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Alternative estimators have been derived for estimating the variance components according to

Iterative Almost Unbiased Estimation (IAUE). As a result two modified IAUEs are introduced.

The relative performances of the proposed estimators and other estimators are studied by simu-

lating their bias, Mean Square Error and the probability of getting negative estimates under

unbalanced nested-factorial model with two fixed crossed factorial and one nested random fac-

tor. Finally the Empirical Quantile Dispersion Graph (EQDG), which provides a comprehen-

sive picture of the quality of estimation, is depicted corresponding to all the studied methods.
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Introduction

Quite often, experimental research work requires the empirical
identification of the relationship between an observable

response variable and a set of associated variables, or factors,
believed to have an effect on the response variable. In general,
such a relationship, if it exists, is unknown, but is usually

assumed to be linear which yields the unknown parameters
appear linearly in such a model, then it is called a classical
linear model. It is reasonable to add random effects to the clas-
sical linear model which includes fixed effects only. Searle et al.
[1] provided a decision tree to assist us to decide whether the
parameters are fixed or not. The rule is that if we can reason-

ably assume the levels of the factor come from a probability
distribution, then treat the factor as random; otherwise fixed.
If the model contains both fixed and random effects, we can

extend classical linear model to mixed linear model which is
commonly used.

Variance components estimation has a wide application as

it has two major uses as well as many minor ones, the more
familiar of the major uses is determining which factors have
a significant effect upon the response being studied. The

second major use is measuring the relative effect of
factors on the dependent factor. Over the years, a plethora
of variance components estimation methods has been
extensively developed. ANOVA method, Minimum Norm
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Quadratic Unbiased Estimation (MINQUE), IAUE,
Maximum Likelihood (ML) method and Restricted
Maximum Likelihood (REML) are some of the most impor-

tant methods available in the literature. A proper and compre-
hensive review of other methods can be found in Sahai [2],
Khuri and Sahai [3] and Khuri [4]. Consequently a number

of attempts have been made to study the relative performance
and the properties of various estimators in order to determine
the best estimator under different criteria such as bias, MSE

and computational complexities.
Since most of variance components estimators cannot be

explicitly written in various situations, thus conducting the
comparisons analytically can be considered as intractable pro-

cess. Accordingly, the numerical comparisons approach is
adopted via many scholars; for instance, Sahai [5] compared
between ANOVA, MLE and REML for the three stage nested

model when all the factors are random, Swallow and Monahan
[6] made a comparison between ANOVA, MLE, REML, and
MINQUE methods through running one way model, Rao and

Heckler [7] provided some modifications on ANOVA method
and presented numerical comparisons among various variance
component methods in the case of unbalanced threefold nested

random model. Lee and Khuri [8] used the EQDG to make a
comparison between the ANOVA and ML estimation methods
under two-way random model without interaction terms. Jung
et al. [9] compared between ANOVA and MLE under three-

fold nested random model based upon the EQDG.
Subramani [10] introduced a new procedure to estimate the
variance components in light of MINQUE approach, further

he demonstrated numerically that his proposed estimator has
less MSE than both ANOVA and MINQUE method using
one way random unbalanced model. Chen and Wei [11]

derived parametric empirical Bayes estimators and compared
with ANOVA method under one-way random model.

A typical challenge of variance component methods about

is that not all of them produce positive estimates, which is
not acceptable in the practice. The negative values of the esti-
mates of the variance components might arise for a variety of
reasons such as choosing unsuitable set of initial variance com-

ponents, violating of linearity condition, existing outliers in the
data, and closing the actual values of the variance components
to zero. However Thompson [12] realized that the natural of

the estimator or the used algorithm can be considered as the
major reason of the negatively. Further Lamotte [13] proved
analytically that the only linear combination of variance com-

ponents for which satisfies unbiasedness and non-negativity is
the single error component estimator in variance components
model. Although there is a number of authors replace the
negative variance components with zero value, many efforts

have been made in order to design non-negative estimator of
variance components.

Horn et al. [14] proposed IAUE which avoids the non-nega-

tively of MINQUE. Jennrich and Sampson [15] suggested to
replace the negative estimates of the variance components with
5 value as done in some packages, or force the algorithm to

take the non-negatively in the consideration by adding non-
negative constraints. Kelly and Mathew [16] proposed non-
negative quadratic estimator which offers substantial MSE

improvement. Khattree [17] suggested a simple modification
ensuring the non-negativity of Henderson’s ANOVA method.
Searle et al.[1] explained EM algorithm for treating the non-
negatively problem associated with both ML and REML
methods. Teunissen and Amiri [18] discussed how to modify
Least-squares method in order to ensure that the estimated
variances are non-negative. Moghteased-Azar et al. [19] sug-

gested a new idea to deal with the negatively related to
REML method. The major motivation behind this article is
providing a new estimator for estimating variance components

through applying simple modifications on IAUE which is so-
called (MIAUE).

The rest of the paper is organized as follows: The second

section concerns with the REML method introduced by
Thompson [12] and Modified REML (MREML) using EM
algorithm explained via Searle et al. [1]. The third section
reviews the MINQUE method proposed by Rao [20] and

Modified MINQUE (MMINQUE) derived by Subramani
[10]. The fourth section presents IAUE method suggested by
Horn et al. [14]. The fifth section illustrates the proposed

estimators Modified IAUE (MIAUE). The followed section
summarizes the steps of EQDG approach in depth which are
employed in this study. The next section includes the Monte

Carlo results using unbalanced nested-factorial model.
Finally some conclusions about the work are given in the last
section.
REML and MREML method

Consider the variance components model stated by Subramani

[10]

Y ¼ Xbþ Z1d1 þ Z2d2 � � � þ Zr�1dr�1 þ Zrdr ð2:1Þ

where Y is a n� 1 vector of observations, X is a n�m matrix
with known constants, b is a m� 1 vector of fixed (unknown)

parameters, Zi is a n� ci matrix of known constants and di is
ci � 1 random vector has multivariate normal distribution with

zero mean and covariance matrix r2
i Ici . Further it is assumed

that di and dji – j are uncorrelated. Model (1) can be expressed

in a compact form as:

