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1. INTRODUCTION 

In this paper, equations governing the time dependent flow of granular 
material under gravity are derived and analyzed. Formally these equations 
bear a strong resemblance to the Navier-Stokes equations for the flow of 
an incompressible, viscous fluid. However, the main result of this paper is 
that, depending on geometric and material parameters, the equations 
governing granular flow may lead to a violent instability analogous to that 
for 

u, = u XI - up ; 

i.e., in some directions in Fourier transform space, the linearization of the 
governing equations resembles the backwards heat equation. Moreover 
instability is to be expected for the parameter values arising in most 
industrial applications. 

In deriving the equations, we assume as constitutive laws a rigid-per- 
fectly plastic, incompressible, cohesionless Coulomb powder with a yield 
surface of von Mises type, and we assume that the eigenvectors of the 
strain rate and stress tensors are parallel. (These assumptions are explained 
in Sect. 2.) The occurrence of instabilities with other constitutive laws is 
discussed in Section 5. In particular, with the Tresca yield surface favored 
by industry, the equations exhibit an even more severe instability than with 
the von Mises yield surface considered here. 

Manufacturing industries must handle vast quantities of raw materials 
which are normally stored in granular form. Usually material is withdrawn 
from a storage bin by allowing the material to flow under the action of 
gravity through an outlet in the bottom of the bin. (Cf. Fig. 1.1.) Difficulties 
in the withdrawal process cause enormous financial losses; even the com- 
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Bin 

FIG. 1.1. A typical silo. 

plete collapse of silos is not rare. Currently, design criteria for silos are 
derived from the steady state versions of the evolution equations analyzed 
in this paper. Thus the existence of an instability in these equations raises 
serious questions about silo design. (Remark.. Often the flow in a silo is 
modeled using a technique known as slice analysis; i.e., by averaging over 
the horizontal dimensions of the silo, one obtains simplified equations 
which depend on only one space variable. Since the instability we study 
depends on direction, such one-dimensional models cannot shed any light 
on the phenomena.) 

Ordinarily the flow in real silos is highly unsteady; indeed, the flow is 
pulsating with the material returning to rest during part of each cycle. (The 
period is typically a few seconds or less.) In Section 5 of this paper we con- 
jecture that such pulsating flow results from the instability found in this 
paper. If the conjecture is true, the next problem is to prove the existence of 
time periodic solutions in an appropriate wider context (elastic-perfectly 
plastic rather than rigid-perfectly plastic) and to derive effective equations 
for the average stress and average velocity. This problem is of great prac- 
tical importance since it represents a bottleneck for the application of 
mathematics to silo design. 

A secondary result of this paper is that in three dimensions with a von 
Mises yield surface, the steady state equations governing granular flow are 
sometimes elliptic. (By contrast, in two dimensions or in three dimensions 
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with a Tresca yield surface, the steady state equations are always hyper- 
bolic.) The steady state equations are elliptic if and only if the evolution 
equation does not exhibit the instability analyzed in this paper; loosely 
speaking, this happens only for a freely flowing material in a steep hopper 
with smooth walls. 

This paper is organized as follows: the equations to be studied are 
derived in Section 2; their instability is analyzed in Section 3; the instability 
is related to Jenike’s radial solution in Section 4; and certain other per- 
tinent issues are issues are discussed in Section 5. 

2. DERIVATION OF THE EQUATIONS 

(a) Introduction 

In this section we derive the following equations for the velocity u and 
the average stress 0 (i.e., the trace of the stress tensor, divided by 3) in a 
flowing granular material: 

(a) p $= -k & (0 (Vi-’ V,,)-gfpg, 
I I (2.1) 

(b) div u = 0. 

Here and below we use the summation convention; the density p is 
assumed constant; k is a dimensionless physical constant specific to the 
material under study and is related to the angle of repose (the angle of the 
steepest pile that does not collapse; g is the acceleration of gravity; Vi, is 
the strain rate tensor 

vii= +++%) (2.2) 

(cf. the discussion of sign conventions below); and 1 VJ indicates the 
Euclidean norm of a matrix 

i I 
112 

1 VI = 1 v; = {tr VTV}“‘. 
i, I 

Although the derivation of (2.1) is a straightforward combination of 
established concepts, these equations have not, to our knowledge, appeared 
in the literature. 

Note that (2.1) is meaningful only if I VJ # 0; in other words, (2.1) con- 
tains the implicit assumption that the material in actually deforming. 
Although it is not apparent from the equations, another related assumption 
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is also needed for (2.1) to be applicable-the material must have 
undergone substantial deformation in the past. (Cf. the discussion in Sub- 
section (d).) Thus regarding the typical silo/hopper configuration 
illustrated in Fig. 1.1, Eqs. (2.1) describe the flow well inside the converging 
hopper, but not in the silo or near the top of the hopper. 

Equations (2.1) bear an intriguing resemblance to the linearized Navier 
Stokes equations for the low speed flow of a viscous, incompressible fluid, 
with cr playing the role of the pressure. Indeed, the only difference appears 
in the dissipation term. Specifically in (2.1) the dissipation is 

(i) proportional to 0, rather than independent of it, and 
(ii) homogeneous of degree zero in the velocity, rather than of degree 

one. 

These differences are a natural consequence of the very different dissipation 
mechanisms in the two cases. In a viscous fluid, dissipation is due to 
momentum transfer from collisions; in a granular material, an assembly of 
many small particles in frictional contact, dissipation is due to friction 
between sliding particles. At the low speeds considered in this paper, 
momentum transfer is negligible in a granular material. Thus in this 
regime, dissipation would not be increased if the flow speed were doubled. 
(A striking illustration of this point occurred when mechanical plows 
replaced draught animals on farms: it was found, to everyone’s surprise, 
that plowing at greater speeds does not require greater forces.) 

In deriving (2.1) we shall assume that the reader is familiar with the 
basics of continuum mechanics as described in Prager [13, Chaps. l-41. 
Our notation differs from Prager’s only in a sign convention. Specifically, 
the stress tensor T,. measures compressive stresses, so that for a material in 
compression the eigenvalues cr, of T, are positive. Similarly, the eigenvalues 
of the strain rate tensor V,, defined by (2.2), give the rates of compression 
of the material. This sign convention is natural for granular materials since 
such materials disintegrate under tensile stresses. 

The unknown quantities in the flow are the velocity ui and the stress ten- 
sor TV. (As mentioned above, p is assumed constant.) These variables are 
subject to the laws of conservation of mass and momentum and to two 
constitutive laws: 

(i) the yield condition and 
(ii) the flow rule. 

Conservation of energy does not contribute an equation since the kinetic 
energy lost to friction is converted to heat and the temperature is not 
otherwise coupled to the variables under study. Equations for conservation 
of mass and momentum are 
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(a) divu=O 

(b) p z+2=ppi. 
J 

(2.3) 

In (2.3b), we have neglected the convective derivative (u*V) vi in the 
acceleration; this will be justified in Subsection (c) by order of magnitude 
estimates for the various terms. Since the constitutive laws are not standard 
knowledge among mathematicians, we will discuss equations for these laws 
at some length. 

