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Melanin in the skin determines the skin color, and decreased melanin causes many hypopigmentation disorders
and increased damage to skin by ultraviolet B (UVB) light irradiation. Here, we stimulate melanogenesis in
B16F10 melanoma cells by using specific frequencies of ELF-EMFs. In this study, we focus on the melanogenesis
of EMF-ELFs and find that 60-75 Hz ELF-EMFs upregulate melanin synthesis by stimulated expression of tyrosi-
nase and TRP-1 through inhibition of phosphorylation ERK, activation of CREB, and MITF up-regulation in B16F10
melanoma cells. The results show that 60-75 Hz ELF-EMFs significantly increase secreted melanin, cellular mel-
anin content, and tyrosinase activity, and the cell mitochondria activity, cell viability, and cell membrane condi-
tion are unchanged. Furthermore, the protein expression level of MITF and p-CREB signaling pathway are
significantly increased. Moreover, 60 Hz ELF-EMFs reduce the phosphorylate of ERK in B16F10 melanoma cells.
These findings indicate that stimulation of melanogenesis by using ELF-EMFs has therapeutic potential for
treating hypopigmentation disorders such as vitiligo.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
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(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Melanogenesis is a physiological process resulting in the production
of melanin pigment, which plays an important role in the prevention of
sun-induced skin injury and contributes to skin and hair color [1]. UV-
induced tanning can cause damage to DNA and other cellular molecules,
leading to mutagenesis, carcinogenesis, altered immunological re-
sponses, and photoaging [2]. Melanin is a naturally synthesized polymer
that protects the skin against the deleterious effects of ultraviolet (UV)
radiation [3]. Currently, many natural compounds have been researched
to induce melanogenesis, such as Ardisia crenata extract [4], scoparone
[2], mangosteen leaf extract [5], and kaliziri extract [6]. However, re-
search on alleviating hyperpigmentation by noninvasive physical stim-
ulation is scarce compared to natural compounds. Therefore, finding an
innocuous method that can control melanogenesis would be invaluable
in the cosmetic and medical fields. Photochemotherapy with psoralen
plus ultraviolet A was the most popular treatment for vitiligo across
the world until a few years ago [7]. To increase melanin synthesis,
many physical treatment methods were attempted. Low-energy
helium-neon laser (632.8 nm) irradiation clearly stimulates melanocyte
proliferation and mitogen release for melanocyte growth and rescues
damaged melanocyte, thereby providing a microenvironment for
repigmentation in vitiligo [8]. Gu et al. reported that narrowband UVB
increased melanogenesis-related gene expression [9], and broadband
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ultraviolet B (wavelengths from 290 to 320 nm) was widely used in
the past for the treatment of various skin disorders include vitiligo [7].
Depending on the cell types, various stimulation techniques have been
applied to activate cells. Among the methods of stimulation (cyclic pres-
sure, cyclic compressive load, uniaxial strain, perfusion, shear and com-
pression, ultrasound, laser, electrical stimulation, electromagnetic field,
etc.) that affect cell activation, physical stimulation has been investigat-
ed extensively. As well, to increase cellular activity, many stimulation
devices have been designed and are used clinically. Recently, electro-
magnetic fields (EMF) have been a major focus of scientific interest be-
cause of their potential influence on living organisms, and EMFs have
emerged as a good tool for cell differentiation and cell therapy because
of their invasive and nontoxic properties [10]. Especially, extremely
low-frequency electromagnetic fields (ELF-EMF) influence cell prolifer-
ation [11,12] and enhanced osteogenic differentiation [13]. Further-
more, one investigator reported that ELF-EMFs induce neural
differentiation of human bone marrow-derived mesenchymal stem
cells [10,14]. Such studies show that ELF-EMFs affect cell function
through mechanical actions on both intracellular and membrane pro-
teins, which includes ion channels, membrane receptors, and enzymes
[15].

Our research applies ELF-EMFs to increase melanogenic activity. The
biosynthesis of melanin is a complicated process involving many fac-
tors. The melanogenic process is modulated by enzymatic cascades in-
cluding tyrosinase, tyrosinase-related protein (TRP)-1, and their
transcription factors such as microphthalmia-associated transcription
factor (MITF), cAMP response element binding protein (CREB), and
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extracellular-regulated kinase (ERK) [16]. Alpha-melanocyte stimulat-
ing hormone (a-MSH), which induces MITF, is the most important hor-
mone in stimulating melanogenesis. a-MSH binds to melanocortin 1
receptors, which causes cAMP production, and cAMP leads to phosphor-
ylation of the CREB transcription factor, which in turn promotes MITF
activation. MITFs bind to the promoter regions of melanin production
genes and positively regulate their transcription of TRP-1 and tyrosinase
[17-19]. Also, the ERK pathway appears to influence the synthesis of
melanin via a negative feedback mechanism involving cAMP [20].

In this study, we examined the effect of ELF-EMFs according to vari-
ous frequencies on B16F10 melanoma cells to investigate melanogene-
sis. B16F10 melanoma cells were stimulated at frequencies of 30 Hz,
50 Hz, 60 Hz, 75 Hz, and 100 Hz at an equal intensity of 2 mT for
3 days. To confirm the melanogenesis, we performed melanin secretion
assay, melanin contents assay, intracellular tyrosinase assay, Western
blot analysis, and immunohistochemical staining. In particular, we ana-
lyzed changes in the ERK and CREB signaling associated with MITF reg-
ulation by ELF-EMFs.

2. Materials and methods
2.1. Cell cultured

B16F10 melanoma cells (ATCC CRL-6475; BCRC60031) were cul-
tured in Dulbecco's modified Eagle's medium (DMEM; Welgene,
Korea) supplemented with 10% heat-inactivated fetal bovine serum
(FBS; Welgene, Korea), 50 units/ml penicillin, and 50 pg/ml streptomy-
cin (Hyclone, USA). The cells were then incubated in an atmosphere of
5% CO, at 37 °C. Cells were culture in a 35 mm-diameter tissue culture
plate, and ELF-EMF treatment begin 24 h after the cells were seeded.