Y ¼ Xbþ Zd ð2:2Þ

where Z ¼ ½Z1Z2 . . .Zr� and d0 ¼ d01d
0
2 . . . d0r

� �
. The model (2) is

called a mixed linear model. If r ¼ 1, it becomes a fixed model
and if m ¼ 1 it becomes a random model. Thus generally we

have EðYÞ ¼ Xb and D ðYÞ ¼
Pr

i¼1r
2
i Vi, where Vi ¼ ZiZ

0
i;D

is called the dispersion matrix and the parameters r2
1r

2
2 . . . r2

r

are the unknown variance components whose values should

be estimated.
Since the normality distribution is assumed, thus it is

acceptable to operate distribution-based methods. The

preferred parametric method for estimating variance
components is REML. The original reference to REML is
the article by Thompson [12]. One of the interesting features

of REML is that it takes account of the implicit degrees of
freedom associated with the fixed effects as maximizing
the likelihood function of the linear combination of the

observations. Moreover, REML estimators are invariant to
the fixed effects.

Theoretically, REML can be illustrated as assuming Kn�x;n
be a full rank matrix, where x is the rank of X, such that
KX ¼ 0, then the likelihood of KY can be formulated as:

Lðr=YÞ / KDK0j j�:5expð�:5ðY0K0ðKDK0Þ�1KYÞÞ

the log likelihood of KY becomes:
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lnðLðr=YÞÞ / �:5ln KDK0j j � :5ðY0K0ðKDK0Þ�1KYÞ

in order to obtain REML estimates, it is required to take the
partial derivatives of lnðLðr=YÞÞ with respect to r then setting
to zero, we obtain

@lnðLðr=YÞÞ
@r2

i

¼ �:5ðtrðK0ðKDK0Þ�1KViÞ

� Y0K0ðKDK0Þ�1KViK
0ðKDK0Þ�1KYÞ ¼ 0

using the lemma given in Searle et al.[1] that states:

K0ðKDK0Þ�1K ¼ P; where P ¼ D�1 �D�1XðX0D�1XÞ�1X0D�1:

hence we will get

@ lnðLðr=YÞÞ
@r2

i

¼ tr PVið Þ � Y0PViPYð Þ ¼ 0 i ¼ 1 . . . r: ð2:3Þ

It is obvious that we have r equations in r unknowns r. In
some cases these equations can be simplified to yield closed
form. Yet, in almost all cases numerical algorithms have to
be used to solve the equations. In this study, the algorithm pro-

posed in [19] is devoted. In addition, it should be noted that the
system of equations in (3) does not involve the elements of K,
which means no matter what their values, the same result will
be reached (see Searle et al. [1]). The main drawback concern-

ing to REML technique is that the solution in (3) can be nega-
tive, which is not allowed in the real life problems. This
dilemma can be resolved by operating Expectation

Maximization (EM) algorithm which is perfectly explained in
Searle et al. [1] considered.

EM algorithm is the most well-known technique used in the

applied statistics produced firstly by Dempster et al. [21] to
obtain ML estimators in the incomplete data. EM algorithm
is a mechanism consisting of an expectation followed by maxi-

mization stage. Fortunately it is able to apply EM algorithm to
estimate the variance components in the mixed linear models.
The stages of EM algorithm can be expressed as following:

1. Obtain a starting value of r2ðf Þ
i .

2. E-step: calculate the Eðd0idijY Þjr2
i
¼r2ðf Þ

i

.Since ½KY ; di] are nor-

mally distributed, then f ðdijKY Þ is a normal distribution

with mean r2
i Z 0iPY and variance r2

i I ci � r4
i Z 0iPZi, hence

E d0idijY
� �

would be:

E d0idijY
� �

¼ r4Y0PViPYþ tr r2
i Ici � r4

iZ
0
iPZi

� �
3. M-step: determine r̂2

i as maximizing the complete data

which includes the observed data and the random effects d:

r̂2ðfþ1Þ
i ¼ Eðd0idijYÞ

ci

4. While r̂2
i
ðfþ1Þ � r̂2

i
ðf Þ

�� ���r̂2
i
ðf Þ > :01 increase f by one unit and

return to step 1, otherwise terminate the calculations and

set r̂2
i ¼ r̂2

i
ðfþ1Þ.

The variance components estimates computed using the

EM algorithm is donated hereafter as MREML. Harvile [22]
stated that the EM algorithm has the property of always yield-
ing positive estimates as long as prior values or initial points

are positive, thus using any non-negative variance components
estimates may be reliable to be considered as started values for
the EM algorithm. Despite EM algorithm can be rather slow
to converge and required heavy iterations, but it is not sensitiv-
ity to the initial values (see [23,24]).

MINQUE and MMINQUE method

Rao [20] decided to estimate the unknown variance compo-

nents as considering Y0AY as an estimator to the linear com-
bination of the variance components q0r, where q is known

vector and r ¼ r2
1r

2
2 . . . r2

r

� �0
, then selecting a symmetric matrix

A that satisfies the following criteria:

� Invariance under translation of the b parameterThe first cri-
terion should be satisfied by A is somewhat intuitive as A

should not be sensitivity to location shifting in the fixed
parameters. In other words A should satisfy the following
equation:

Y0AY ¼ Y� Xb0ð Þ0AðY� Xb0Þ

where b0 is a constant vector, which means

AX ¼ 0

� UnbiasednessThe second criterion should be satisfied by A

that is:

E Y0AYð Þ ¼ q0r

but

E Y0AYð Þ ¼ E ðXbþ ZdÞ0AðXbþ ZdÞ
� �

¼ E b0X0AXbþ 2b0X0AZdþ d0Z0AZdð Þ

under the Invariant condition, we can get:

E Y0AYð Þ¼Eðd0Z0AZdÞ¼
Xr
i¼1

E d0iZ
0
iAZidi

� �
¼
Xr
i¼1

r2
i traceðAViÞ

henceXr
i¼1

r2
i traceðAViÞ ¼

Xr
i¼1

qir
2
i which means :

trðAViÞ ¼ qi

� Minimum NormThe third criterion should be satisfied by A
is that minimize the Euclidean norm of the difference

between Y 0AY and the natural unbiased estimator of q0r,
which can be formulated as:

Min d0Z0AZd�
Xr
i¼1

qi

ci
d0idi

�����
����� ¼Min d0ðZ0AZ� DÞdk k

ffiMin Z0AZ� Dk k

where iÆi denotes the Euclidean norm of the matrix,

D ¼ diag q1
c1
Ic1

q2
c2
Ic2 . . . qr

cr
Icr

	 

. Thus we can state that Y0AY

is MINQUE of q0r if the symmetric matrix A is selected

such that kZ0AZ� Dk is minimum as possible as subject to:

AX ¼ 0 and tr AVið Þ ¼ qi

For making the optimization more easier, the squared
Euclidean norm, the sum of square of all elements in the

matrix, will be utilized. Then we get
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kZ0AZ� Dk2 ¼ tr Z0AZ� Dð Þ0 Z0AZ� Dð Þ
� �

¼ tr AVAVð Þ þ D�

where V ¼
Pr

i¼1Vi ¼ ZZ0 and D� refers to constant quan-

tity does not involve A.Let A be a symmetric matrix and
V be a symmetric and invertible matrix. Then the minimum
tr AVAVð Þ subject to invariant and unbiasedness criteria is

attained at, according to Rao [20]:

A ¼
Xr
i¼1

aiRViR

where a¼S�1q, Si;j¼ tr Q0V�1ViV
�1QVj

� �
, i and j = 1 . . . r,

Q ¼ In � XðX0V�1XÞ�1X0V�1 and R ¼ Q0V�1.

Consequently, the MINQUE of q0r is

Y0AY ¼
Xr
i¼1

aiY
0RViRY ¼

Xr
i¼1

aib
�
i ¼ a0b� ¼ q0S�1b�

where b� ¼ Y0RViRY. By equating Y0AY with q0r, we can
get:

rMINQUE ¼ S�1b�

In the case of the singularity of the matrix S, one can resort
to calculate the generalized inverse of S.On another hand,
Subramani [10] proposed a new idea to develop the estima-
tion of variance components in light of Rao [20] approach.

Instead of dealing with one linear combination, he decided
to estimate a set of linear combinations of variance compo-

nents q0ir through a set of quadratic functions Y0AiY. In

other words, he claimed that estimating variance compo-
nents obtained by calculating the following normal equa-
tions:

r2
1

..

.

r2
r

2664
3775 ¼

q11 � � � q1r

..

. . .
. ..

.

qr1 . . . qrr

2664
3775
�1

Y0A1Y

..

.

Y0ArY

2664
3775 ð3:1Þ

Likewise, the symmetric Ai should be derived based upon

certain criteria:
� Invariance under translation of the b parameterIt can easily
be shown that the invariant condition will be satisfied if:

AiX ¼ 0

� UnbiasednessIn order to ensure the unbiasedness, Ai should

satisfy:

E Y0AiYð Þ ¼ q0ir ¼
Xr
j¼1

qijrj

under the invariant condition, we can get:

qi:j ¼ trðAiVjÞ ð3:2Þ

� Minimum NormAs already pointed above, in order to mini-

mize the squared Euclidian norm between Y 0AiY and the
natural estimator of q0ir. According to Subramani [20],

the following theorem with our proof guides us the strategy
of selecting Ai that minimizes trðAiVAiV Þ.Theorem Let V n�n
be a given symmetric matrix and An�n be an unknown sym-

metric matrix such that tr AVð Þ ¼ rank AVð Þ ¼ p < n. Then
kAV 2k attains minimum at A�V , where A�V is any symmet-
ric idempotent matrix.
Proof. Since rank AVð Þ ¼ p < n, then we have p non-zero
characteristic roots of AV such that:

tr AVð Þ ¼
Xp
t¼1

kt ¼ p

in addition,

kAVk2 ¼ trðAVAVÞ ¼
Xp
t¼1

k2
t

Now, minimizing kAVk2 is as equivalent as minimizing
Pp

t¼1k
2
t

. Hence the optimization problem may be reformulated as:

Min
Xp
t¼1

k2
t subject to

Xp
t¼1

kt ¼ p

using the Lagrange multipliers technique, the Lagrangian can
be defined as:

K k1 . . . kp; k
�� �
¼
Xp
t¼1

k2
t � k�

Xp
t¼1

kt � p

 !
where k� denotes the constant of the Lagrange multipliers.

Lagrange’s equations can be obtained:

@K k1 . . . kp; k
�� �

dkt

¼ 2kt � k� ¼ 0 t ¼ 1 . . . p

and

@K k1 . . . kp; k
�� �

dk�
¼
Xp
t¼1

kt � p ¼ 0:

Since kt ¼ k�

2
; t ¼ 1 . . . p, then

Pp
t¼1

k�

2
� p ¼ 0, which yields

k� ¼ 2, hence kt ¼ 1t ¼ 1 . . . p,
Consequently, Subramani [10] deduced the minimum of

kAVk2 will be reached if we replace A with A� such that the
characteristic roots of A�V are only zero’s and one’s, which
refers to the idempotency of the matrix. Thus the steps of

MMINQUE can be summarized as: (1) Selecting Ai such that
AiV is an idempotent matrix and AiX ¼ 0. (2) Substituting
(3.2) in (3.1), then calculating the normal equations. The

remaining point is the structure of Ai. Since the solution in the
theorem is not unique, Subramani [10] introduced two
different formulas of Ai which can be reliable to obtain
MMINQUE.

