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Abstract This research has tried to take advantage of the two-field based methodology in order to

assess remote sensing data capacities for modeling soil degradation. Based on the findings of our

investigation, preprocessing analysis types have not shown significant effects on the accuracy of

the model. Conversely, type of indicators and indices of the used field based model has a large

impact on the accuracy of the model. In addition, using some remote sensed indices such as iron

oxide index and ferrous minerals index can help to improve modeling accuracy of some field indices

of soil condition assessment. According to the results, the model capacities can significantly be

improved by using time-series remotely sensed data compared with using single date data. In addi-

tion, if artificial neural networks are used on single remotely sensed data instead of multivariate lin-

ear regression, accuracy of the model can be increased dramatically because it helps the model to

take the nonlinear form. However, if time series of remotely sensed data are used, the accuracy

of the artificial neural network modeling is not much different from the accuracy of the regression

model. It turned out to be contrary to what is thought, but according to our results, increasing the

number of inputs to artificial neural network modeling in practice reduces the actual accuracy of the

model.
� 2015NationalAuthority forRemote Sensing and Space Sciences. Production and hosting byElsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Land degradation or desertification is very important due to its
impact on the loss of productivity or economic power. This
degradation includes three main aspects as follows: (1) soil
degradation, (2) water degradation, and (3) vegetation degra-

dation (de Paz et al., 2006; McDonagh and Bunning, 2009a).
Soil degradation has been considered as one of the three

main components of land degradation and efforts have been

done to determine its relationship with desertification for more
than two decades. Since the soil is considered as a renewable
source (de Paz et al., 2006), its degradation is a major threat

in the entire world and in the long-term leads to soil productiv-
ity deficiency and environmental instability (Diodato and
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Ceccarelli, 2004). Therefore, assessing the conditions of soil is
needed for understanding the current status (Snakin et al.,
1996).

Each aspect of soil degradation has different evidences and
subsets, and the indices and indicators have been proposed to
identify and evaluate them. So far, many attempts have been

made to collect indicators of soil degradation in the form of
a model and several methods have been proposed for the
assessment of soil degradation phenomena (Abdel Kawy and

Belal, 2011; Abdel Kawy and Ali, 2012; Cammeraat and
Imeson, 1998; de Paz et al., 2006; Diodato and Ceccarelli,
2004; El Baroudy and Moghanm, 2014; McDonagh and
Bunning, 2009a; Omuto, 2008; Rasmy et al., 2010;

Rodrı́guez et al., 2005; Ruiz-Sinoga and Diaz, 2010; Sha-Sha
et al., 2011; Snakin et al., 1996; Stocking and Murnaghan,
2000; Yanda, 2000).

However, perhaps three methodologies can be distin-
guished to evaluate land degradation due to their widespread
exploitation in comparison to other models which are consid-

ered as soil quality criteria:

(1) The provisional methodology for assessing and mapping

of desertification: It was formulated by FAO and
UNEP. It is the first method in the evaluation and map-
ping of desertification developed by FAO and UNEP
(FAO/UNEP, 1983). In this method, seven processes

have been considered in land degradations. The six types
of processes associated with soil degradation.

(2) Methodology for mapping Environmentally Sensitive

Areas (ESAs) to desertification or methods provided
by project MEDALUS: In this method, a variety of
ESAs to desertification can be recognized by using the

special key (main) criteria and the mapped method.
These criteria measure the ability of land to withstand
more degradation, or show how much land is appropri-

ate for a particular use. In addition, in order to deserti-
fication, the key (main) criteria for defining ESAs are
classified in four groups of soil quality, climate quality,
vegetation quality and management quality (Kosmas

et al., 1999).
(3) LADA guideline for land degradation assessment at the

local scale. According to the methodology of LADA,

land degradation has been assessed in three sections soil,
water, and vegetation degradation (McDonagh and
Bunning, 2009a,b).

In Iran, based on local and regional needs, Iranian Model
of Desertification Potential Assessment (IMDPA) has been
created in 2005 with the optimization of the ESAs model

(Ahmadi, 2005). In this model, nine different indices have been
proposed for potential desertification assessment: (1) climate,
(2) geology-geomorphology, (3) soil, (4) vegetation, (5) agricul-

ture, (6) water (7) erosion; (8) socioeconomic, and (9) technol-
ogy and urban development. In this model, three to four
indicators for each criterion have been suggested, for example,

soil index composed of texture, depth, salinity and gravel per-
cent indicators.

In all these models, assessment has been carried out on the

basis of the field studies and the present situation scoring. But
generally the field methods are more time-consuming and
don’t have necessary standards for being up to date, can’t
be generalizable to other areas and given similar results at
renewing operations, and are the most costly in large areas.
While traditional approaches see this kind of measure as incor-
rect and the most costly, aerial photography and satellite

remote sensing systems have considerable advantages in this
area. These data cover the entire land and provide repro-
ducible, targeted and summarized data in different spectrums

and wavelengths, so they are perfectly appropriate to assess
and monitor environmental conditions in arid zones (Pinet
et al., 2006). Therefore, the current efforts to survey and assess

the state of soil quality have greater emphasis on the remotely
sensed techniques than field studies.