2.2. ELF-EMF exposure
We used a Helmholtz coil, which is able to generate magnetic fields;

the apparatus is depicted in Fig. 1. The stimulus intensity was 2 mT, and
stimulus wave was in pulse form. The electromagnetic field device was

Fig. 1. Image of the EMF stimulation model in CO, incubator. We used continuous pulsed
EMFs (2 mT) for experiments.

placed in a 37 °C incubator at 5% humidified atmosphere, and B16F10
melanoma cells were stimulated by ELF-EMFs at frequencies of 30 Hz,
50 Hz, 60 Hz, 75 Hz, and 100 Hz for 3 days. Cells that were not stimulat-
ed with ELF-EMFs served as the negative and positive controls, which
were treated with oi-MSH.

2.3. Mitochondria activity assay

Cell mitochondria activity was determined using the 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. BI6F10
melanoma cells were seeded in 12-well dishes at a density of 5 x 10*
cells per well. After 24 h, different frequencies of ELF-EMFs were stimu-
lated, and the cells were incubated for 72 h. Then, 100 pl of MTT solution
(5 mg/ml in PBS, Sigma) were added into each well, and the cells were
incubated in a 37 °C incubator for 4 h followed by the addition of di-
methyl sulfoxide (DMSO, Sigma) to dissolve the formazan crystals,
and the plates were gently shaken for 5 min. The optical absorbance of
each well was measured at 570 nm with a spectrophotometer (Spec-
trum Analyzer. Victor 1420-050, PerkinElmer Life Science, Turku,
Finland).

2.4. Cell proliferation

To test the effect of ELF-EMFs on the proliferation of B16F10 melano-
ma, cell counting was used. B16F10 melanoma cells were counted using
a scepter automated cell counter (Millipore, Billerica, MA, USA) based
on the instructions of the manufacturer.

2.5. Cell cytotoxicity-lactate dehydrogenase (LDH) assay

Cell membrane integrity was assessed by estimating the amount of
LDH present in the cell culture media. The cytosolic enzyme LDH will
be released owing to management of the cell membrane [21]. We
used an LDH-LQ kit (Asan Pharmaceutical Inc., Korea) for measuring
LDH activity. After 3 days of culture, 100 pl of cell culture media was
transferred to Ep tubes and centrifuged at 2000 rpm for 5 min. Fifty mi-
croliters of working solution was added to all Ep tubes and incubated in
the dark at room temperature for 30 min. The reaction was completed
by adding 1 N hydrogen chloride, and the absorbance was measured
spectrophotometrically at 570 nm.

2.6. Measurement of melanin secretion

A secreted melanin assay was performed using a previously de-
scribed method [5]. B16F10 melanoma cells were seeded in a 35 mm-di-
ameter tissue culture plate at a density of 1 x 10° cells per well and
stimulated with or without ELF-EMFs for 3 days. After 3 days, the culture
medium was harvested and centrifuged at 10,000 rpm for 10 min. Ab-
sorbance was measured at 405 nm using a spectrophotometer.

2.7. Measurement of melanin content

The amount of intracellular melanin content synthesized by cultured
B16F10 melanoma cells treated with or without ELF-EMFs was quanti-
fied as previously described [5] with slight modification. The B16F10
melanoma cells were seeded in a 35 mm-diameter culture dish ata den-
sity of 1 x 10° cells and incubated overnight to allow the cells to adhere.
After 24 h, the cells were treated with or without ELF-EMFs. After 3 days,
the growth medium was eliminated, and the cells were washed with
phosphate-buffer saline (PBS) and then solubilized with 10% DMSO, dis-
solved in 1 M NaOH (95 °C), and boiled for 2 h to solubilized the mela-
nin. The intracellular melanin concentrations were measured with a
spectrophotometer at 400 nm and compared to an absorbance value
of negative control, which is untreated with «-MSH and ELF-EMFs.



Y.-M. Kim et al. / Life Sciences 162 (2016) 25-32 27

2.8. Intracellular tyrosinase assay

Tyrosinase activity was estimated from the rate of production of
dopachrome from L-DOPA as previously reported [6] with slight modi-
fications. The B16F10 melanoma cells were seeded in a 35 mm-diame-
ter culture dish at a density of 1 x 10° cells and allowed to attach for
24 h; then, the cells were treated with or without ELF-EMFs for 3 days.
The cells were washed with PBS twice and harvested by trypsinization
(0.25% trypsin/0.02% EDTA in PBS; Sigma). The cells were collected in
an Ep tube and centrifuged at 3000 rpm for 5 min. The pelleted cells
were washed once again with PBS, and then 200 pl of Tris-0.1% Triton
X-100 (pH 6.8) were added to each Ep tube. All tubes were incubated
at —20 °C for 1 h, and then the lysates were centrifuged at
13,000 rpm for 10 min to obtain the supernatant for the intracellular ty-
rosinase activity assay. Protein concentrations were measured by
bicinchoninic acid (BCA; Thermo Fisher Scientific, USA) protein assay
with bovine serum albumin (BSA) as a standard. One hundred eighty
microliters of supernatant containing 50 pg of protein was placed in
each well of a 96 well plate and then added with L-DOPA (20 l;
Sigma) in sodium phosphate buffer (10 mM). After incubation at 37 °C
for 1 h, the generated dopachrome was measured at the absorbance of
475 nm. The amount of dopachrome was expressed to prevent change
relative to the negative control.