The first version of Ai can be derived as assuming:

Ai1 ¼ V�1 In �Ui U
0
iV
�1Ui

� ��
U0iV

�1� �
i ¼ 1 . . . r

where U1 ¼ X;U2 ¼ ½XZ1�, U3 ¼ ½XZ2� . . .Ur ¼ ½XZr�1�. The

second version of Ai can be derived as assuming:

Ai2 ¼ Gi G
0
iVGi

� ��
G0i

� Gi G
0
iVGi

� ��
G0iX X0Gi G

0
iVGi

� ��
G0iX

� ��
X0Gi G

0
iVGi

� ��
G0i
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where Gi ¼ Zi. In reality, Subramani [20] proposed other

shapes of U0s and G0s, yet we confine ourselves to select the
preceding shapes as the others lead finally to the same result.1

The main drawback that may be thrown to MMINQUE is the
existence of the condition that tr AVð Þ ¼ rank AVð Þ in the theo-
rem which leads MMINQUE valid only in this class of the
matrices. Moreover the negativity is possible which will be

resolved in the next section. It should be pointed out that if
we replace V in rMINQUE; rMMINQUE1 or rMMINQUE2,

2 by D, then

the estimators are called weighted MINQUE, weighed
MMINQUE1and weighed MMINQUE2 respectively. h
IAUE method

The concept of IAUE was developed by Horn et al. [14]. IAUE
can be considered as an advantageous alternative to MINQUE
approach basically when MINQUE produces negative esti-

mates. Lucas [25] stated that though IAUE gives bias estima-
tors, it is far less computation than many variance
component methods even though it usually requires more

iterations to converge to the same degree of approximation.
Analogously to Rao [20], Horn et al. [14] preferred to estimate

the variance components r2
i with quadratic form Y0AiY given

Ai has the following formula:

Ai ¼ R�siViR
�

where R� ¼ D��1 �D��1XðX0D��1XÞ�1X0D��1, D� ¼
Pr

i¼1siVi

and si be the prior estimate for r2
i . Then the expectation of

Y0AiY can be obtained as:

E Y0AiYð Þ ¼ E Y0R�siViR
�Yð Þ

¼ tr R�siViR
�Dð Þ þ b0X0R�siViR

�Xb

Since R�X ¼ 0, hence:

E Y0AiYð Þ ¼
Xr
j¼1

tr R�siViR
�r2

j Vj

	 

¼
Xr
j¼1

fjtr R�siViR
�sjVj

� �
where fj ¼

r2
j

sj
. Horn et al. [14] showed that R�D�R� ¼ R�, then

we can get:

E Y0R�siViR
�Yð Þ ¼

Xr
j¼1

fjtr R�siViR
�sjVj

� �
þ fitr siViR

�ð Þ

� fitr siViR
�D�R�ð Þ ¼

Xr
j¼1

fjtr R�siViR
�sjVj

� �
þ fitr siViR

�ð Þ � fi
Xr
j¼1

tr siViR
�sjVjR

�� �
¼
Xr
j¼1
ðfj � fiÞtr R�siViR

�sjVj

� �
þ fitr siViR

�ð Þ

If all the prior estimates si approach to the true values or at

least the ratios between si and the true values are close, the first
term of the previous equation will vanish, and the working
equation can be simplified as:
1 We concluded this result during recording simulation’s results, thus

our conclusion is restricted to nested-factorial model with two fixed

crossed factorial and one nested random factor.
2 rMMINQUE1 and rMMINQUE2 are based upon Ai1 and Ai2 respectively.
E siY
0R�ViR

�Yð Þ ¼ fitr siViR
�ð Þ

Which yields:

f̂i ¼
Y0R�ViR

�Y

tr ViR
�ð Þ

Consequently, the IAUE can be summarized as: (1) Choose

initial value for si. (2) Compute f̂i based on si. (3) Update the

values of si until all f̂0is approach one by using any iterative

procedure. (4) Finally calculate r2
iIAUE ¼ sifi. In other words

r2
iAUE can be expressed as:

r2
iIAUE ¼ ŝijf̂0

i
sffi1

The more significant advantage related to IAUE is its facil-

ity computation and non-negativity property as the numerator

of f̂i in a quadratic form as R�ViR
� is a positive definite matrix

and the denominator can be written in a sums of squares as:

tr R�Við Þ ¼ tr R�D�R�Við Þ ¼
Xr
i¼1

sitr R�ViR
�Vj

� �
¼
Xr
j¼1

sitr R�ZiZ
0
iR
�ZjZ

0
j

	 

¼
Xr
j¼1

sitr ðZ0jR�ZiÞðZ0iR�ZjÞ0
	 


¼
Xr
i¼1

sitr Z0jR
�Zi

	 
0
Z0jR

�Zi

	 

MIAUE method

On the other hand, one can easily operate IAUE principle to

MMINQUE which generates new non-negative estimators in
light of Subramani [10]. Mathematically, the suggested estima-
tors can be expressed as considering the expectation of the

quadratic form:

E Y0A�i1siViA
�
i1Y

� �
¼ tr A�1i1 siViA

�1
i1D

� �
þ sib

0X0A�i1ViA
�
i1Xb

Where A�i1 ¼ D��1ðIn �UiðU0iD��1UiÞ
�
U0iD

��1Þ. In light of the

Invariant condition:

E Y0A�i1siViA
�
i1Y

� �
¼ tr A�1i1 siViA

�1
i1D

� �
Since

Ai1D
�Ai1 ¼ D��1ðIn �UiðU0iD��1UiÞ

�
U0iD

��1ÞðIn
�UiðU0iD��1UiÞ

�
U0iD

��1Þ:
¼ D��1ðIn � 2Ui U

0
iD
��1Ui

� ��
U0iD

��1

þUi U
0
iD
��1Ui

� ��
U0iD

��1Ui U
0
iD
��1Ui

� ��
U0iD

��1Þ:
¼ D��1ðIn �Ui U

0
iD
��1Ui

� ��
U0iD

��1Þ ¼ A�i1

then we have:

E Y0A�i1siViA
�
i1Y

� �
¼
Xr
j¼1

fjtr A�i1siViA
�
i1sjVj

� �
þ fitr siA

�
i1Vi

� �
� fi
Xr
j¼1

tr siViA
�
i1sjVjA

�
i1

� �
¼
Xr
j¼1
ðfj � fiÞtr A�i1siViA

�
i1sjVj

� �
þ fitr siA

�
i1Vi

� �



Table 1 Variance components configurations used in the

simulation.