(b) Constitutive Laws 

The yield condition may be motivated by thinking of the properties of a 
granular material as lying somewhere between those of a liquid and those 
of a true solid. Specifically, even at rest, a granular material can sustain 
some shearing stress but only an amount proportional to the average stress 
CT, where 

cr,+o,+a, tr T 
0= =- 

3 3 

Ultimately this behavior derives from the law of sliding friction applied to 
the individual particles in a granular material. A constitutive law for- 
mulating this behavior is provided by the von Mises-type yield condition 

ig, (0; - a)’ d k202, (2.4) 

where k is a constant characteristic of the material. Moreover, for the 
material to deform, equality must hold in (2.4)-this point is central since it 
provides the equation 

if, (a, - CT)’ = k*o* (2.5) 

which is used in the derivation of (2.1). We shall suppose that the material 
is rigid-perfectly plastic, which means that there is no viscosity; hence (2.5) 
is unaffected by any motion the material is undergoing, provided of course 
that there is some deformation. (Regarding motivation, it may be helpful to 
compare (2.5) with a perfect fluid for which, even in motion, the only 
allowable stress tensor is a hydrostatic pressure, i.e., ci = cr.) 

Incidentally, the deformation of granular material is plastic in that if, 
after deformation, the shearing stress is reduced so that the inequality in 
(2.4) is strict, the material shows essentially no tendency to return to its 
original state. 
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Let us write 

k = 4 sin 6. (2.6) 

We claim that 6 is the angle of internal friction [5, 71 measured in plane 
strain experiments. To prove this, we need the following result that will be 
derived below using the flow rule: in plane strain, at least after appropriate 
reindexing, we have 

(Tj 5 (01 + a,)/2. (2.7) 

Given (2.7), the inequality (2.4) reduces to the standard [S, 71 two dimen- 
sional relation 

10, -0~1 d sin &a, + Q~), (2.8) 

which proves the claim. Typically 6 lies between 20 and 60”; values of 6 at 
the low and of this range have received less study since the handling of 
such materials tends not to cause problems. Let us relate 6 to the angle of 
repose, which may be characterized mathematically as the largest angle 0 
such that there is a solution of the equilibrium equations U,/&, = pg, of 
the form 

T,i = a,J (sin 0) X, - (cos 0) x2] 

for which (2.8) holds; here a, is constant and x2 is the vertical coordinate. 
It turns out that this angle equals 6. 

The cone (2.5) consists of two nappes, but only one of them is physically 
relevant. Since a granular material can support only compressive stresses, 
we want only the nappe on which 

a,>02 i= 1, 2, 3. (2.9) 

However, as shown in the following lemma, it is possible to satisfy (2.9) 
only if 

6 < 60”, (2.10) 

or in terms of k, only if 

k<,,/$. (2.1 I) 

Thus we shall make (2.10) an explicit assumption. 

LEMMA 2.1. One nappe of the cone (2.5) is contained in the positive 
octant {cT~> 0: i= 1,2, 3) lj’and only if 6 < 60”. 
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Proof. As 6 + 0, the cone (2.5) degenerates onto the line (rl = r~* = (r3. 
Thus for small 6, one nappe is contained in the positive octant. As 6 
increases, this nappe remains inside the positive octant as long as (2.5) 
does not intersect any of the coordinate planes { rri = 0). By symmetry it 
suffices to consider { c3 = O}. Thus if we define a quadratic form 

Q(c) = C(o, - o)* - k*a*, 

then one nappe remains inside the positive octant as long as Q(cr,, cr2, 0) is 
positive definite in or, cr2. Now 

Q(o,, 02, 0) = &{ (6 - k*)(a; + o;) - (6 + 2k*) ~,a~}, 

which is positive definite only if (2.11) holds. The proof is complete. 
Now we turn to the flow rule. For a granular material to deform, the 

stresses in different directions must be different. Intuitively it is clear that 
the response of the material to such unequal stresses should be to contract 
in the directions of greater stress and to expand in the directions of smaller 
stress. As will be elaborated in the following lemma, the flow rule is a 
quantitative formulation of these ideas. Specifically the flow rule links the 
strain rate and stress tensors by requiring (in matrix notation) 

(3q>O) s.t. V=q(T-al). (2.12) 

We want the scalar q to be positive so that the major stress axis 
corresponds to an eigendirection of V with positive eigenvalue, i.e., a con- 
tracting direction. 

LEMMA 2.2. Let A and B be n x n symmetric matrices. There exists a 
scalar q such that A = qB if and only if(i) there is an orthonormal basis for 
R” whose members are eigenvectors of both A and B and (ii) the eigenvalues 
ai and bi of A and B satisfy 

aI a2 a -=-= . . . z-2. 
b, b2 bn 

(2.13) 

Proof. If A = qB, then conditions (i) and (ii) are obvious. Conversely, if 
conditions (i) and (ii) hold, then A = qB may be easily deduced in the 
representation, whose existence follows from (i), of A and B as diagonal 
matrices. The proof is complete. 

By the lemma, the flow rule (2.12) requires that the eigenvectors of T be 
parallel to the eigenvectors of I/. The flow rule also contains the 
assumption of incompressibility since 

divv= -tr V= -qtr(T--Z)=O. 

According to (2.13), the flow rule contains in addition one scalar relation 
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between the eigenvalues of T and of V. Let us use this latter relation to 
derive (2.7). For plane strain, one of the eigenvalues of V vanishes iden- 
tically; say n,(V) = 0. We deduce from (2.12) that g3 = 0 from which (2.7) 
follows. 

Although the flow rule determines the sign of the scalar 9 linking V and 
T- al, it gives no information about the magnitude of q. In other words, in 
a granular material the strain rate cannot be determined pointwise from a 
knowledge of the stresses; rather, V can only be determined by solving the 
appropriate partial differential equations. This fact, the source of much 
nonintuitive behavior of granular materials, leads to the property that dis- 
sipation in (2.1) is unaffected by scaling the velocity. 

(c) Derivation and Discussion of (2.1) 

As the main step is deriving (2.1), we will combine the yield condition 
and flow rule to obtain 

T=a(k IVJ-’ V+Z); (2.14) 

(2.1) follows immediately on substitution of (2.14) into (2.3). The proof of 
(2.14) is more transparent if we define the deviator of an n x n matrix A: 

devA=A-i (trA)Z. 

In this notation, the yield condition (2.5) may be rewritten 

ldev TI = ka 

where the norm of dev T is the Euclidean norm, and the flow rule (2.12) 
may be rewritten 

(3q > 0) s.t. V=qdev T. 

We start the proof of (2.14) from the trivial decomposition 

T=dev T+al. 

We use the flow rule to write dev T= q-l V, and we use the yield condition 
to show that q-’ = ka ( V( -‘, thereby obtaining (2.14). 