2.9. Western blotting

B16F10 melanoma cells were seeded in a 35 mm-diameter culture
dish at a density of 1 x 10° cells and incubated for 3 days as described
above. The medium was removed, and the cells were washed twice
with PBS and then lysed in PBS containing 10% glycerol, 5% B-
mercaptoethanol, 2% sodium dodecyl sulfate (SDS), and 0.01%
bromophenol blue in a 62.6 mM Tris-HCl buffer (pH 6.8); the cell lysates
were then denatured at 100 °C for 5 min. The total protein content of cell
lysates was determined using the BCA protein assay, and protein
amounts in each sample (40 pg total protein) were separated by 10%
SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and then the frac-
tionated protein in SDS-PAGE was electro-transferred from the gel onto
the nitrocellulose membrane (Millipore Co., Massachusetts). The mem-
branes were blocked with 5% fat-free skim milk in tris-buffered saline
(TBS) containing 0.1% Tween20 (TBS-T buffer) at room temperature
for 1 h. After washing three times with TBS-T, the membrane was incu-
bated overnight with the primary antibodies diluted in 10% bovine
serum albumin: anti-rabbit 3-actin antibody (1:1000), anti-goat MITF
antibody (1:500), anti-rabbit extracellular signal-regulated kinase
(ERK) antibody (1:1000), anti-rabbit p-ERK antibody (1:1000), anti-
rabbit cyclic AMP response element binding protein (CREB) antibody
(1:1000), anti-rabbit p-CREB antibody (1:1000), anti-goat tyrosinase
antibody (1:1000), and anti-rabbit tyrosinase-related proteins (TRP)-1
antibody (1:1000). The primary antibodies were removed, the mem-
branes were washed three times with TBS-T buffer, and incubation
with horseradish peroxidase (HRP) conjugated anti-rabbit (cell signal-
ing) or anti-goat (Santa Cruz) secondary antibodies for 3 h at room tem-
perature. The membrane was washed extensively in TBS-T to remove
any excess secondary antibodies, the blot was visualized with enhanced
chemiluminescence reagent (Thermo Fisher Scientific, USA) and
photographed using a gel imaging system, ChemiDoc XRS + (Bio-Rad,
Hercules, CA, USA). The Western blot assays are representative of at
least three experiments, and the results were analyzed using Image ]
software (National Institutes of Health, Bethesda, MD, USA).

2.10. Fontana-Masson silver staining

To assess melanin content in B16F10 melanoma cells, we performed
densitometric analysis of Fontana-Masson silver staining. The Fontana-
Masson silver staining was performed using a previously described
method [22] with formalin fixed slides stained with silver nitrate

(Kojima Chemical, Kashiwabara, Japan) for 1 h at 56 °C and washed
with distillated water. Then, the slides were fixed in 5% sodium thiosul-
fate solution (Duksan, Seoul, Korea) for 5 min and washed with distilled
water. Next, they were stained with nuclear faster red solution (Fluka,
Buchs, Switzerland) for 5 min and washed with distillated water three
times. Finally, after dehydration with 95% ethanol and 100% ethanol,
the slides were washed with xylene (Duksan) two times.

2.11. Statistical analysis

Data was analyzed by one-way analysis of variance (ANOVA) and
student t-test. When the value of p was <0.05, the difference between
means was considered significant (*p < 0.05,). Graphical representa-
tions were produced with the help of Sigmaplot 2001 software.

3. Result
3.1. Morphology of B16F10 melanoma cells

B16F10 melanoma cells treated at various frequencies of ELF-EMFs
were incubated for 3 days and compared to the ELF-EMF untreated
cells shown in Fig. 2. The group exposed to ELF-EMFs showed that
cells were arranged in a linear array and a greatly dendritic network be-
tween cells compared to the control and oi-MSH groups. In addition,
compared to the control group cells and the ELF-EMF treated group,
the necrosis and morphological features of the apoptosis of cells was
not observed after exposure to ELF-EMFs. Therefore, ELF-EMF exposure
does not induce cytotoxicity.

3.2. Cell number counting and mitochondrial activity

To test the effect of ELF-EMFs on the cell viability of B16F10 melano-
ma cells, cell counting was performed using a Scepter automated cell
counter after cell culture. After ELF-EMF exposure, the total cell num-
bers of all groups increased more than the seeding cell numbers. In
Fig. 3A, cell numbers were as follows 3 days after treatment with ELF-
EMEFs: 2.72 x 10° cells in the negative control group, 3.02 x 10° cells
in the o-MSH treated group that added o-MSH, 2.70 x 10° cells in the
group stimulated with 30 Hz, 2.71 x 10° cells in the group treated
with 50 Hz, 2.74 x 10° cells in the group receiving 60 Hz, 2.80 x 10°
cells in the group exposed to 75 Hz, and 2.75 x 10 > cells in the group
treated with 100 Hz. As a result of cell counting, ELF-EMFs did not
have a cytotoxic effect on B16F10 melanoma cells and did not cause
cell apoptosis or necrosis compared to the control group. The cellular
mitochondrial activity of B16F10 melanoma cells was measured by an
MTT assay (Fig. 3B). The result of the MTT assay shows that cell mito-
chondrial activity of six experimental groups were similar, and ELF-
EMFs did not affect the cell mitochondrial activity. Our data showed
that 3 days of stimulus did not decrease the mitochondrial activity of
B16F10 melanoma cells.

3.3. Cytotoxicity-lactate dehydrogenase (LDH) assay

LDH is a cytoplasmic enzyme released when the cell membranes are
damaged that is assessed in cell culture medium supernatants, and the
LDH leakage assay is a simple and fast cytotoxicity assay based on the
measurement of lactate dehydrogenase activity in an extracellular me-
dium [21]. The membrane damage to B16F10 melanoma cells after
treatment with ELF-EMF was measured by the release of LDH. The con-
trol cells and cells treated with ELF-EMFs showed a similar amount of
LDH secretion. As a result of LDH assay in Fig. 4, ELF-EMFs did not influ-
ence the damage of cell membranes.



28 Y.-M. Kim et al. / Life Sciences 162 (2016) 25-32

Fig. 2. Morphological changes of B16F10 melanoma cells during EMF treatment. The cells were cultured for 3 days with or without EMF stimulation. There is no significant visible
differences in EMF treated cells. (bar = 100 um) Cultured in normal medium (A), a-MSH (B), 30 Hz (C), 50 Hz (D), 60 Hz (E), 75 Hz (F), 100 Hz (G). (x100).