Many researchers have tried to analyze soil and land degra-
dation through empirical methods and models (Geist and

Lambin, 2004; Ladisa et al., 2012; Liu et al., 2003; Yang
et al., 2005), and remotely sensed methods (El Baroudy and
Moghanm, 2014; Haijiang et al., 2008; Helldén and Tottrup,

2008; Hill et al., 2008; Rasmussen et al., 2001; Rasmy et al.,
2010) and modeling (Feoli et al., 2002; Ibáñez et al., 2008;
Jauffret and Visser, 2003; Okin et al., 2009; Ravi et al., 2010;

Salvati and Zitti, 2009; Santini et al., 2010; Zucca et al., 2009).
Most of the environmental phenomenon has been examined

in the context of two scenarios (Wang et al., 2010): (a) a single-

criteria scenario, and (b) a multi-criteria scenario (Ghadiry
et al., 2012). Assessment of soil degradation studies can be
clearly seen in both scenarios. However, most of the remote
sensing studies and the researches about investigation of soil

condition have used the single criteria, also multi criteria stud-
ies haven’t been seen in the form of a model. Numerous studies
have been done on the detection of soil salinity using remote

sensing (Abdel Kawy and Ali, 2012; Douaoui et al., 2006;
Gutierrez and Johnson, 2010; Masoud, 2014; Metternicht
and Zinck, 2008; Wang et al., 2013) and a large number of soil

quality studies focused on soil chemical factors have been con-
ducted using remote sensing (Abdel Kawy and Belal, 2011;
Abdel Kawy and Ali, 2012; Bouaziz et al., 2011; El Baroudy

and Moghanm, 2014). But remote sensed investigation of
other criteria related to the soil such as organic carbon
(Huang et al., 2007), chemical composition (Dogan, 2009;
Wang et al., 2013), bare soils distinguish from each other

(Zhao and Chen, 2005) and humidity (Goodwin et al., 2008)
has been studied extensively.

However, yet there isn’t a multi-criteria remotely sensed

model of soil degradation that can be accepted by all experts.
Therefore, this study has tried to take advantage of the two-
field models to assess the ability of remote sensing data in

the modeling of soil degradation. In this study, we attempted
to investigate the performance of the remote sensing data
and answered the follow questions: How much accuracy will
the data obtain to provide soil degradation maps using remote

sensing? What kinds of remote sensing data should be used in
these studies? Single date data are more accurate or time series
data? How much can we enhance the modeling accuracy by the

nonlinearity of the model?
2. Methodology

2.1. The study area

The study area with a total area of 345,591 hectares is located
in the east of Esfahan Province between longitude E 51�5602900
to E 52�4202200 and latitude N 32�0904100 to N 33�0300500



Figure 1 Location of the study area in Esfahan Province, TM Scenes & sample site locations.
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(Fig. 1). The elevation of the study area ranges between 1100 m
in the south to 3500 m in the north east of the mountains of the

area. A large part of the study area has an average altitude of
1400 meters. The average annual rainfall is about 50 and
250 mm in lowland and the northern highlands area, respec-
tively. The rainfall regime in the study area is Mediterranean

with hot arid summer. The maximum rainfall values are
recorded in January at 15.3% annual rainfall and the mini-
mum values are observed in December about 0.2% annual

rainfall (Ahmadi, 2005). The most important land uses in the
study area include: (1) rangeland and bare land (about
65%), (2) agricultural land (about 17 percent), and (3) Haloxy-

lon habitats and sandy zones (about 13%).

2.2. Methods

Graphical abstract in Fig. 2 shows the full perspective of our
research methodology and in the following sections we will
refer to them.

2.2.1. Field sampling

In this study, two methods were used for investigation of soil
quality: (1) Iranian Model of Desertification Potential Assess-
ment (IMDPA (Ahmadi, 2005) was selected as one method to

evaluate soil conditions due to its compatibility with the cli-
matic conditions of Iran. (2) Field Manual for Local Level
Land Degradation Assessment in Drylands (McDonagh and

Bunning, 2009a,b) was applied because this model is up to date
and has not been studied in Iran. Criteria and indicators of
each method have been mentioned in Table 1.

Soil sampling was carried out by the use of stratified
random sampling to create a homogeneous sampling area
(Ravi et al., 2010; Salvati and Zitti, 2009) to cover more
quantity and quality changes of soil. For this purpose,

land use, slope, lithology, soil great group in FAO classi-
fication, and vegetation type maps were combined to cre-
ate a total of 172 sampling sites. Random sampling was
done at these sites and at each sampling location, in addi-

tion to measuring and scoring indices, soil samples were
obtained for laboratory work and measuring indicators.
Sampling and measuring started from 17 May 2012 to 8

July 2012. Then, the score of all indices and indicators
were used in remote sensing modeling. It should be noted
that the quantitative amount of measurable indicators

(such as EC, pH, Gravel percentage and Organic carbon)
was used instead of scoring due to the elimination of
model error.
2.2.2. Remote sensing pre-processing and processing

