drive a
processive activity, similar to Type I R-M systems.

A model for the mechanism of Pgl

The model proposed by Chinenova et al. (1982) suggested that
Pgl would differ from all known methyl-specific restriction sys-
tems owing to the proposed marking of phage or phage DNA and
flagging it for restriction in later rounds of infection. We propose a
model as to how the activities of the Pgl proteins could mediate
the Pgl phenotype in vivo (Fig. 7).

The model resembles a Type I R-M system in which the
modification and restriction activities are governed by the modifica-
tion status of the DNA (Dryden et al, 2001; Murray, 2002). We
propose that the Pgl proteins switch between three activity states:
resting, modifying and restricting. In uninfected cells we propose that
the Pgl proteins are in a ‘resting complex’ in which PglZ suppresses
the toxic activities of PgIX (Fig. 7). Evidence that the Pgl proteins are
transcribed was obtained in previous work and PglZ was detected in

Uninfected cells: resting complex

PglW
PgIX:Pglz
Unmodified PelY Modified
$C31 infection \¢C31 infection
Pglw? Pglw?
PgIX™ PgIX
Pglz? Pglz?
Pgly Pgly
Modifying Restricting
complex complex

Fig. 7. Proposed two step model for the Pgl mechanism by modification and then
restriction. In uninfected cells Pgl proteins assemble into a ‘resting complex’ in
which the toxic activity of PgIX is inhibited by an interaction between PgIX and
PglZ. Following infection the resting complex changes (presumably triggered by a
signal that is specific for phage ¢C31 and its relatives) to become either a DNA
modifying complex or a restricting complex, dependent on whether the incoming
phage is unmodified or modified, respectively. The modifying complex is likely to
have N°-adenine methylation activity through the activity of PglX (blue). We
propose that the restricting complex is activated by infection by modified phage.
Candidate Pgl proteins that could mediate restriction are indicated in red. PglW"
and PglZ" are putatively phosphorylated isoforms due to the kinase activity of PglW
that transduce a signal to the cells of phage infection (more details are provided in
the text).
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the S. coelicolor proteome (Bedford et al., 1995; Hesketh et al., 2002;
Sumby and Smith, 2002). In the model infection by phage coming
from a Pgl~ host causes a change in the activities of Pgl proteins to
modify progeny phage, most likely by NC-adenine methylation
through the activity of PgIX (Fig. 7). The putative N°-adenine
methyltransferase activity could modify all the DNA in the infected
cell or just targets in $C31 and its relatives. The trigger for switching
between resting and modifying activities of the Pgl proteins might
also be specific to infection by ¢$C31 and its relatives. To avoid
restriction of the modified phage DNA in the first infection cycle,
we propose that Pgl proteins in the modifying state cannot switch
directly to a restricting state or be reversed back to the resting state.
We also propose that host methyl-specific restriction enzymes either
do not recognise the modification in progeny phage or that the
modification occurs late in the phage replication cycle. Thus in
agreement with the observations of Chinenova et al. (1982), modified
phage progeny are released in a normal burst. Infection of Pgl™
strains with this modified phage triggers the activation of the
restricting activity of Pgl (Fig. 7). The mechanism of restriction is
not clear but could be mediated by the PglW NERD domain, the host
cell methyl-specific restriction endonucleases or an unidentified motif
in PglX that is responsible for conferring toxicity. If the latter is the
case, PgIX could resemble some Type IIS restriction/modification
systems that are contained within a single polypeptide (e.g. Bpml
and Eco571; Pingoud et al., 2005). We propose that PglW and PglZ
sense the phage infection and/or presence of modified or unmodified
phage DNA and control the activity of PgIX and other Pgl proteins. As
PglW has kinase activity and as PglZ have been identified in two
isoforms in a proteomics experiment, we propose that control of the
Pgl activity state is dependent on phosphorylation (Fig. 5; Bentley et
al., 2002; Hesketh et al., 2002; Lomovskaya et al., 1980; Pingoud et al.,
2005).

It is known that bacteriophage are an important force for
driving bacterial evolution (Weinbauer and Rassoulzadegan,
2004), and the evolution of several types of phage resistance
mechanisms, important for avoiding infection and lysis (R-M
systems, Abi systems, CRISPR-Cas) suggests evading the deleter-
ious effects of phage is highly selective (Makarova et al., 2013).
Data presented here indicate that Pgl is a complex R-M-like
system that demonstrates yet further biological novelty in the
cellular mechanisms of defence against bacteriophages.