3.4. Melanin secretion assay

To measure whether the ELF-EMFs lead to melanogenesis, the
amount of secretion of melanin into the cell culture was measured.
The a-MSH is known as cAMP evaluating agent, because the cAMP
pathway is one of the most pivotal signaling pathways in melanogenesis
[5]. Thus, a-MSH is effective in melanogenesis, so o.-MSH is used as a
positive control in this experiment. Fig. 5 shows that melanin secretion
levels significantly increased in cells treated with o.-MSH (1.4-fold) and
60 Hz and 75 Hz treatment by ELF-EMFs in B16F10 melanoma cells (1.5-
fold) compared to the negative control. The result showed that 60 Hz
and 75 Hz were effective for melanogenesis in B16F10 melanoma cells.

3.5. Melanin content assay

The amount of intracellular melanin in B16F10 melanoma cells
treated with or without ELF-EMFs was quantified. Fig. 6A shows that
melanin content increased in all groups exposed to ELF-EMFs cells.
The 30 Hz group rose 1.65-fold, the 50 Hz group was enhanced ~1.7-
fold, and the 75 Hz and 100 Hz groups increased approximately 1.8-
fold over the negative control group. In particular, 60 Hz ELF-EMFs
cause a 2.4-fold increase in melanin content of cells compared to the
negative control and ~1.3-fold more than the a-MSH group. These
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results suggest that ELF-EMFs, especially at 60 Hz, also up-regulated in-
tracellular melanin synthesis.

3.6. Tyrosinase activity assay

Tyrosinase is the most important enzyme in melanin biosynthesis.
Therefore, the effects of ELF-EMFs on intracellular tyrosinase activity
were assessed in B16F10 melanoma cells (Fig. 7). Compared to treat-
ment with medium only (negative control group), treatment with
ELF-EMFs of various frequencies increased tyrosinase activity in
B16F10 melanoma cells. Among these ELF-EMF groups, the tyrosinase
activity of 50 Hz groups was enhanced 1.27-fold, and the 100 Hz
group rose to 1.36-fold more than the negative control group. In partic-
ular, treatment at 60 Hz showed strongly increased tyrosinase activity
compared to the negative group (1.8-fold) and slightly stronger tyrosi-
nase activity than the positive control group (1.2-fold). It was observed
that ELF-EMFs promoted melanogenesis in B16F10 melanoma cells.

3.7. Melanogenic enzyme expression in B16F10 melanoma cells

Melanin biosynthesis is catalyzed by two major enzymes: tyrosinase
and TRP1. The expression of these enzymes was determined by Western
blotting using specific antibodies. The tyrosinase expression level in-
creased approximately 1.3-fold in the 30 Hz and 50 Hz groups.

140

120 4

100

Mitochondrial activity (% of control)

0- T T
Control @ -MSH  30Hz 50Hz B0Hz 75Hz  100Hz

Fig. 3. B16F10 melanoma cells were seeded in a 35 mm tissue culture plate, and their proliferation was measured on the 2 days after EMF by counting cell numbers (A). The effect of
mitochondrial activity on B16F10 melanoma cells by EMF treatment. Cells were cultured for 2 days with or without EMF stimulation. Mitochondrial activity was determined by the
MTT reduction assay. Each percentage value in the EMF-treated cells was calculated with respect to that in the untreated cells (B). (n = 3).
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Fig. 4. Cell membrane damage to B16F10 melanoma cells after treatment with EMF was
measured by the release of LDH. LDH release to the medium is a measurement of cell
death due to cell membrane damage. The EMF treatment provoked a similar release of
LDH activity with EMF untreated cells. (n = 3).

Especially, the 60 Hz (1.9-fold) and 75 Hz (2.3-fold) groups among the
groups exposed to ELF-EMFs had very strong expression compared to
the control group. As shown in Fig. 8, TRP-1 expression levels increased
in all frequency groups of ELF-EMFs. TRP-1 expression levels increased
5.3-fold in the 30 Hz group, 8.9-fold in the 50 Hz group, and 7.2-fold
in the 100 Hz group. In particular, the 60 Hz (13.7-fold) and 75 Hz
(14.5-fold) groups had very strong expression compared to the control
group and an approximately 1.3-fold increase compared to the a-MSH
group. These results suggested that melanogenesis-related protein ex-
pression, tyrosinase, and TRP-1 were strongly up-regulated by exposure
to 60 Hz and 75 Hz ELF-EMFs.

To clarify the signaling of ELF-EMFs in the synthesis of melanin, we
examined the phosphorylation of ERK and CREB and the activation of
MITF, which is related to tyrosinase and TRP-1 expression. The expres-
sion levels of MITF and total and phosphorylated ERK and CREB were
measured by Western blotting and the J-imaging program. As shown
in Fig. 8, the p-CREB activation level was increased 1.6-fold and the
MITF expression level was increased 1.3-fold over the control group.
p-ERK activation was decreased at 50 Hz and 60 Hz among the ELF-
EMF exposure groups. In particular, there are specific suppressions in
the 60 Hz groups (0.4-fold). The result of Western blotting showed
that melanogenesis-related enzyme, tyrosinase, and TRP-1 was up-
regulated in B16F10 melanoma stimulated by 60 Hz ELF-EMFs.

0.8 4

06 4

Melanin secretion (fold)

04 4

0.2 4

0.0 - T
Control o -MSH  30Hz 50Hz 60Hz 75Hz

100Hz

Fig. 5. Effect of EMF on melanin secretion on media in BI6F10 melanoma cells. The
percentage values of the treated cells are expressed relatively compared to the control
cells. «-MSH was used as a positive control for melanin release. (*p < 0.05).
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Fig. 6. Effect of EMF on melanin synthesis in B16F10 melanoma cells (A). Lysates of cells
treated with or without EMF (B). (*p < 0.05).