Let us justify, for the slow flows considered in this paper, the neglect of 
the convective derivative p(v s V) ui in (2.1) by making order of magnitude 
estimates for the various terms. The convective derivative is of the order 
pvg/l,, where u0 and I0 are a characteristic velocity and length, respectively. 
We estimate the average stress D by the hydrostatic pressure pgl,. Since k is 
dimensionless and of order 1, both terms in (2.1) involving (T are of the 
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order pg, i.e., of the same order as gravity. If we define an analogue of 
Reynolds number here, 

R= 
convective derivative 

dissipative term ’ 

then R is of the order ug/gZ,. In a typical industrial hopper we may use 
I, = 10 ft, u0 = 0.1 ft/s, which leads to the estimate Rx 3 x lo- 5. In other 
words, the convective derivative may be neglected because all accelerations 
are much less than gravity. 

If a silo is designed so that material, on leaving the silo, goes into free 
fall, then near the outlet the above estimates are inaccurate; indeed, in this 
situation the convective acceleration near the outlet is of the same order as 
gravity. However, in most industrial silos the output rate is set by a feeder 
device to a value much less than free fall, and consequently the convective 
derivative is negligible throughout the silo. 

Next we deduce from (2.1) that, provided 6 < 60”, the average stress 0 
satisfies a second-order elliptic equation. (For the linearized Navier-Stokes 
equation, the pressure satisfies Laplace’s equation.) Taking the the 
divergence of (2.la), we find that 

k (2.15) 

We regard V as given; thus (2.15) is a linear equation for (r whose principal 
symbol is the quadratic form associated with the matrix kA + Z, where 
A = ) VI - ’ I/. By the following lemma, (2.15) is elliptic. 

LEMMA 2.3. Zf 6 < 60”, then Z+ kA is positive definite. 

Proof: Since tr A = 0 and tr A2 = 1, the eigenvalues ai of A satisfy 

(a) a,+a,+a,=O 

(b) a;+a;+a:= 1. 
(2.16) 

Thus a3 = -(a, + u2), and by (2.16b), 

a:+a,a,+a:=& (2.17) 

It follows by a calculus argument that the extreme values of a, on this 
ellipse are +/@, and by symmetry the same estimate holds for a2 and 
u3. Therefore by (2.11) the eigenvalues 1 + ka, of Z+ kA satisfy 

l+ka,>l-,/$&=O. 

The proof is complete. 
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(d) Alternative Constitutive Laws 

In this subsection we attempt to place the constitutive laws in a larger 
context, particularly in regard to alternative constitutive laws. This infor- 
mation will not be used until Section 5. 

Although we have assumed incompressibility in deriving (2.1), in fact all 
granular materials are at least slightly compressible; moreover the yield 
surface and the density are linked in a subtle way. The equations which 
describe granular flow when compressibility is included [S, 91 are 
significantly more complicated than (2.1). However, if these equations are 
expanded in an asymptotic series in powers of the compressibility, then 
(2.1) emerges as the zeroth order term in the expansion. Unfortunately the 
subsequent terms in the expansion are singular perturbations of (2.1). For 
example, the first-order perturbation of (2.1 b) may be written 

(2.18) 

where the arguments of P indicate the highest order derivatives in the per- 
turbation. (The perturbation of (2.la) does not contain any singular 
terms.) A more careful analysis of this expansion, such as is contained in 
[ 111 for the analogous problem in fluid flow, is greatly needed. 

The derivation of (2.1) by the neglect of higher order terms in the expan- 
sion is called the critical state approximation. This approximation is 
probably valid if the material has undergone substantial deformation and is 
continuing to deform. In effect, by having undergone large deformations 
the material reaches an asymptotic state which simplifies the equations. 
However, before the material has undergone such substantial defor- 
mation-for example, in the silo in Fig. l.l-the full equations including 
compressibility must be used. 

Also related to compressibility is another force not included in this 
paper, viz., the effect of air pressure in the voids between particles. As 
material descends in the hopper, it expands in response to a decrease in the 
average stress G, thereby creating a partial vacuum which opposes the flow. 
It seems that in a typical industrial installation, this force is substantially 
larger than the neglected inertial terms in (2.1). However, neither effect is 
considered in this paper. 

Regarding our yield condition (2.4), there is another generalization of 
the two-dimensional condition (2.8) to three dimensions which we call the 
Tresca condition. In geometric terms, Tresca’s yield surface is a hexagonal 
pyramid rather than a cone. In symbols, if we index the principal stresses 
so that g3 < e2 < o,, then Tresca’s yield condition requires that 
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moreover, the material may deform only if equality holds. The associated 
flow rule depends discontinuously on the middle principal stress (T* ; more 
precisely, there are three different flow rules depending on whether g2 = 03, 
c~~-co~<cr~, or (r2=cr,. (See [6] for further explanation.) In designing 
hoppers, industry has used Tresca’s yield condition almost exclusively. 
Experimentally it is difficult to tell which relation is more accurate since 
most experiments are essentially two dimensional and in two dimensions 
both yield conditions reduce to (2.8). However, recent examination of the 
evidence [8] indicates that the von Mises condition gives better agreement 
with certain kinds of experiments. 

Incidentally, both names, von Mises and Tresca, derive by analogy from 
the plastic flow of metals. In metals, the threshold for plastic yield is essen- 
tially independent of the average stress 0. Thus for metals the yield surface 
is cylindrical rather than conical. This apparently minor difference is in fact 
a profound difference. In particular, for plastic flow of metals, the equations 
analogous to (2.1) are monotone [4], so the instability analyzed in this 
paper does not arise. 

The flow rule (2.12) is challenged by some authors [2, 12). In requiring 
that the eigenvectors of T and I/ be aligned, this condition neglects the 
rotation of a material element during deformation. In two dimensions [ 141 
or in three dimensions with a Tresca yield surface [ 151, Spencer has 
proposed an alternative constitutive law which incorporates this rotation. 
(Cf. also [12].) Unfortunately accurate experiments are difficult and so far 
do not favor one theory over the other (although there is definite evidence 
[3] that under certain conditions the eigenvectors of T and V may be 
somewhat out of alignment). The steady state equations derived from the 
two constitutive laws are not terribly different, but the evolution equations 
derived from them are dramatically different. Let us elaborate. With (2.12) 
as the flow rule, we eliminated the deviator of T from the evolution 
equations to obtain (2.1), apparently a parabolic system. Spencer replaces 
(2.12) by a contitutive law that involves the time derivative of the stress 
tensor. Because of this time derivative, it is no longer possible to eliminate 
the deviator of T from the equations; rather the equation must be left as a 
first-order system. As we will see in Section 5, this system of evolution 
equations is best described as elliptic! 