Materials and methods

Bacterial strains, plasmids, growth conditions and conjugal transfer
from E. coli to Streptomyces

The S. coelicolor strains used in this study are summarised in
Table 1. All strains were cultivated on mannitol and soya flour
(MS) agar (Hobbs et al., 1989). Plaque assays were performed as in
Kieser et al. (2000) on Difco nutrient agar. Bacteriophage ¢$C31
cA25 was used throughout this work as described in Kieser et al.
(2000). Plasmids were conjugated into Streptomyces from the
E. coli strain ET12567 (dam~ dcm™ hsdS) containing pUZ8002 to
provide the transfer functions (MacNeil, 1988). Plasmids used are
summarised in Table 2. Plasmids for expression of the His-tagged
Pgl proteins in E. coli were made as follows starting with the PgIX-
Hisg expression plasmid, pPS5032: A 5772 bp BamHI fragment
encoding PgIX from pPS1001 (Sumby and Smith, 2002) was
inserted into BamHI cut pARO191 (Parke, 1990) to generate
pPS2002. An Ndel site was introduced at the pgIX start codon by
replacing a 482 bp Hindlll-Fsel fragment with a 408 bp PCR
fragment generate using primers MMUTF and MMUTR and cut
with HindlIll and Fsel to generate pPS3009. DNA encoding the Hisg
tag was added to the 3’ end of pglX by replacing a 46 bp Aatll

fragment with a PCR fragment cut with Aatll generated from
primers IF2 new and MENDSQ to form pPS5028. The ORF encoding
PglX-Hisg was then cut out from pPS5028 with the Ndel and
BamHI sites and the fragment was inserted into Ndel-BamHI cut
pT7-7 to form pPS5032. The PglZ-Hiss expression plasmid,
pPS5045 was made as follows: A 5269 bp SstI-BsiWI fragment
from pPS5001 (pGem?7 containing a 8166 bp Nrul fragment encod-
ing pglYZ from cosmid 4G2 inserted into the Smal site; Sumby and
Smith, 2002) was replaced with a 218 bp SstI-BsiWI fragment
generated by PCR with primers ZNT and ZHisR to introduce an
Ndel site at the start of pglZ, creating pPS5042. A HindlIII site was
then introduced just before the stop codon in pglZ by replacing a
282 bp Sphl fragment with a PCR fragment from primers ZCHisF
and ZCHisR, generating plasmid pPS5043. The Nsil-HindIll frag-
ment was then inserted into pPSCHis fusing the 3’ end of pglZ to
DNA encoding an in frame Hisg-tag, forming pPS5045. (pPSCHis
was constructed from pGEM7 by insertion of a 51 bp DNA frag-
ment encoding a Hisg-tag flanked by HindIIl and EcoRI sites). The
PglW-Hisg expression plasmid, pPS5012, was constructed as
follows: The 1 kbp Xbal-Notl fragment from pPS1001 (Sumby
and Smith, 2002) was replaced with a PCR fragment generated
using primers KtipF and KtipR resulting in an Ndel overlapping the
start of the pglW ORF, generating pPS3005. A DNA fragment
encoding the Hisg-tag was then added at the 3’ end by replacing
the BamHI-EcoRI fragment in pPS3005 with a PCR fragment made
using primers KiHis/IRT3 and generating pPS5007. The Ndel-EcoRI
fragment from pPS5007 was then subcloned into pT7-7 to gen-
erate pPS5012. pPS5025 containing the optimised codons at the
start of the pglW ORF was created by replacing the Ndel-Notl
fragment with a PCR product, generated using primers KCODON
and KiseqR, also cut with Ndel-Notl. The Hisg—PglY expression
plasmid was generated as follows: pPS5070, encoding an N-
terminal His-tag fused to a truncated PglY, was constructed by
inserting a PCR fragment, generated using primers YHisF and
YHisR and then digested with Aatll and Sphl, into pGEM7. The
entire pglY ORF frame was then reconstructed in pPS5071 by
inserting the Sphl-Pvull fragment from pPS5060 (Sumby and
Smith, 2002) into Sphl/Smal-cut pPS5070. The Hisg-pglY gene
was then inserted into pT7-7 using the Ndel-BamHI restriction
sites. The plJ6902-derived, pglZ-containing integrating vector,
pPH1001, was constructed by subcloning the Ndel/EcoRI fragment
from pPS5045. Primers for PCR reactions are listed in Table S1.