Furthermore, 60 Hz ELF-EMFs induced the upstream of MITF and

p-CREB levels and down-regulate p-ERK signaling molecules (Fig. 8).
Thus, the result implies that treatment of 60 Hz ELF-EMFs induced

melanogenesis via MITF and phosphorylation ERK and CREB.

3.8. Fontana-Masson sliver staining

To visualize the melanin, the cells were stained with Fontana-Mas-
son stain. Fig. 9 shows the melanin content determined by Fontana-
Masson staining. Silver nitrate (AgNO3) reacts with melanin to produce
metallic silver (Ag), resulting in a black stain that can be visualized with
a light microscope [23]. As shown in Fig. 9, compared to the controls, the
amount of melanin granules were significantly increased and stained by
ELF-EMF (dark brown color, arrow). The 60 Hz and 75 Hz ELF-EMF
groups had markedly strongly induced formation of the pigment. The
result showed that the staining intensity per cells was analogize with
the result of above measurement experimental result such as Western
blotting, Tyrosinase activity assay, melanin content and melanin secre-
tion assay. Relative staining intensity was scored on a light microscopy
image by means of the following, arbitrary, intensities: no or weak

2.0

- -
o w
I 1

Tyrosinase activity (fold)
f=]
[

0.0 -

T T
Control a -MSH 30Hz 50Hz 60Hz 75Hz 100Hz
Fig. 7. Effect of EMF on intracellular tyrosinase activity. B16F10 melanoma cells were
incubated without (control) and with EMFs for 2 days. Promotion of intracellular
tyrosinase activity by EMF at different frequencies. Result were expressed as
percentages relative to control and for three separate experiments. (*p < 0.05).
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Fig. 8. Effect of EMF on the protein levels of tyrosinase, TRP-1, p-CREB, CREB, p-ERK, ERK, MITF, and 3-actin in B16F10 melanoma cells. The cells were treated with or without EMF for the
indicated times. Western blotting analysis was performed to examine melanogenesis-related protein expression levels (A). The graph indicates the expression level against the 3-actin

expression level (B).

staining (—), low intensity (+), moderate intensity (4++), and strong
intensity (++ ). The relative staining intensity was assessed by light
microscopy (Table 1).

4. Discussion

Recently, ELF-EMF was especially studied by many researchers. Al-
though magnetic energies are low, cell studies showed that low-fre-
quency EMFs interact with biological systems and may have health
effects [24], and ELF-EMFs have a significant function in cell cycle regu-
lation, proliferation, differentiation, mitoses, apoptosis or stress regula-
tion, and induced genes [25]. Some investigators discovered that ELF-
EMFs affect cell function through mechanical action on both intracellu-
lar and membrane proteins, which includes ion channel, membrane

receptor, and enzyme [15]. In spite of the mechanism of EMFs still
under research, all above studies agree on the effect of ELF-EMFs.

In our research, we apply ELF-EMFs to the stimulation of melanogen-
esis in B16F10 melanoma cells. We first examine the cytotoxicity of ELF-
EMFs. To determine the cytotoxicity of ELF-EMFs on B16F10 melanoma
cells, the cells were treated with ELF-EMFs at various frequencies for
3 days, and the cells were analyzed using MTT assay and cell number
counting. Many reports already demonstrated the nontoxicity of ELF-
EMFs [26,27], and our research result further indicated that ELF-EMFs
do not have a cytotoxic effect on B16F10 melanoma cells in any frequen-
cy condition (Figs. 3,4). In addition, ELF-EMFs do not sustain damage to
B16F10 melanoma cell membrane, which is verified by lactate dehydro-
genase release assay (Fig. 5).

So at this studies, histological change due to pigmenting effect of
ELF-EMFs was observed using Fontana-Masson staining (Fig. 9). As
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Fig. 9. Melanin was visualized by Fontana-Masson silver staining. Melanin is stained by dark black. (Original magnification x 100. bar = 100 pum).

shown in our results, 60 Hz and 75 Hz ELF-EMFs clearly increased the
formation of pigment, but did not melanin formation in the control,
30 Hz and 100 Hz ELF-EMF groups, which was well observed by Fon-
tana-Masson staining.

Melanin biosynthesis is catalyzed by two major enzymes: tyrosinase
and TRP1. The expression of these enzymes was determined by Western
blotting using specific antibodies, and the result showed that treatment
with 60 Hz and 75 Hz of EMF induced the expression of tyrosinase and
TRP-1 (Fig. 8). As shown in Fig. 8A and B, melanogenesis-related protein
expression, tyrosinase, and TRP-1 were strongly up-regulated by expo-
sure to 60 Hz and 75 Hz of ELF-EMFs.

Previous studies demonstrated that a skin whitening agent can acti-
vate ERK phosphorylation and reduce MITF and p-CREB protein expres-
sion to decrease tyrosinase synthesis in a-MSH-induced melanogenesis
in B16F10 melanoma cells [28,29]. Generally, the expression of
melanogenic-related enzyme genes are regulated by MITF, which
binds on the regulatory element of tyrosinase and TRP-1 genes [30],
and related studies have demonstrated that the phosphorylates activate
the transcription factor CREB, resulting in an induction of MITF expres-
sion via binds and activating the MITF promoter according to the cyclic
adenosine monophosphate (cAMP) response element [28,29,31].

Thus, to clarify the signaling pathway of ELF-EMFs in the synthesis of
melanin, we examined the phosphorylation of ERK and CREB and the
activation of MITF, which is related to tyrosinase and TRP-1 expression.
The results showed a significant decrease in the activation of ERK at 60—
75 Hz of ELF-EMFs, which can also lead to stimulation of the
melanogenic pathway by accelerating MITF activation. In addition, the
results showed that 60 Hz of ELF-EMF treatment significantly induced
phosphorylation of CREB, which also led to the activation of MITF ex-
pression (Fig. 8B). This MITF is an important transcription factor in the
regulation of tyrosinase activity and expression of TRP-1[32], and
MITF binds to the promoter regions of melanin product genes and pos-
itively regulates their transcription such as tyrosinase and TRP-1[17-
19]. Previous studies showed that a whitening agent can activate ERK
phosphorylation and reduce MITF and p-CREB protein expression to de-
crease tyrosinase synthesis in o-MSH-induced melanogenesis in
B16F10 melanoma cells, so the expression of the melanogenic enzyme's
genes are regulated by MITF, which binds onto the regulatory element
of tyrosinase and TRP-1 genes [28-30].