In deriving (2.1), we eliminated the scalar factor q in the flow rule (2.12). 
However, it is important to remember the requirement that q be positive. 
If, in the evolution of a flow, it becomes impossible to satisfy (2.12) with 
q > 0, then it is necessary to introduce elastic-pastic theory. In this theory 
the flow rule is generalized to read 

If=:: (dev T)+qdev T. (2.19) 
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The first term on the right, in which we have neglected the convective 
derivative of T and similar rotational terms (cf. [ 13, Sects. 8.1, 2]), 
represents the elastic deformation. The factor E is a small parameter charac- 
terizing the eleastic properties of the material-the material is incom- 
pressible and has a Young’s modulus proportional to the average stress 0. 
The elastic deformation may be nonzero even if the stresses do not lie on 
the yield surface (2.5). Thus the yield condition (2.5) must be generalized to 
read 

q(ko - 1 dev TI ) = 0, (2.20) 

where both factors are nonnegative. In a region where q vanishes iden- 
tically, Eqs. (2.3), (2.19) constitute a first-order linear hyperbolic system 
with the side constraint div u = 0. In a region where q is everywhere 
positive, Eqs. (2.3), (2.19), (2.20) constitute a small, but singular, pertur- 
bation of (2.1). 

3. ANALYSIS OF THE INSTABILITY 

(a) Determination of the Principal Part of (2.1) 

On performing the indicated differentiations in (2.la) and (2.2), we 
derive the equations 

(b) divv=O 

where the matrix A is defined by 

A=Il’-‘I’. (3.2) 

To define the principal part of the right-hand side of system (3.1), we 
introduce a system of weights as in Leray [lo] or Agmon, Douglis and 
Nirenberg [ 11. Specifically, we assign the weights s, = s2 = s3 = 2, s4 = 1 to 
the four equations (3.1), and we assign the weights t, = t, = t, = 0, t, = 1 to 
the four unknowns vi, v2, v3, a, respectively. The contribution of the jth 
unknown to the principal part of the ith equation consists of the 
derivatives of order si-- tj. With this definition, every term in (3.1), except 
the zeroth order term gi, belongs to the principal part. 

This definition of the principal part is necessary in order to avoid 
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trivialities. For example, it is known [7] that in two dimensions the steady 
state equations derived from (3.1) may be rewritten, by introduction of a 
new unknown, as a first-order, 4 x 4 hyperbolic system. We will show in 
Subsection (d) that with our definition of principal part, the two dimen- 
sional steady state equations derived from (3.1) are hyperbolic (in the sense 
of Leray) with the same characteristic directions as the 4 x4 system. By 
contrast, according to the naive definition of principal part (i.e., just 
second-order derivatives), these steady state equations would be completely 
degenerate since the principal part of the fourth equations would vanish 
identically and cr would not appear in the principal part of any equation. 

(b) Growth Rates for Exponential Solutions 

The system (3.1) is quasilinear since the highest order derivatives enter 
linearly, i.e., multiplied by a coefficient which depends only on lower order 
derivatives. Let us “freeze” these coefficients, discard the zeroth order term 
in (3. la), and look for an exponential solution 

where a E lw3, CLE R’, and (5, x) =Z: 5,x,. This leads to the eigenvalue 
problem 

(4 ~[-fle12Z+(a~)(~~)~]a+%(Z+ka)r=i. 
(3.3) 

(b) (t, a) = 0. 

To solve for a, we take the inner product of (3.3a) with < and use (3.3b), 
finding 

(3.4) 

by Lemma 2.3, the denominator in (3.4) is positive. Substituting (3.4) into 
(3.3a), we obtain 

ka 
- L(l)a=la 
P IV 

where 

uo = -; ItI2 I+ (A5)(LwT- IcIz(+A:;;; 
9 

() (5 + k-WbWT. (3.5) 



32 DAVID G. SCHAEFFER 

Now L(5) defines a linear transformation from the two-dimensional sub- 
space (<}’ c KY3 into itself-the choice of CI in (3.4) guarantees that 
L(t) UE (5)‘. If E is the orthogonal projection onto { 0 ‘, then using 
Et = 0 we compute 

In other words, L(5) is a rank 1 perturbation of - 4 ItI* I; hence the eigen- 
values of L(t) are 

(a) A(t)= -i l5l2 

(b) h(t)= -; Ill’+ 
(3.6) 

Regarding A*(t), we have 

(Ati 0’ lE&l*= lM”12-T, 

so that (3.6b) may be rewritten 

n2(cJ)= 15121A512-(A5~ t,‘-~Kl”-f~ ltl*(At, 4) 
1512+W5, 5) (3.7) 

To conclude, if an exponential solution of (3.1) (with frozen coefficients) 
has spatial dependence e i(c*x), then it grows at the rate 

+ n.(r) I 3 i=l or 2. 

(c) Identification of the Unstable Directions 

In this subsection we show that, depending on parameters, &(t) may be 
positive for some directions 5, thereby proving our main result that 
solutions of (3.1) are subject to an instability. The controlling parameters 
are k and A, where A is defined by (3.2). Without loss of generality we may 
investigate A,(5) in a coordinate system such that A = diag(a,, a,, a,); 
since the eigenvalues of A satisfy (2.16), there is only one essential 
parameter in A, say a2. 

Let U be the set of unstable directions; in symbols, 

u= (~ER3:P(~)>0} 



INSTABILITY IN GRANULAR FLOW 33 

-- - 02 

FIG. 3.1. Regions in parameter space. 

where P(t) is the homogeneous quartic form appearing in the numerator of 
(3.7). The main task of this subsection is to determine how U depends on k 
and u2. Specifically we will show that if k, a2 lie in region 1, 2, or 3 of Fig. 
3.1, then U consists of the region between two cones (cf. Fig. 3.2a) or the 
interiors of two disjoint cones (cf. Fig. 3.2b), or is empty respectively. Thus 
the initial value problem for (3.1) is well posed only for k, a2 in region 3. 

Regarding the boundaries in Fig. 3.1, the limits on k come from (2.11) 
and the limits on a2 come from the following considerations. To eliminate 
redundancy we index the eigenvalues of A so that 

a36a2da,. (3.8) 

(b) 

FIG. 3.2. Cones of unstable directions. Notes: (i) Only the top half of the cone is shown. 
(ii) A third case where (I is empty is not shown. 
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We claim that with this convention 

(3.9a) 

First consider a2 d 113. There is no issue if a, < 0, so suppose a2 > 0. By 
(3.8) we have ~,<a,, by (2.16a) we have la,132a,, and by (2.16b) we 
have 

Consideration of a2 > --l/d . 1s similar, and the claim is proved. Since we 
showed in the proof of Lemma 2.3 that laiJ < 2/@, the corresponding 
limits for ui and u3 are 

(3.9b) 

In Section 4 we will discuss how this stability information applies to 
Jenike’s radial solution in two and three dimensions. Here we simply inter- 
pret the following distinguished values for u2: 

(3.10) 

Formula (3.10a) applies in plane strain; formulas (3.10b) and (3.10~) apply 
to the flow along the axis of three-dimensional axisymmetric converging 
and diverging hoppers, respectively. 