Disruption of Pgl genes and marker removal in Streptomyces

The pglX and pglZ null mutants were created according to the
protocol of Gust et al. (2003) using the plJ774 apramycin resistance
cassette, flanked with loxP sites. In the double mutants (Table 1)
the marker was removed as described (Khodakaramian et al.,
2006) prior to disruption of the second target gene. Oligonucleo-
tides for creating the disruptions are listed in Table S1.

Site-directed mutagenesis

Point mutants in the Pgl proteins were created using site-
directed mutagenesis, performed using the QuikChange XL site-
directed mutagenesis kit (Stratagene): primer sequences are
detailed in Table S1. The exception to this protocol was in pglW,
where the parental vector (pPS8002) was too large for Quick-
change. The PglW K677A allele was produced by asymmetric PCR
of a 900 bp region using the primers in Table S2. A first round of
PCR created a product containing the mutant allele, with a
flanking natural Stul site (pgIW K677A F and pgIW Asym FlankR),
and a second PCR created the mutant allele with a flanking Srfl site
(pglW K677A R and pglW Asym FlankF). The products were then
mixed and a final round of PCR using the outer PCR primers (pglW
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Asym FlankF and pglW Asym FlankR) resulted in a final product of
900 bp representing a region of pgIlW with the desired mutation.
This fragment was cloned into pGEM-T-Easy, and the mutation
confirmed by sequencing. The resulting plasmid, pPH1004, was cut
with Srfl and Stul, giving a 460 bp product, which was used to
replace the natural fragment in pPS8002, creating the vector
pPH1012 (pglW K677A).

Overproduction of Pgl proteins

Pgl proteins were overproduced as Hisg-tagged fusions. The
plasmids were introduced in to E. coli Rosetta (DE3) (Novagen) and
protein expression induced by the addition of 0.1 M IPTG (iso-
propyl-g-p-thiogalactopyranoside) in exponentially growing cells
(optical density 0.5 at 600 nm). The resulting His-tagged proteins
were purified by nickel affinity chromatography, and their identity
confirmed by MALDI-TOF mass spectrometry.

The exception to this was PglW, which could not be produced
in any DE3 lysogens. The protein was expressed from the plasmid
pPS5025 using the EcoPro T7 coupled in vitro transcription-
translation system (Merck Biosciences), with the mass of the
expressed protein confirmed by incorporation of 3°S-methionine
in to the translation product according to the manufacturers
instructions.

In vitro kinase assay

In vitro phosphorylation of PgIW was carried out according to
Molle et al. (2003). Briefly, PgIW was incubated for 1 h at 30 °Cin a
20 pl reaction containing 25 mM Tris-HCl, pH7.0, 1 mM DTT, 5 mM
MgCl,, 1 mM EDTA, 2 pg protein and 200 pCi ml~ ' [y->2P] ATP. The
reaction was stopped by the addition of an equal volume of 2 x
sample buffer, followed by heating at 98 °C for 5 min. The protein
was visualised by autoradiography following separation on 4-12%
SDS PAGE gels (Invitrogen).

ATPase assays

The ability of wild-type and mutant PglY proteins to hydrolyse
nucleotides was assayed at 30 °C in 40 mM HEPES - HCI (pH 8.0),
10mM MgCl,, 10 mM dithiothreitol, and 0.1 mgml~! bovine
serum albumin. Nucleotides and protein was added at the indi-
cated concentrations. Reactions (10 ul) were pre-incubated at
30 °C for 10 min with PglY prior to the addition of the nucleotide.
Reactions were stopped by the addition of 2.5 pul of stop buffer
(100mM Tris-HCl (pH 7.5), 5% SDS, 200mM EDTA, and
10 mg ml~! proteinase K) and incubation at 37 °C for 20 min.
The hydrolysis of ATP was detected by measurement of the release
of inorganic phosphate using acidic ammonium molybdate and
malachite green according to the method of McGlynn et al. (2000).

In vitro methylation assays

The reaction mixture contained 50 mM Tris—HCI (pH7.5), 7 mM
2-mercaptoethanol, 1 mM EDTA. 12 uM [>H]-S-adenosyl-L.-methio-
nine (GE Healthcare; specific activity 84 Ci mmol~1!), 2 pg $C31
DNA and 2 pg protein. Reactions were incubated for 1 h at 30 °C.
Protein and unincorporated label were removed by phenol extrac-
tion and ethanol precipitation. Labelled was detected by liquid
scintillation counting.
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