r2
1 r2

2 r2
3

V1 .1 1 1

V2 .1 10 1
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thus we can get under neglecting the difference between fi and

all fj:

f̂i1 ¼
Y0A�i1ViA

�
i1Y

tr ViA
�
i1

� �
As previously mentioned during deriving r2

iAUE, r
2
iMIAUE1 can be

computed as:cr2
iMIAUE1 ¼ ŝijf̂0

i1
sffi1

Likewise r2
iMIAUE2, can be calculated as:cr2

iMIAUE2 ¼ ŝijf̂0
i2
sffi1;

where

f̂i2 ¼
Y0A�i2ViA

�
i2Y

tr ViA
�2
i2

� �
and

A�i2¼Gi G
0
iD
�Gi

� ��
G0i

�Gi G
0
iD
�Gi

� ��
G0iX X0Gi G

0
iD
�Gi

� ��
G0iX

� ��
X0Gi G

0
iD
�Gi

� ��
G0i

It is notable that both r2
iMIAUE1 and r2

iMIAUE2 are not

required heavy calculations and not producing negative esti-
mates, which yields that MIAUE1 and MIAUE2 can be con-

sidered as a competitor estimators to IAUE.

Empirical quantile dispersion graphs

Quantile Dispersion Graph (QDG) is a graphical technique
used, typically, for comparing and assessing the quality of
the variance components estimations. The QDG was suggested

by Lee and Khuri [8] as consisting of plots of the maxima and
minima, in our view one of them suffices, over some region in
the parameter space against the quantiles of a variance compo-
nent estimator. These plots provide a comprehensive picture of

the quality of estimation with a particular variance component
method. Since most of variance component methods have not
a closed-form expression, so the quantiles can be obtained

numerically, in this case QDG is so-called empirical QDG
(EQDG). The steps of the EQDG can be outlined, according
to Lee and Khuri [8], as follows:

(a) Select specific variance component method.
(b) Generate a random sample Y from the model (2)

corresponding to r2
1 . . . r2

r .

(c) Use the random sample obtained in (b) and the variance
component method in (a) to estimate the variance com-

ponents r̂2
1 . . . r̂2

r .

(d) Repeat steps (b and c) sufficient number of times.

(e) Compute the quantity qs ¼
r̂2
1s

r2
1

, where s is the index of the

times’ number in (d).

(f) Corresponding to certain specific percentiles values ph,
3

obtain the empirical quantiles wh1 of qs, where h is the
index of the percentiles’ values.

(g) Repeat steps (e and f) to the remaining r20
i s.
3 Lee and Khuri [8] selected the values of ph as .01, .05, .1, .2, .3, .4,

.5, .6, .7, .8, .9, .95 and .99.
(h) Select another point of b; r2
1 . . . r2

r from the determined

region space in order to obtain another wh2 for each r2
i .

(i) Repeat step (h) sufficient times until all points in the
determined region space are covered.

(j) Computed the maximum of W h1;W h1; . . . ;W hh�½ �, where
h� is the number of the points in the determined region

space corresponding to each ph. This maximum will be
so-called here Empirical Quantile Maximum (EQM).

(k) Turn on another variance component method and

obtain EQM associated with each r2
i .

(l) Repeat the step (k) k times, where k is the number of the
variance component methods under the study.

(m) For each r2
i a line chart is obtained with the percentiles

values ph on the X-axis, while the EQM corresponding
to each variance component method on the Y-axis.

As expected whether the specific variance component
method is perfect, then the elements of EQM should be iden-
tical and close to the one, otherwise it is referred to little qual-
ity for estimating the variance components. In other words, the

more variability in EQM the less efficiency of the correspond-
ing method. It should be noted that EQM reflects on the vari-
ability associated with the estimators not other characteristics

e.g. biasedness or getting negative values, etc.

Simulation study

It may be of interest to make a comparison study among all
the preceding variance components estimates. Since it may
be impossible to do any theoretical comparisons about the per-

formance of them, thus one has to resort to compare through
Monte Carlo simulation. Following to Melo et al. [26], nested
factorial design with two crossed factors and one nested factor

is adopted in this context in order to identify the behavior of
variance components estimators which can be described as:

yabcd ¼ aa þ bb þ ccðaÞ þ abab þ bcbcðaÞ þ eabcd

a ¼ 1 . . . I; b ¼ 1 . . . J; c ¼ 1 . . .Ka; d ¼ 1 . . . nabc where aa is
the effect of the a level of factor A, bb is the effect of the b level
of factor B, ccðaÞ is the effect of the c level of factor C nested

within the a level of factor A, abab is the interaction effect
between the factor A and B, bcbcðaÞ is the interaction effect

between the factor B and C instead within the a level of factor

A and eabcd is a random term. It is assumed that all the effects
in the model are fixed parameters except ccðaÞ, bcbcðaÞ and eabcd
are normally independently distributed such that:

ccðaÞ 	 Nð0; r2
1Þ; bcbcðaÞ 	 N 0; r2

2

� �
and eabcd 	 N 0; r2

3

� �
:

V3 1 .1 1

V4 1 10 1

V5 10 1 1

V6 10 .1 1



Table 2 The patterns of imbalance rate for each sample size used in the simulation.

n I J Ki nijk /

P1 24 2 2 2,2 3, . . . , 3 1

P2 24 2 2 2,2 2,5; 3,2; 5,3; 3,1 .83

P3 24 2 2 2,2 1,2; 1,2; 2,8; 7,1 .56

P4 36 3 2 1,2,3 3, . . . , 3 1

P5 36 3 2 1,2,3 2,2; 2,5; 2,5; 4,4; 3,3; 2,2 .87

P6 36 3 2 1,2,3 1,1; 2,5; 2,1; 1,10; 3,1; 7,2 .53

P7 63 3 3 2,3,2 3, . . . , 3 1

P8 63 3 3 2,3,2 2,2,4; 4,2,4; 2,2,4; 4,3,6; 3,3,4; 3,3,2; 3,2,1 .87

P9 63 3 3 2,3,2 2,1,1; 3,2,10; 8,1,2; 1,1,3; 3,3,2; 9,3,3; 3,1,1 .57
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Since the fixed effects are out of our interest, thus one can
fix all the fixed parameters at one. Oppositely, the comparison

process requires to be conducted under a variety of variance
components configurations, difference of imbalance degrees
and multiple sample sizes. Following to Rao and Heckler [7],