We now set the framework for the proof. By homogeneity it suffices to 
analyze 

u*= {(<I, r*):fYsl, 52, l)>(J). 

Since we have chosen coordinate so that A is diagonal, P(t) may be writ- 
ten 

et,, 52,93)= ecr:, t:, t:, 

for a certain quadratic form Q(q). Let 

(3.11) 

(a) r= {veR3: Q(lr)>O>, 
(b) r*= {h vz): Q(vl, t/z> l)>Ol. 

(3.12) 
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Allowing for the eight equivalent signs ) 5, in (3.1 l), we see that U, is in 
eight-to-one correspondence with 

Thus the analysis of U, hinges on how r* meets the first quadrant in the 
r], , q,-plane. We shall prove that Q(v, , q2, 0) is a negative definite form in 
qr, ye*, which implies that f*, if nonempty, is the interior of an ellipse. 
There are three qualitative different ways r* meets the first quadrant, and 
these are illustrated in Fig. 3.3. For the intersections shown in Figs. 3.3a 
and b, the resulting cone U is illustrated in Figs. 3.la and b, respectively; 
for the intersection shown in Fig. 3.1~ U is empty. We will distinguish 
between the three cases in Fig. 3.3 by investigating the restriction of Q(q) 
to the coordinate planes (yli = 0 >. 

Substituting into (3.7) we find 

P(5)= -~((l+ka,)5;‘+(1+ka,)~4,+(1+ku~)5:) 

+ a:2a,a,+a:-1-5(a,+a,) 
[ 1 r:r: 

+ 
[ 

+2a,a,+a:-1-q (u,+a,) 1 rf{: 

+ a;-2a,a,++ 1-s (a,+a,) t;<:. 
[ 1 

FIG. 3.3. Intersections off* with the first quadrant. 
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We use (2.16) and its corollary (Cf. (2.17).) 

uf + a;u, + UJ = + (i#j) 

to simplify these coefficients; this leads to (3.11) with Q(q) = - f(q, Mr]), 
where M= {my} is given by 

Let M, be the 2 x 2 submatrix of M, 

associated with the restriction of Q(q) to the coordinate plane {yl, = 0); 
similarly let M, and M, be the 2 x 2 submatrices of A4 associated with the 
restriction of Q(q) to { q2 = 0} and { q3 = 01, respectively. 

LEMMA 3.1. Mi is positive semidefinite if either 

(i) ai>0 and k<2ui or 

(ii) ai< and kc6 (u,l; 

indeed, under these circumstances Mi is positive definite unless [ai1 = 2/,/%. 
If neither (i) nor (ii) is satisf;ed, then Mj has a negative eigenvector which 
moreover lies in the first quadrant. 

Remark. The regions in the k, a,-plane where conditions (i) and ii) 
hold are indicated in Fig. 3.4. Note that by (3.9a, b) we have JUiJ Q 2/ J- 6. 

c 

FIG. 3.4. Regions in parameter space. 
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Proof. The matrix M, is positive definite if and only if tr Mi > 0 and 
det Mi > 0. Using (2.16a) we see that 

trM,=l-ka, 

which is positive by (2.11) and (3.9). A simple calculation shows that 

detM,=(2-3a:) (3.13) 

The first factor in (3.13) is positive unless Jail = 2/&, the exceptional, 
extreme case. The second factor vanishes if k = 2ai or k = -6a,; conditions 
(i) and (ii) identify the circumstances under which this factor is positive. 

When neither (i) nor (ii) is satisfied, Mi has a negative eigenvector. This 
eigenvector will lie in the first quadrant if and only if 3a? - 1 - (k/2) ai, the 
off diagonal element of Mi, is negative. This off diagonal element is 
negative throughout the triangle, where (i) and (ii) fail; viz., 

k< ;, J 
k k 

--<ai<- 
6 2 

(3.14) 

The proof is complete. 
As a first application of the lemma, we claim that M, is positive definite. 

By (3.9b), we have a3 < -l/A, and condition (ii) of the lemma is satisfied 
for all such values of a3, which proves the claim. Thus r.+, if nonempty, is 
the interior of an ellipse. (Warning: Because Q(a) = -i(r, Mq), the cone r 
is the set for which (Q Mq) is negative.) 

As a second application of the lemma, we study the intersection of r* 
with { qz = 0, y1 > 01. This intersection is empty if M, is positive definite, 
and it is nonempty if Mz has a negative eigenvector in the first quadrant 
{rI > 0, q3 > O}. Thus by the lemma this intersection is nonempty if and 
only if k, a2 lies in the triangle (3.14). Note that one corner of (3.14) is for- 
bidden by (3.9a) and that the remaining, allowed portion of the triangle is 
precisely the union of regions 1 and 2 in Fig. 3.1. Thus r* intersects 
(q2 = 0, q, > 0} if and only if k, a, lies in either region 1 or region 2 of 
Fig. 3.1. 

As a final application of the lemma, we conclude similarly that r* inter- 
sects (qr = 0, q2 > 0} if and only if k, a, lies in the triangle (3.14). Only one 
corner of (3.14) is allowed by (3.9b). The boundary of the allowed part of 
the triangle (viz., k = 2u 1, a, > l/J%) appears in Fig. 3.1 as the boundary 
between regions 1 and 2. Although in Fig. 3.1, a, is the independent 
variable, a, and a, are linked by (2.17) so that the formula k = 2a, defines 
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a curve in the k, a,-plane. If k, a, lie above this curve, then r* intersects 
1111 =o, %>Ol. 

To summarize, we have shown that r.+ intersects both {vZ = 0, ‘I, > 0) 
and {q, = 0, Y/~ > 0} when k, a2 lie in region 1, that f* intersects only 
{q2=0, tyl>O} when k, a2 lie in region 2, and that r* intersects neither set 
when k, a2 lie in region 3. Moreover, the origin in the vi, qz-plane does not 
belong to r.+ since for q = (0, 0, 1) = e3 we have 

(e3, Me,) = mJ3 = 1 + ka, > 0. 

It follows that Fig. 3.3a or b describe r* when k, a, belongs to regions 1 or 
2, respectively; as discussed above, analysis of (3.11) then shows that U has 
the form indicated in Figs. 3.2a or b. To show that Fig. 3.3~ describes r* 
when k, a2 belongs to region 3, we must rule out the possibility that r* 
might be contained in the interior of the first quadrant, (ye, > 0, qZ > O}; 
this will complete the proof. 

We will show in Lemma 3.2 that det MC 0 for all k, a2 such that la,( < 
l/J%. Since tr M = 3 > 0, we conclude that A4 has two positive and one 
negative eigenvalues. It follows that r* is never empty, and since M, is 
positive definite, r* varies continuously with the parameters k, a?. 