Table 1

The relative staining intensity score of Fontana Masson.
Staining Control MSH 30Hz 50Hz 60Hz 75Hz 100Hz
Fontana Masson  — ++ + ++ +++ +++ +

ERK regulates cell growth, differentiation, and survival and is also an
important regulator of the melanogenic process [33], and then it was
well known that the inhibition of ERK expression increases melanin
synthesis [34,35]. Also, Enerelt at al. reported that p-CREB protein ex-
pression was significantly increased after EMF exposure on human
bone marrow mesenchymal stem cells [36] and CREB phosphorylation
was increased in response to ELF-EMF in vitro [14,37]. The phosphory-
lated active form of CREB binds and activates MITF, which in turn stim-
ulates the transcription of the key melanogenic enzyme, such as TRP-1
and tyrosinase [38]. Form those studies above, the results imply that
treatment with 60 Hz ELF-EMFs influenced mechanically sensitive ki-
nase such as ERK and CREB [14,39]. Our research points to melanogen-
esis regulation of the expression of CREB, ERK, and MITF because CREB,
ERK, and MITF play a critical role in regulating the melanogenic pathway
[40].

The Fontana-Masson stain is a histochemical technique that oxidizes
melanin and melanin-like pigments as it reduces silver, and it is com-
monly employed to measure pigmentation effects such as skin whiten-
ing, tanning, and hyperpigmentation disorder [23]. Lee et al. reported
that the whitening agent was associated with a reduction in the levels
of MITF and TRP-2 expression, and it had a greater effect histopatholog-
ically in melanin reduction shown by a Fontana-Masson stain [41]. On
the basis of this result, at this studies show that ELF-EMFs at the specific
frequency can stimulate pigmentation of B16F10 melanoma cells.

5. Conclusion

Currently, there are insufficient commercial products for induction
of hyperpigmentation [40]. In this study, we investigated whether the
frequency of ELF-EMFs has an effect on hypopigmentation. Our data
suggest that 60-75 Hz ELF-EMFs stimulate the biosynthesis of melanin
by promoting tyrosinase and TRP-1, which are mediated through acti-
vation of CREB, MITF, and a reduction of phosphorylation ERK. These re-
sults may indicate that the optimal frequency of ELF-EMF is a new tool
for safe hyperpigmentation therapy for an anti-gray hair treatment
when melanin synthesis was reduced in the hair or hypopigmentary-re-
lated skin disorders such as vitiligo. Future studies will focus on ELF-
EMF-induced melanogenesis in a three-dimensional culture model
and in vivo.

Acknowledgements

This study was supported by a grant of the Korean Health Technolo-
gy R&D Project, Ministry of Health & Welfare, Republic of Korea
(HN14C0086).



32

Y.-M. Kim et al. / Life Sciences 162 (2016) 25-32

References

[1]
2

3

[4

(51

6

(71
8

[9

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

AXK. Gupta, M.D. Gover, K. Nouri, S. Taylor, The treatment of melasma: a review of
clinical trials, J. Am. Acad. Dermatol. 55 (2006) 1048-1065.

J.Y. Yang, J.H. Koo, Y.G. Song, K.B. Kwon, ] H. Lee, H.S. Sohn, BH. Park, E.C. Jhee, JW.
Park, Stimulation of melanogenesis by scoparone in B16 melanoma cells, Acta
Pharmacol. Sin. 27 (2006) 1467-1473.

P.M. Campos, C.D. Horinouchi, S. Prudente Ada, V. Cechinel-Filho, A. Cabrini Dde,
MF. Otuki, Effect of a Garcinia gardneriana (Planchon and Triana) Zappi
hydroalcoholic extract on melanogenesis in B16F10 melanoma cells, ].
Ethnopharmacol. 148 (2013) 199-204.

C.Yao, C.L. Jin, J.H. Oh, L.G. Oh, C.H. Park, ] H. Chung, Ardisia crenata extract stimulates
melanogenesis in B16F10 melanoma cells through inhibiting ERK1/2 and Akt activa-
tion, Mol. Med. Rep. 11 (2015) 653-657.

M.A. Hamid, M.R. Sarmidi, C.S. Park, Mangosteen leaf extract increases melanogen-
esis in BI6F1 melanoma cells by stimulating tyrosinase activity in vitro and by up-
regulating tyrosinase gene expression, Int. J. Mol. Med. 29 (2012) 209-217.

A. Tuerxuntayi, Y.Q. Liu, A. Tulake, M. Kabas, A. Eblimit, H.A. Aisa, Kaliziri extract
upregulates tyrosinase, TRP-1, TRP-2 and MITF expression in murine B16 melanoma
cells, BMC Complement. Altern. Med. 14 (2014) 166.

A. Pacifico, G. Leone, Photo(chemo)therapy for vitiligo, Photodermatol.
Photoimmunol. Photomed. 27 (2011) 261-277.

H.S. Yu, CS. Wy, C.L. Yu, Y.H. Kao, M.H. Chiou, Helium-neon laser irradiation stimu-
lates migration and proliferation in melanocytes and induces repigmentation in seg-
mental-type vitiligo, ]. Invest. Dermatol. 120 (2003) 56-64.

X. Gu, E. Nylander, P.J. Coates, K. Nylander, Oxidation reduction is a key process for
successful treatment of psoriasis by narrow-band UVB phototherapy, Acta Derm.
Venereol. 95 (2015) 140-146.