Table 1 displays the variance components values used in the
simulation. A lot of measures of imbalance have been intro-
duced in the literature, see Khuri et al. [27], which can be

selected with the aim of covering different levels of imbalance
of nabc and various sample sizes. According to Qie and Xu [28],
the measure which is introduced by Ahrens and Pincus [28] can
be reliable for reflecting the imbalance effect of nabc which can

be formulated as:

/ ¼ 1

m�
P

a

P
b

P
c

nabc
n

� �2
where n is the grand sample size and m� ¼ J�

P
aKa. Ahrens

and Pincus [29] illustrated that the values of u range from 1
m� up

to one, the smaller values refer a greater degree of imbalance,
while the larger values are only for balanced case. Table 2 pre-
sents the patterns of imbalance according to different sample

sizes throughout the simulation.
For each variance components configuration and pattern of

imbalance combination, 2000 independent random samples

were generated, then all the negative estimates are forced to
be zero. The estimated bias, MSE and probability of getting
negative estimates4 are shown in Table 3.

According to Table 3, a number of conclusions are drawn

from the results for all the patterns and designs which are sum-
marized in the following points:

(a) For the completely balanced designs, it does not matter
computing MINQUE, MMINQUE1 or MMINQUE2
because they are the same.

(b) Generally speaking, one can observe that REML has the
lowest compound absolute bias among all the estimators
in most cases, whereas MREML can be considered as
the best estimator in terms of MSE criteria.

(c) it is reasonable to note that the compound absolute
biasedness of MINQUE, MMINQUE1 and
MMINQUE2 is lower than IAUE, MIAUE1 and

MIAUE2 regardless the sample size or imbalance rate.
4 The probability of getting negative values is calculated as one

minus the number of the samples whose all are non-negative out of

2000.
Oppositely, the compound MSE associated with
MINQUE, MMINQUE1 and MMINQUE2 is greater
than IAUE, MIAUE1 and MIAUE2 in most cases.

(d) Among the negative methods, REML estimator has the

best behavior in terms of both bias and MSE, while
MREML in the case of the non-negative methods.

(e) It is clear the superiority of MIAUE1 and MIAUE2

over IAUE in terms of biasedness criterion that the lat-
ter across ALL cases has bias greater than either
MIAUE1or MIAUE2 or both. However the proposed

estimators have MSE less than all MINQUE,
MMINQUE1 and MMINQUE2.

(f) The sample size and the imbalance rate have substan-

tially effect on the behavior of all the estimators, as
either increasing the small size or reducing the imbalance
rate yield to significant improvement in the two mea-
sures of the performance. Furthermore, there is an inter-

action effect between the sample size and the imbalance
rate as the effect of the imbalance rate is downward at
high level of the sample size.

(g) The performance of the estimators depends heavily on

the ratio of
r2
1

r2
2

. It is observed that the compound absolute

biasedness of the estimators is acceptable whenever the
ratio is greater than one.

(h) There are negligible differences among MINQUE,

MMINQUE1 MMINQUE2 and REML with respect
to the frequency of getting negative values, yet in almost
cases it is remarkable that the frequency at

MMINQUE2 is slightly higher than the remaining and
relatively lower at REML. The sample size has strong
effect in reducing the probability of getting negative val-

ues, while the imbalance effect has weak effect.

In order to enhance the numerical comparison process,
EQDG’s which provide a powerful graphical tool for the com-

parisons are exhibited for all the above estimators which are
given in Fig. 1. In addition the norm of EQM is computed
and obtained as shown in Table 4.

The extracted results from both EQDG and EQM coincide
with the above conclusions as MREMLcan be donated as the
best estimator since it has the least MSE, whereas

MMINQUE2 has the highest variability among the above
estimators. On the other hand all the estimators based on Ai1

are better than those based on MINQUE and Ai2.

Furthermore, one can notice that the degrees of freedom have
substantially negative effect on the norm of all above estima-

tors, thus the norm associated with r2
3 is lower than the norm



Table 3 Comparison of MINQUE, MMINQUE, IAUE, MIAUE, REML and MREML estimators based on compound absolute bias, compound MSE and prop. negative values.

MMINQUE1 MMINQUE2 MINQUE MIAUE1 MIAUE2 IAUE REML MREML

Compound

absolute

bias

Compound

MSE

Prop.

negative

values

Compound

absolute

bias

Compound

MSE

Prop.

negative

values

Compound

absolute

bias

Compound

MSE

Prop.

negative

values

Compound

absolute

bias

Compound

MSE

Compound

absolute

bias

Compound

MSE

Compound

absolute

bias

Compound

MSE

Compound

absolute bias

Compound

MSE

Prop.