Next we determine r* for an explicit choice of parameters: k = 0, a2 = 0. 
In this case 

and the corresponding region r!j? 1s an ellipse contained in the fourth 
quadrant; the boundary of r’,“’ is tangent to the positive vi-axis. By con- 
tinuous dependence on parameters, if k, a2 is close to (0, 0), then r* must 
be close to rrJ. However if k, a2 belong to region 3, then r* cannot inter- 
sect the positive q,-axis. Therefore, for such k, a,, 

f*n{rl120, qz20}=@. (3.15) 

Moreover we may extend the conclusion (3.15) to all of region 3-by con- 
tinuity, for (3.15) to fail, r* would have to meet the boundary of the first 
quadrant, and we have shown that this cannot happen in region 3. 

It remains only to prove the following lemma. 

LEMMA 3.2. Zf /a,[ < l/,,/& then det MC 0. 

Proof: For the proof of this lemma we temporarily revoke the conven- 
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tion (3.8) and consider all the eigenvalues a, symmetrically. Since det M is 
a symmetric polynomial in a,, u2, a3 of degree 6 or less 

(3.16) 

for some polynomials pi. However, in view of (2.16) the coefficients in 
(3.16) are actually constant. To determine these constants, we evaluate 
det M for the three special cases in (3.10), finding 

(4 u,a,u,=O, det M= -1 

(b) 
1 

u,a,$ = -3’ det M=O 

(cl - a, a2u3 = det M=O, 

(3.17) 

respectively. (Remark: Note that these values for det M do not depend on 
k. Concerning (3.17b), det M vanishes when (3.10b) holds because of axial 
symmetry--P(l) is a function of <: + t;z and <:, so Q(q) depends on q1 + q2 
and q3 but not q, - q2. Case (3.17~) may be similarly understood.) It 
follows from (3.16) and (3.17) that 

det M= 54(u,u,a,)* - 1. (3.18) 

We deduce from (2.16) that 

a, u2u3 = u,(u; - 5). 

Hence, for u2 E [ - l/d, l/3], 

b,a2a3i G l/&t 

with equality holding only at the endpoints. This estimate, conbined with 
(3.18), completes the proof. 

(d) Discussion of the Steady State Equations 

It is clear that the boundary of U, the cone of unstable directions, is 
related to characteristic directions of the steady state equations derived 
from (3.1). To formalize this relation, we will prove in Lemma 3.3 below 
that the characteristic polynomial of the steady state equations (i.e., the 
determinant of the principal symbol) is proportional to ItI* P(r). Thus the 
characteristic normal cone has the form shown in Fig. 3.2. Before proving 
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the lemma, let us use this information to determine how the type of the 
steady state equations depends on the region in Fig. 3.1 to which k, a2 
belong. For fully three-dimensional flow, we have the following 
classification: 

Region in Fig. 3.1 Type of steady state equations 

1 Product of second-order elliptic 
with fourth-order hyperbolic 

2 No type-the number of real 
characteristics varies with direction 

3 Elliptic 

In the restricted contexts of plane strain or three-dimensional flow with 
axial symmetry, the context of most work in granular flow, the 
classification is different. For example, in plane strain a2 ~0, so k, a2 
always belong to region 2 of Fig. 3.1; however, the restricted symbol 
P(t,, 0, r3) is a hyperbolic polynomial in two variables. Thus in two 
dimensions the steady state equations are hyperbolic. (Because of our 
weights in the definition of the principal part, this system is hyperbolic in 
the sense of Leray [lo]; cf. [7] where the steady state equations are writ- 
ten as a first-order hyperbolic system.) It is easily checked that the charac- 
teristic directions make angles +45”, &(45-d/2)” with the major stress 
axis, corresponding to velocity and stress characteristics, respectively. 
(Warning: Zeros of P(t) are the normals to characteristic directions, not 
the characteristic directions themselves; the normals make angles +45”, 
+ (45 -S/2)’ with the minor stress axis.) 

In three dimensions with axial symmetry, we will see from our analysis of 
the radial solution in Section 4 that all three regions in Fig. 3.1 are 
possible; which regions actually occur depend on k and the hopper 
parameters. In regions 1 and 2, the restricted steady state equations are 
hyperbolic; in region 3, they are elliptic. (By way of contrast, if Tresca’s 
yield condition is assumed in place of von Mises’ condition, then these 
restricted steady state equations are always hyperbolic [7].) In the two 
hyperbolic regions of Fig. 3.1, the angles between the characteristics and 
the major stress axis vary with k, u2. 

It remains to compute the characteristic polynomial of the steady state 
equations. The steady state equations are a quasi-linear system whose prin- 
cipal symbol, by (3.3), equals C, S(r) C, where S(5) is the 4 x 4 matrix (in 
block form) 

S(5) = -t ItI2 I+ W)(‘wT (Z+kA) 5 
5’ 0 1 
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and C1, C2 are constant 4 x 4 matrices 

LEMMA 3.3. The determinant det S(t) equals 4 151’ P(r). 

Proof: We may compute the determinant in any convenient set of coor- 
dinates, even one which varies with <. Given 5, choose an orthonormai 
basis e, , e2, e3 for [w3 such that 5 = 151 e, and A{ is a linear combination of 
e, and e2. Then several entries of S(t) vanish or simplify, as follows: 

Hence, expanding in the minors of the last two rows, we find 

det S(5)=+ 15l3 S,,(l) S,,(c)-S12(s5)($(‘){. 
14 

In our coordinate system 

which is nonzero if I <I # 0. Moreover the factor in brackets in (3.19) may 
be interpreted as the 2, 2-entry of S(5) resulting from an elementary 
column operation; viz., subtracting a multiple of the fourth column of S(t) 
from the second in order to annihilate the 1,2-entry of S(r). But this is 
exactly how the linear transformation L(5) in (3.5) was constructed, i.e., an 
appropriate multiple of S(t) e4 was subtracted in order to make the range 
of L(5) be orthogonal to 5. Therefore 

s,2(o _ S,,(C) S,,(5) 

s,,(r) 
= b(5) 

where A,(t) is given by (3.7). The lemma follows on multiplying the factors 
in (3.19). (Remark: The other eigenvalue of L( <) appears as the 3, 3-entry 
of s(r).) 
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4. IMPLICATIONS FOR THE RADIAL SOLUTION 

In this section we relate the instability calculations of Section 3 to 
Jenike’s radial solution. We find that in most practical situation, the initial 
value problem for (2.1) is likely to be linearly ill posed. More precisely, for 
two-dimensional flow the radial solution is always in region 2 of Fig. 3.1, 
which is unstable (cf. Sect. 3(d)); and for three-dimensional flow with axial 
symmetry, unless the material under study is free flowing and unless the 
hopper walls are both steep and smooth, then in at least part of the hopper 
the radial solution will enter one (or both) of the unstable regions of 
Fig. 3.1. 

(a) The Radial Solution 

Jenike’s radial solution is a similarity solution in an infinite hopper of the 
steady state equations associated to (2.1). This particular solution is a fun- 
damental component in the design of industrial hoppers. It is studied in 
detail in [6] for a Tresca yield surface. Here we shall review only the essen- 
tial features of this solution, emphasizing the differences which result from 
the use of a von Mises yield surface. 