Y.K. Choi, DH. Lee, Y.K. Seo, H. Jung, J.K. Park, H. Cho, Stimulation of neural differen-
tiation in human bone marrow mesenchymal stem cells by extremely low-frequen-
cy electromagnetic fields incorporated with MNPs, Appl. Biochem. Biotechnol. 174
(2014) 1233-1245.

W. Fan, F. Qian, Q. Ma, P. Zhang, T. Chen, C. Chen, Y. Zhang, P. Deng, Z. Zhou, Z. Yu,
50 Hz electromagnetic field exposure promotes proliferation and cytokine produc-
tion of bone marrow mesenchymal stem cells, Int. J. Clin. Exp. Med. 8 (2015)
7394-7404.

S. Razavi, M. Salimi, D. Shahbazi-Gahrouei, S. Karbasi, S. Kermani, Extremely low-
frequency electromagnetic field influences the survival and proliferation effect of
human adipose derived stem cells, Adv. Biomed. Res. 3 (2014) 25.

A. Ardeshirylajimi, M. Soleimani, Enhanced growth and osteogenic differentiation of
induced pluripotent stem cells by extremely low-frequency electromagnetic field,
Cell. Mol. Biol. (Noisy-le-Grand) 61 (2015) 36-41.

J.E. Park, Y.K. Seo, H.H. Yoon, CW. Kim, J.K. Park, S. Jeon, Electromagnetic fields in-
duce neural differentiation of human bone marrow derived mesenchymal stem
cells via ROS mediated EGFR activation, Neurochem. Int. 62 (2013) 418-424.

C. D'Angelo, E. Costantini, M.A. Kamal, M. Reale, Experimental model for ELF-EMF
exposure: concern for human health, Saudi J. Biol. Sci. 22 (2015) 75-84.

K.S. Jin, Y.N. Oh, S.K. Hyun, H.J. Kwon, B.W. Kim, Betulinic acid isolated from Vitis
amurensis root inhibits 3-isobutyl-1-methylxanthine induced melanogenesis via
the regulation of MEK/ERK and PI3K/Akt pathways in B16F10 cells, Food Chem.
Toxicol. 68 (2014) 38-43.

NJ. Bentley, T. Eisen, C.R. Goding, Melanocyte-specific expression of the human ty-
rosinase promoter: activation by the microphthalmia gene product and role of the
initiator, Mol. Cell. Biol. 14 (1994) 7996-8006.

C. Bertolotto, R. Busca, P. Abbe, K. Bille, E. Aberdam, ].P. Ortonne, R. Ballotti, Different
cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activ-
ities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia,
Mol. Cell. Biol. 18 (1998) 694-702.

H.C. Huang, SJ. Chang, C.Y. Wu, HJ. Ke, T.M. Chang, [6]-Shogaol inhibits alpha-MSH-
induced melanogenesis through the acceleration of ERK and PI3K/Akt-mediated
MITF degradation, BioMed Res. Int. 2014 (2014) 842569.

W. Englaro, C. Bertolotto, R. Busca, A. Brunet, G. Pages, ].P. Ortonne, R. Ballotti, Inhi-
bition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell
differentiation, J. Biol. Chem. 273 (1998) 9966-9970.

B.P.A. George, .M. Tynga, H. Abrahamse, In vitro antiproliferative effect of the ace-
tone extract of Rubus fairholmianus Gard. Root on human colorectal cancer cells,
Biomed. Res. Int. 2015 (2015) 165037.

[22]

[23]

[24]

S.Y. Chung, Y.K. Seo, J.M. Park, MJ. Seo, J.K. Park, ].W. Kim, C.S. Park, Fermented rice
bran downregulates MITF expression and leads to inhibition of alpha-MSH-induced
melanogenesis in B16F1 melanoma, Biosci. Biotechnol. Biochem. 73 (2009)
1704-1710.

R.L. McMullen, E. Bauza, C. Gondran, G. Oberto, N. Domloge, C.D. Farra, D.J. Moore,
Image analysis to quantify histological and immunofluorescent staining of ex vivo
skin and skin cell cultures, Int. J. Cosmet. Sci. 32 (2010) 143-154.

V. Vizcaino, Biological effects of low frequency electromagnetic fields, Radiobiology
3 (2003) 44-46.

[25] J.F. Collard, M. Hinsenkamp, Cellular processes involved in human epidermal cells

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

exposed to extremely low frequency electric fields, Cell. Signal. 27 (2015) 889-898.
C. Morabito, S. Guarnieri, G. Fano, M.A. Mariggio, Effects of acute and chronic low
frequency electromagnetic field exposure on PC12 cells during neuronal differenti-
ation, Cell. Physiol. Biochem. 26 (2010) 947-958.

M. Zhang, X. Li, L. Bai, K. Uchida, W. Bai, B. Wu, W. Xu, H. Zhu, H. Huang, Effects of
low frequency electromagnetic field on proliferation of human epidermal stem
cells: an in vitro study, Bioelectromagnetics 34 (2013) 74-80.

Y.T. Fu, CW. Lee, H.H. Ko, F.L. Yen, Extracts of Artocarpus communis decrease alpha-
melanocyte stimulating hormone-induced melanogenesis through activation of ERK
and JNK signaling pathways, TheScientificWorldJOURNAL 2014 (2014) 724314.

B. Saha, S.K. Singh, C. Sarkar, R. Bera, ]. Ratha, D.J. Tobin, R. Bhadra, Activation of the
Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB, Pig-
ment Cell Res. 19 (2006) 595-605 (sponsored by the European Society for Pigment
Cell Research and the International Pigment Cell Society).

M.O. Villareal, S. Kume, T. Bourhim, F.Z. Bakhtaoui, K. Kashiwagi, J. Han, C. Gadhi, H.
[soda, Activation of MITF by argan oil leads to the inhibition of the tyrosinase and
dopachrome tautomerase expressions in B16 murine melanoma cells, Evid. Based
Complement. Alternat. Med. 2013 (2013) 340107.