negative

values

Compound

absolute

bias

Compound

MSE

P1

V1 0.26 1.31 0.56 0.26 1.31 0.56 0.26 1.31 0.56 0.26 1.14 0.46 0.86 0.48 0.62 0.24 1.30 0.56 0.48 0.60

V2 2.35 71.58 0.52 2.35 71.58 0.52 2.35 71.58 0.52 2.28 70.70 3.87 50.51 4.15 50.48 2.16 69.84 0.52 4.27 37.20

V3 0.07 1.10 0.51 0.07 1.10 0.51 0.07 1.10 0.51 0.113 1.180 0.115 1.154 0.142 1.145 0.08 1.15 0.52 0.51 0.76

V4 2.38 78.14 0.46 2.38 78.14 0.46 2.38 78.14 0.46 1.95 69.88 3.49 53.12 3.75 52.82 2.03 77.22 0.46 3.63 40.47

V5 0.17 74.94 0.12 0.17 74.94 0.12 0.17 74.94 0.12 0.04 73.54 0.04 73.54 0.04 73.48 0.09 73.98 0.11 2.57 51.05

V6 0.16 72.47 0.45 0.16 72.47 0.45 0.16 72.47 0.45 1.31 74.07 2.01 74.64 1.99 74.62 0.16 59.58 0.45 3.05 43.37

P2

V1 0.31 1.60 0.59 0.34 1.71 0.59 0.30 1.58 0.58 0.97 2.14 1.06 1.76 1.07 1.65 0.30 1.49 0.58 0.47 0.71

V2 2.46 73.83 0.51 2.64 76.98 0.50 2.48 75.08 0.50 2.35 72.49 3.83 52.10 4.03 47.80 2.30 71.62 0.51 4.62 39.94

V3 0.10 1.27 0.57 0.11 1.29 0.57 0.09 1.26 0.55 0.11 1.23 0.02 1.20 0.05 1.18 0.10 1.21 0.53 0.41 0.79

V4 1.88 77.52 0.45 2.16 85.20 0.46 1.86 78.37 0.45 2.10 72.07 3.51 59.58 3.81 55.81 2.06 71.80 0.46 3.92 39.09

V5 0.13 73.67 0.13 0.16 74.56 0.20 0.14 73.65 0.13 0.16 81.97 0.11 82.74 0.13 81.89 0.26 70.26 0.13 2.73 52.06

V6 0.13 71.18 0.46 0.18 71.46 0.49 0.13 71.68 0.45 1.17 70.60 1.17 70.64 1.18 70.60 0.20 62.32 0.45 2.82 44.62

P3

V1 0.34 1.75 0.61 0.43 2.07 0.62 0.32 1.67 0.60 0.35 1.70 0.52 1.31 0.51 1.17 0.30 1.62 0.60 0.51 0.79

V2 2.13 71.98 0.53 2.73 84.52 0.53 2.11 74.92 0.52 2.37 75.17 4.07 57.85 4.22 51.77 2.16 72.28 0.52 4.58 39.35

V3 0.16 1.33 0.58 0.20 1.40 0.62 0.14 1.31 0.58 0.19 1.42 0.10 1.36 0.12 1.35 0.18 1.37 0.56 0.55 0.88

V4 1.90 83.40 0.49 2.44 98.91 0.51 1.87 85.07 0.49 2.22 79.91 3.58 63.87 3.72 57.87 2.10 76.30 0.47 4.04 42.02

V5 0.34 78.32 0.21 0.38 81.91 0.30 0.35 78.71 0.22 0.10 81.02 0.07 80.37 0.07 80.91 0.28 70.95 0.18 2.81 51.72

V6 0.31 72.42 0.49 0.43 72.52 0.53 0.32 73.06 0.50 0.53 69.95 0.45 70.24 0.49 69.96 0.37 65.51 0.47 2.97 48.21

P4

V1 0.19 0.87 0.49 0.19 0.87 0.49 0.19 0.87 0.49 0.22 0.93 0.37 0.71 0.40 0.69 0.21 0.82 0.50 0.42 0.50

V2 1.74 47.46 0.52 1.74 47.46 0.52 1.74 47.46 0.52 1.97 50.14 3.23 33.67 3.57 33.94 1.60 44.45 0.51 4.01 27.32

V3 0.07 0.72 0.42 0.07 0.72 0.42 0.07 0.72 0.42 0.11 0.72 0.05 0.71 0.07 0.70 0.05 0.72 0.41 0.29 0.56

V4 1.55 49.22 0.41 1.55 49.22 0.41 1.55 49.22 0.41 1.82 50.21 2.44 35.56 2.80 35.21 1.52 50.01 0.42 3.42 29.36

V5 0.07 44.26 0.05 0.07 44.26 0.05 0.07 44.26 0.05 0.07 46.18 0.06 46.19 0.06 46.17 0.02 45.96 0.04 1.78 37.21

V6 0.08 41.14 0.40 0.08 41.14 0.40 0.08 41.14 0.40 0.12 40.03 0.06 40.02 0.08 40.03 0.12 38.72 0.40 2.15 31.08

P5

V1 0.19 0.89 0.51 0.20 0.92 0.50 0.19 0.88 0.50 0.23 0.93 0.38 0.70 0.41 0.67 0.18 0.82 0.51 0.44 0.52

V2 1.81 48.00 0.50 1.91 49.65 0.49 1.81 48.16 0.50 1.93 46.84 3.40 33.10 3.74 32.83 1.60 46.59 0.50 4.02 28.13

V3 0.07 0.74 0.43 0.08 0.74 0.44 0.07 0.73 0.42 0.14 0.65 0.08 0.64 0.10 0.63 0.07 0.74 0.45 0.31 0.56

V4 1.52 49.82 0.43 1.60 51.85 0.43 1.54 50.18 0.43 1.79 48.26 3.00 36.57 3.37 35.86 1.55 52.40 0.44 3.43 30.87

V5 0.05 47.28 0.07 0.08 47.46 0.09 0.05 47.34 0.07 0.21 45.51 0.21 45.79 0.20 45.50 0.05 45.44 0.06 1.84 34.95

V6 0.15 39.08 0.41 0.15 39.28 0.44 0.16 39.13 0.40 0.26 42.02 0.20 42.07 0.22 42.02 0.16 34.61 0.40 2.03 34.78

P6

V1 0.27 1.22 0.56 0.34 1.42 0.58 0.26 1.17 0.54 0.24 0.91 0.41 0.71 0.43 0.68 0.27 1.14 0.51 0.47 0.58

V2 2.01 52.2 0.51 2.4 60.76 0.5 1.97 53.47 0.51 2.07 45.43 3.53 33.59 3.83 32.92 1.81 48.7 0.5 4.05 29.28

V3 0.11 0.86 0.5 0.15 0.93 0.55 0.1 0.84 0.5 0.12 0.78 0.05 0.77 0.08 0.76 0.12 0.86 0.48 0.43 0.64

V4 1.85 50.84 0.42 2.17 58.89 0.44 1.92 52.13 0.41 1.74 28.59 1.74 50.89 4.99 47.00 1.48 68.84 0.43 5.48 43.34

V5 0.04 48.46 0.11 0.09 50.79 0.21 0.04 48.76 0.12 0.08 48.76 0.07 48.92 0.08 48.75 0.08 46.03 0.1 1.8 35.17