We shall discuss the radial solution only in three dimensions with axial 
symmetry since, as noted above, the parameters of any two dimensional 
flow belong to an unstable region of Fig. 3.1. Rather than solve (2.1) 
directly, we shall return to the original equations (2.3) (2.12) since this 
is convenient in formulating boundary conditions. Consider a conical 
domain, say in spherical polar coordinates 

{(r, 8, cp):r>O, fl<8,.}, (4.1) 

which corresponds to an infinite, converging hopper. The radial solution 
exploits the fact that the domain (4.1) is invariant under the scaling trans- 
formation 

(r, 4 cp) + (cr, 4 cp) 

where c > 0; thus one seeks a solution of (2.3), (2.12) in the form 

T,(r, 0) = rT,&O), u(r, 0) = -r-%(e) e, (4.2) 

where e, is a unit vector in the radial direction. We shall require that 

u(e) > 0, (4.3) 

i.e., that the flow is downward. The stress tensor may be expressed [S] in 
terms of two scalar functions, the average stress cr and an angle 5; the latter 
is related to a, by (4.13). Specifically, in spherical polar coordinates with 
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the r, cp, cp-components indexed by j= 1, 2, 3, respectively, the stress tensor 
equals 

-$cos< sin< 0 ’ 

i 

sin r - cos < 
; O 

0 0 
5 

cos 5 

This representation derives from the yield condition (2.5), from the fact 
that in axial symmetry e,,, must be an eigenvector of T, and from the 
following lemma. 

LEMMA 4.1. TBB = T,,. 

Proof. It follows from the flow rule (2.12) that 

To, - g V,, -=-. 
Tw --(T VW 

By (4.2) the velocity in the radial solution is purely radial so that 

v,,= I/,,=; 

This proves the lemma. 
For use below, let us deduce from (4.3) that 

lt(a < 90”. 

Combining the flow rule (2.12) and (4.4), we see that 

V = qkaA 

where q > 0 and 

( -- A 0 cos 5 5 

sin 5 
$5 O 

sin 0 

cos < 

5 0 cos 

(4.5) 

(4.6) 

(4.7) 

(4.8 1 
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By equating the two representations for V,, provided by (4.5) and (4.7), 
we conclude that u(0) is a positive multiple of cos t(0); thus (4.6) follows 
from (4.3). 

Substitution of (4.2), (4.4) into (2.3), (2.12) leads to a system of lirst- 
order ODES with 0, 5, and u as the unknown functions of 8. The indepen- 
dent variable ~9 ranges over the interval (0, (!I,,,), and boundary conditions 
are imposed at both endpoints. The boundary condition at the centerline 
8 =O, which derives from symmetry, is T,, = 0. By (4.4), this means that 
sin 5 vanishes for 8 = 0; in view of (4.6), we require that 

((0) = 0. (4.9) 

The boundary condition at the wall 0 = 8,, which derives from the law of 
sliding friction, is 

g=tanfi,, (4.10) 
00 

where 6, is a constant (called the angle of wall friction). Substituting (4.4) 
into (4.10), we obtain the boundary condition 

5(0,) = 5, (4.11) 

where <, satisfies 

k sin t, 

Ji+s cos 5, 
= tan 6,. (4.12) 

Although there are two distinct solutions 5, of (4.12), only one of them is 
consistent with (4.6). 

(b) Conditions Needed to Avoid the Unstable Regions 

In this subsection we derive the conditions needed to guarantee that for 
the radial solution, the parameters k, a2 lie entirely inside region 3 of Fig. 
3.1, the stable region. This derivation is based on the following formula 
expressing a, in terms of r (cf. (3.9a)): 

a,=icos& 
& 

(4.13) 

To justify (4.13), recall that a2 is the middle eigenvalue of 1 V( -’ V. Since 
the matrix A in (4.8) satisfies IAl = 1, we conclude from (4.7) that 
1 VI -’ V= A. It may be seen from (4.8) that the 3, 3-entry of A, the RHS of 
(4.13), is the middle eigenvalue of A. 
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We claim that for the radial solution to lie inside region 3 of Fig. 3.2, we 
must have 

6<sin-’ 5% 35.3”. (4.14) 

Note from (4.6) and (4.13) that a,>O. Throughout the component of 
region 3 of Fig. 3.1 which sits in the right-half plane (a,>O}, we have 
k<,/@. Formula (4.14) follows on recalling that k=a sin 6. 

Suppose (4.14) holds. The radial solution remains inside region 3 if and 
only if a2 > k/2. Using (4.13) to express this condition in terms of 5, we 
derive the condition 

where 

La, = cm -‘(Jr sin 6). 

We will use (4.15) to derive bounds for 6, and 0,. However, first note from 
(4.9) that (4.15) is necessarily satisfied near the axis; i.e., near the axis the 
radial solution lies in region 3. (By contrast, if (4.14) is not satisfied, the 
radial solution never enters region 3.) 

Applying (4.15) at the wall, we deduce that 5, must satisfy 4,~ t,,,, 
which by (4.12) leads to an upper bound on 6,. Representative values for 
this upper bound are tabulated in Table I. These values show how smooth 
the walls must be for the radial solution to belong to region 3. 

The two point boundary value problem for o(0), t(0), u(0) with boun- 
dary conditions (4.9), (4.11) may be solved by the shooting method. For 
6 = 30”, typical trajectories generated by this method are illustrated in Fig. 
4.1. Note that t(0) increases for small 8 but decreases for larger 8. Because 
of this lack of monotonicity, (4.15) leads to an upper bound on 8,. For 
example, suppose 6 = 30”, in which case t,,,,, = 30”. In Fig. 4.1, the trajec- 
tory tangent to the line < = r,,, assumes its maximum at e-,24”. 

TABLE I 

Upper Bounds for 6, 

Largest value for 6, such that radial 
6 solution lies in region 3 

20” 13.8” 
25” 13.7” 
30” 11.3” 
35” 2.8“ 
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FIG. 4.1. Trajectories in the shooting method (0 and < in degrees). 

Therefore, if 6, equals its maximum value of 11.3” (so that <(0,) = t,,,), 
condition (4.15) is satisfied if and only if 0, 6 24”. Of course if 6, < 11.3”, 
then somewhat larger values of 8, are permissible. 

5. CONCLUDING REMARKS 

(a) Instabilities with Other Constitutive Laws 

In this subsection we discuss without proofs the instabilities which arise 
in the evolution equations based on some of the alternative constitutive 
laws mentioned in Section 2(d). We consider in sequence (i) Tresca’s yield 
surface, (ii) Spencer’s flow rule, and (iii) equations which include the effect 
of compressibility. (Elastic-plastic theory is discussed in Subsection (b).) 