M. Lin, B.X. Zhang, C. Zhang, N. Shen, Y.Y. Zhang, A.X. Wang, C.X. Tu, Ginsenosides
Rb1 and Rg1 stimulate melanogenesis in human epidermal melanocytes via PKA/
CREB/MITF signaling, Evid. Based Complement. Alternat. Med. 2014 (2014) 892073.
S.Y. Park, M.L. Jin, Y.H. Kim, Y. Kim, SJ. Lee, Aromatic-turmerone inhibits alpha-MSH
and IBMX-induced melanogenesis by inactivating CREB and MITF signaling path-
ways, Arch. Dermatol. Res. 303 (2011) 737-744.

EH. Kim, HS. Jeong, HY. Yun, KJ. Baek, N.S. Kwon, K.C. Park, D.S. Kim,
Geranylgeranylacetone inhibits melanin synthesis via ERK activation in Mel-Ab
cells, Life Sci. 93 (2013) 226-232.

D.S. Kim, S.H. Park, S.B. Kwon, E.S. Park, CH. Huh, SW. Youn, K.C. Park,
Sphingosylphosphorylcholine-induced ERK activation inhibits melanin synthesis
in human melanocytes, Pigment cell research 19 (2006) 146-153 (sponsored by
the European Society for Pigment Cell Research and the International Pigment
Cell Society),.

D.S. Kim, S.Y. Kim, J.H. Chung, K.H. Kim, H.C. Eun, K.C. Park, Delayed ERK activation
by ceramide reduces melanin synthesis in human melanocytes, Cell. Signal. 14
(2002) 779-785.

E. Urnukhsaikhan, H. Cho, T. Mishig-Ochir, Y.K. Seo, J.K. Park, Pulsed electromagnetic
fields promote survival and neuronal differentiation of human BM-MSCs, Life Sci.
151 (2016) 130-138.

L. Leone, S. Fusco, A. Mastrodonato, R. Piacentini, S.A. Barbati, S. Zaffina, G. Pani, M.V.
Podda, C. Grassi, Epigenetic modulation of adult hippocampal neurogenesis by ex-
tremely low-frequency electromagnetic fields, Mol. Neurobiol. 49 (2014)
1472-1486.

CY. Yun, S.T. You, J.H. Kim, J.H. Chung, S.B. Han, E.Y. Shin, E.G. Kim, p21-activated ki-
nase 4 critically regulates melanogenesis via activation of the CREB/MITF and beta-
catenin/MITF pathways, J. Invest. Dermatol. 135 (2015) 1385-1394.

Y. Duan, Z. Wang, H. Zhang, Y. He, R. Fan, Y. Cheng, G. Sun, X. Sun, Extremely low
frequency electromagnetic field exposure causes cognitive impairment associated
with alteration of the glutamate level, MAPK pathway activation and decreased
CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted
from the lotus seedpeod, Food & function 5 (2014) 2289-2297.

HJ. Kim, LS. Kim, Y. Dong, LS. Lee, ].S. Kim, ].S. Kim, J.T. Woo, B.Y. Cha, Melanogene-
sis-inducing effect of cirsimaritin through increases in microphthalmia-associated
transcription factor and tyrosinase expression, Int. J. Mol. Sci. 16 (2015) 8772-8788.
T.H. Lee, J.O. Seo, M.H. Do, E. Ji, S.H. Baek, S.Y. Kim, Resveratrol-enriched rice down-
regulates melanin synthesis in UVB-induced guinea pigs epidermal skin tissue,
Biomol. Ther. 22 (2014) 431-437.


http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0005
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0005
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0010
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0010
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0010
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0015
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0015
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0015
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0015
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0020
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0020
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0020
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0025
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0025
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0025
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0030
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0030
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0030
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0035
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0035
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0040
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0040
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0040
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0045
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0045
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0045
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0050
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0050
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0050
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0050
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0055
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0055
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0055
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0055
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0060
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0060
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0060
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0065
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0065
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0065
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0070
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0070
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0070
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0075
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0075
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0080
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0080
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0080
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0080
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0085
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0085
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0085
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0090
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0090
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0090
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0090
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0095
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0095
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0095
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0100
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0100
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0100
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0105
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0105
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0105
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0110
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0110
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0110
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0110
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0115
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0115
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0115
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0120
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0120
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0125
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0125
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0130
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0130
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0130
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0135
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0135
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0135
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0140
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0140
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0140
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0145
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0145
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0145
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0145
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0150
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0150
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0150
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0150
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0155
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0155
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0155
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0160
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0160
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0160
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0165
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0165
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0165
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0170
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0170
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0170
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0170
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0170
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0175
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0175
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0175
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0180
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0180
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0180
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0185
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0185
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0185
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0185
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0190
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0190
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0190
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0195
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0195
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0195
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0195
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0195
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0200
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0200
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0200
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0205
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0205
http://refhub.elsevier.com/S0024-3205(16)30477-5/rf0205

	The activation of melanogenesis by p-�CREB and MITF signaling with extremely low-�frequency electromagnetic fields on B16F1...
	1. Introduction
	2. Materials and methods
	2.1. Cell cultured
	2.2. ELF-EMF exposure
	2.3. Mitochondria activity assay
	2.4. Cell proliferation
	2.5. Cell cytotoxicity-lactate dehydrogenase (LDH) assay
	2.6. Measurement of melanin secretion
	2.7. Measurement of melanin content
	2.8. Intracellular tyrosinase assay
	2.9. Western blotting
	2.10. Fontana-Masson silver staining
	2.11. Statistical analysis

	3. Result
	3.1. Morphology of B16F10 melanoma cells
	3.2. Cell number counting and mitochondrial activity
	3.3. Cytotoxicity-lactate dehydrogenase (LDH) assay
	3.4. Melanin secretion assay
	3.5. Melanin content assay
	3.6. Tyrosinase activity assay
	3.7. Melanogenic enzyme expression in B16F10 melanoma cells
	3.8. Fontana-Masson sliver staining

	4. Discussion
	5. Conclusion
	Acknowledgements
	References