V6 0.38 43.31 0.46 0.48 43.41 0.48 0.39 43.58 0.48 0.19 43.45 0.16 43.46 0.16 43.46 0.32 41.36 0.44 2.17 33.22

P7

V1 0.11 0.38 0.44 0.11 0.38 0.44 0.11 0.38 0.44 0.10 0.36 0.17 0.31 0.19 0.31 0.12 0.40 0.42 0.21 0.28

V2 0.96 18.95 0.53 0.96 18.95 0.53 0.96 18.95 0.53 1.20 18.84 1.94 15.42 2.17 15.58 0.96 19.54 0.52 2.43 14.22

V3 0.02 0.49 0.33 0.02 0.49 0.33 0.02 0.49 0.33 0.08 0.51 0.03 0.50 0.05 0.50 0.05 0.51 0.31 0.26 0.42

V4 0.79 22.14 0.41 0.79 22.14 0.41 0.79 22.14 0.41 0.81 20.43 1.85 17.60 2.09 17.44 0.77 21.33 0.39 1.6 14.65

V5 0.15 40.31 0.02 0.15 40.31 0.02 0.15 40.31 0.02 0.07 38.37 0.13 38.37 0.13 38.37 0.01 37.67 0.01 1.5 29.98

V6 0.06 33.64 0.31 0.06 33.64 0.31 0.06 33.64 0.31 0.26 33.32 0.25 33.31 0.28 33.31 0.05 34.64 0.30 1.43 27.34

P8

V1 0.10 0.42 0.44 0.11 0.43 0.44 0.10 0.41 0.45 0.12 0.39 0.21 0.34 0.23 0.33 0.11 0.42 0.42 0.25 0.29

V2 0.87 18.82 0.53 0.92 19.26 0.52 0.87 19.15 0.52 1.08 18.47 2.39 15.52 2.59 15.33 0.93 19.12 0.51 2.37 13.74

V3 0.05 0.52 0.33 0.05 0.51 0.34 0.05 0.52 0.32 0.09 0.50 0.01 0.49 0.04 0.49 0.04 0.54 0.30 0.26 0.45

V4 0.68 20.07 0.4 0.74 20.7 0.41 0.68 20.44 0.4 0.91 21.43 1.76 18.74 2.01 18.06 0.5 21.23 0.40 1.71 14.52

V5 0.02 37.66 0.01 0.02 37.74 0.01 0.02 37.7 0.01 0.14 35.13 0.19 35.10 0.20 35.12 0.12 35.91 0.01 1.61 29.0

V6 0.1 35.23 0.32 0.11 35.19 0.35 0.10 35.3 0.31 0.05 35.41 0.06 35.40 0.07 35.41 0.04 33.19 0.29 1.55 26.66

P9

V1 0.11 0.48 0.45 0.14 0.53 0.46 0.11 0.46 0.45 0.14 0.46 0.25 0.41 0.26 0.37 0.11 0.45 0.42 0.25 0.31

V2 1.02 20.63 0.51 1.25 22.64 0.5 1.05 22.22 0.51 1.23 18.97 2.62 17.27 2.76 16.18 0.9 20.14 0.51 2.41 14.77

V3 0.08 0.61 0.38 0.09 0.6 0.4 0.07 0.60 0.36 0.11 0.55 0.03 0.53 0.07 0.54 0.05 0.57 0.32 0.28 0.46

V4 0.75 22.45 0.41 0.98 25.13 0.42 0.74 23.91 0.41 0.91 23.35 1.99 21.65 2.14 19.51 0.74 21.8 0.37 1.73 15.0

V5 0.11 35.74 0.01 0.10 36.54 0.03 0.10 35.95 0.02 0.03 36.21 0.10 36.98 0.11 36.20 0.02 38.19 0.01 1.54 30.42

V6 0.22 34.73 0.37 0.25 34.86 0.41 0.21 34.86 0.36 0.17 33.34 0.17 33.26 0.19 33.33 0.14 35.54 0.32 1.49 28.09
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Fig. 1 EQDG’s corresponding to MINQUE, MMINQUE, AUE, MAUE, REML and MREML estimators for each variance

component.

Table 4 The norm of EQM corresponding to MINQUE, MMINQUE, IAUE, MIAUE, REML and MREML estimators at each

variance component.

MMINQUE1 MMINQUE2 MINQUE MIAUE1 MIAUE2 IAUE REML MREML

r2
1 159.91 167.24 160.69 154.60 155.09 155.97 153.56 122.53

r2
2 14.31 16.20 16.19 13.18 13.28 13.32 13.83 12.76

r2
3 3.98 3.98 3.99 4.18 4.13 4.11 3.97 3.93
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associated with r2
2 which the latter is lower than the norm

associated with r2
1.
Conclusions

In this article, two new estimators based on IAUE principle
are introduced for estimating the variance components in the

mixed linear model. The aim of this article was to evaluate
the performance of the proposed estimators relative to various
estimators via simulation studies. The model we used is nested-

factorial model with two fixed crossed factorial and one nested
random factor under regularity assumptions. Several criteria
such as bias, MSE, probability of getting negative values and

the norm of EQM are used to show the performance of the
estimators under the study. From the numerical analysis, we
have found that the estimators based on restricted likelihood
function have desirable properties as long as the data have nor-

mal distribution. Further, the proposed estimators may be
appropriate estimators since they have less bias and less
MSE than the estimator based on almost unbiased approach

it may be important to study some details in the proposed
algorithms in the literature which used for computing the vari-
ance components estimates and its effect to the statistical char-

acteristics e.g. [19,23].
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