Tresca Yield Condition. We analyze the evolution equations only for the 
flow rule associated to stresses satisfying 

1 + sin 6 
g3<c2=~1 =m a,; (5.1) 

for example, (5.1) would hold for the flow in an axisymmetric converging 
hopper [7]. Freeze the coefficients in the equations of motion and retain 
only the principal part; consider solutions of the resulting equations which 
have exponential dependence ei(r,X)+“ce)‘. A direction 5 E R3 belongs to the 
unstable cone U, if and only if there is such an exponential solution with 
Re J(r) > 0. In a coordinate system such that the principal stress axis with 
eigenvalue o3 is (0, 0, l), we have 

(Warning: Although U, is invariant under rotations about the <,-axis, the 
individual eigenvalues A(<) are not.) Thus the topology of U, is the same 
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as that of the von Mises cone UDM when k, a2 lie in region 1 of Fig. 3.1; in 
particular, U, is always nonempty, so the Tresca evolution equations are 
always linearly ill posed. The boundary of U, corresponds to the well- 
known [7] stress and velocity characteristics of the steady state equations. 

Spencer’s Flow Rule. We consider only two dimensions. We claim that 
the evolution equations derived from Spencer’s flow rule are degenerate 
elliptic. Thus for almost every direction l, there is a growing exponential 
solution of the frozen equations. Let us elaborate. For a given spatial 
dependence eiCtsx), there are two associated eigenvalues A,(<), i = 1, 2. 
(Remark: For (2.1) restricted to two dimensions, there is only one such 
eigenvalue. The extra eigenvalue here comes from the fact that Spencer’s 
replacement for (2.12) contains the time derivative of the stress tensor, i.e., 
is an evolution equation itself.) The evolution equations, a first-order 
system, are elliptic in the sense that (i) A,(<) is homogeneous in 5 of degree 
one, (ii) Re n,(c) = -Re A,(t), and (iii) Re A,(<) is nonzero for all 5 except 
for the two directions which make an angle + (45” - 6/2) with the minor 
stress axis. The two degenerate directions correspond to (normals to) the 
characteristics of the steady state equations. (The steady state equations are 
hyperbolic and have double characteristics.) 

Equations Including Compressibility. When compressibility is included 
in the equations of motion, (2.1 b) is perturbed as in (2.18); in other words, 
the equations including compressibility are a small, but singular, pertur- 
bation of (2.1). (By contrast, the evolution equations derived from both 
Tresca’s yield condition and Spencer’s flow rule must be regarded as large 
perturbations of (2.1).) When freezing coefficients in (2.18), we want to 
retain both the term div U, which dominates at low wave numbers, and the 
principal part, which dominates at high wave numbers. Thus, unlike the 
preceding two cases, here the growth rates I,(<) of exponential solutions 
will not be homogeneous in r. 

As with Spencer’s flow rule, we consider only two dimensions. Since we 
have not yet calculated the growth rates I.,({), we are forced to rely on 
plausibility arguments. With this qualification, we claim that 

(i) at low wave numbers 5, exponential solutions grow as predicted 
by (2.1); and 

(ii) at high wave numbers <, the uncontrolled growth of (2.1) is cut 
off by the perturbation P in (2.18). 

The basis for (i) is the fact, already mentioned, that at low wave num- 
bers, (2.18) is a small perturbation of (2. lb). The basis for (ii) comes from 
consideration of the steady state equations. For (2.1) in two dimensions, 
the cone of unstable directions is bounded by (normals to) the stress and 
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velocity characteristics of the steady state equations. However, in the 
steady state theory including compressibility, the stress and velocity 
characteristics coincide! This fact suggests that for the evolution equations 
including compressibility, the cone of unstable directions shrinks to a single 
line which is neutrally stable. Of course this loose plausibility argument 
needs to be replaced by precise analysis of the growth rates Ai( 

(b) Relation of the Instability to Oscillatory Motion 

The results of this paper suggest that solutions of (2.1) will deviate 
dramatically from solutions of the steady state equations. Indeed, on the 
linear level, one would expect the solution of (2.1) to grow uncontrollably. 
The following estimate indicates that on the nonlinear level, the behavior is 
less extreme. 

LEMMA 5.1. Module boundary terms in an integration by parts, smooth 
solutions of (2.1) satisfy 

(5.2) 

Remark. Physically, (5.2) says that the rate of increase of kinetic energy 
is bounded by the rate of decrease of potential energy. (The difference is 
dissipated by friction.) 

ProoJ We compute from (2.la) that 

I 
a0 - Viz dx+pg; vidx. I I 

By (2.lb), the middle term on the right integrates to zero, modulo boun- 
dary terms. Integrating by parts in the first term and recalling the minus 
sign in (2.2), we obtain 

Since this quantity is nonpositive, the proof is complete. 

Remark. Recall that in a silo such as illustrated in Fig. 1.1, Eq. (2.1) 
describes the flow only in the converging hopper. Since the flow in the hop- 
per is coupled to the flow in the bin, the physically relevant boundary value 
problem involves more than (2.1) alone. Therefore we have neglected boun- 
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dary terms in the above estimate. However, we mention that the 
appropriate boundary conditions on the hopper walls dissipate energy. 

Even if the initial value problem for (2.1) is well posed, solutions of this 
equation will probably behave erratically. In particular, it seems likely to 
us that as time evolves, some of the assumptions in the derivation of (2.1) 
may cease to hold. Let us elaborate. In (2.1), the function (T must be 
positive; likewise, although the function q in (2.12) was eliminated in deriv- 
ing (2.1), this function must also be positive. However, since the instability 
amplifies Fourier modes at high wave numbers, one expects the solution to 
develop a highly oscillatory profile. The oscillations may grow until the 
minimum of either 0 or q is forced to zero, thereby invalidating the 
derivation of (2.1). If e is so forced, voids will develop in the material; 
indeed, such voids may be seen in certain plane strain hoppers. If q is so 
forced, elastic properties of the material will become relevant and the flow 
must be studied with elastic-plastic theory. 

Based on the experimental fact that granular flow in silos is typically 
pulsating, we conjecture that there are time periodic solutions of the 
elastic-plastic equations. We expect that, starting from rest, such a solution 
would be plastic (i.e., satisfy (2.20) because ldev T\ =ko) during part of a 
period and would be elastic (i.e., satisfy (2.20) because q = 0) during the 
remainder of a period. When ldev TI = kc-r, the elastic-plastic equations are 
a small, but singular, perturbation of (2.1); thus during the plastic part of 
the period, such a solution would tend to grow as predicted by (2.1). 
(However, at high wave number the singular nature of the perturbation 
will probably limit the growth rate. A similar cutoff was found for the com- 
pressible equations. There is a need to investigate which theory provides 
the greater stabilizing influence.) During the elastic part of the period, fric- 
tional contact with the walls would bring the material to rest again. 

The conjecture suggests a host of other problems-principally to use 
homogenization to derive effective equations for the time averaged stress 
and velocity. It would also be desirable to calculate the amplitude and 
period of the oscillations; this information would be useful in designing 
silos and the calculation would provide a good test of the theory. It seems 
that these problems must be solved before mathematics can be effectively 
applied to silo design. 
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