According to the scope of this study, two scenarios have been
used for remote sensing modeling: (1) the single-temporal:

remotely sensed data were provided with samples at the same
time, (2) the multi-temporal satellite data (time series): data
were obtained during the year leading up to the time of sam-
pling. In order to obtain remotely sensed data, several condi-

tions were considered.
Many studies already show LANDSAT 4,5,7 and 8 abilities

to identify soil parameters (Abdel Kawy and Belal, 2011;

Abdel Kawy and Ali, 2012; El Baroudy and Moghanm,
2014; Gutierrez and Johnson, 2010; Li and Chen, 2014;
Masoud, 2014; Metternicht and Zinck, 2008; Wang et al.,

2013; Zhao and Chen, 2005) then in this study the TM sensor
of LANDSAT 5 data were used.



Figure 2 Graphical diagram of methodology.
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(1) Images didn’t have a cloud or cloud amount was less
than 10 percent.Data didn’t have radiometric problems

such as banding, bad pixel, shot noise and multiple
peaks histogram due to scattering by the atmosphere
(Jensen, 2005) and at least, there weren’t any regional

inappropriate and unusual contrast as a result of radio-
metric errors in the false color composite images.

(2) There was the minimum time-lag between the time of the

start and end of the sampling and date of the single-
temporal remotely sensed data.

(3) To select a date in the multi-temporal scenario, the
preconditions were: (a) at least, one data selects in each

season (b) temporal distribution of the data is appropri-
ate so that the data interval is not too high or low.

(4) To compare the results of two scenarios, data of two sce-

narios were separately modeled and single-temporal
data were prevented to enter into multi-temporal data.

Finally, LANDSAT5 TM images of 22-DEC-2010, 26-
APR-2010, 15-JUL-2010 and 19-OCT-2010 were selected for
multi-temporal scenario and image of 31-May-2011 was

selected for single-temporal scenario.
As one of the scenarios was multi-temporal, data prepro-
cessing was performed (Jensen, 2005, 2007; Liang, 2004;
Mather and Koch, 2011) to select and compare the perfor-

mance of each data class data that generally eight sets of data
were created and tested in the model (Table 2).

Firstly, single-temporal remotely sensed data were geomet-
rically corrected by a GPS device and the recording of the

coordinates of the points, and then the data in the other dates
were registered to the single-temporal remotely sensed data
(Jensen, 2005).

After geometric correction, information of each remotely
sensed data sets (Table 2) was extracted in the sampling loca-
tions (172 points) to be used in a multivariate linear regression

model, with all the indices and criteria soil quality and the best
data sets used as input for modeling.

Also, based on the remotely sensed measurement of the

parameters related to the soil, Tasseled Cap Coefficients
(Li and Chen, 2014; Masoud, 2014), normalized difference
bareness index (Zhao and Chen, 2005), salinity index (Wang
et al., 2013), chemical and mineral composition index

(Dogan, 2009), organic carbon (Huang et al., 2007), and soil
humidity (Goodwin et al., 2008) were used for all dates of



Table 1 Study indices and indicators.

Model

Name

Indices Indicators Scoring method

IMDPA Soil EC Scoring to maximum EC rate in soil profile (score 0–4)

Gravel Scoring to gravel percent in soil profile (score 0–4)

Texture Scoring to predominant texture in soil profile (score 0–4)

Soil depth Scoring to soil depth (score 0–4)

Total quality score Geometric average of all indicators

LADA Visual indicators

of soil quality

Tillage pan Scoring to Tillage pan in soil profile (score 0–2)

Aggregate Size distribution Scoring to Aggregate Size Distribution (score 0–2)

Soil crusts Scoring for either negative or positive (biological) crusts (score 0–2)

Earthworms (or other more

pertinent soil fauna)

Scoring to the presence of soil fauna in the soil (score 0–2)

Roots Scoring to abnormalities in root systems (score 0–2)

Sum of visual VS-Fast

scores

Sum of total weighted visual VS-Fast indicators (weights of tillage pan and

Earthworms indicators:2; others: 3)

Soil measurement

indicators

Slaking and dispersion Scoring to aggregates disintegrate in water (score 0–4)

PH soil Not Scored

Water infiltration Scoring to time of infiltration of 400 ml of water into a ring with a diameter & length

of 10 cm (score 0–2)

Organic C-labile fraction Scoring to organic C-labile fraction using spectrophotometer (or 550 nm wavelength

pocket colorimeter) based on soil texture (score 0–2)

EC (Soil salinity) Scoring the amount of electrical conductivity (score 0–2)

Sum of soil measurement

VS-Fast scores

Sum of total weighted soil measurement VS-Fast indicators (weights of EC and water

infiltration indicators:3; organic C-labile fraction indicators: 2 and slaking and

dispersion indicator:1.5)

Sum of VS-Fast scores Sum of VS-Fast scores

Table 2 Satellite data type used in modeling.

Satellite

name

Sensor Row Used data Description (Jensen, 2005; Liang, 2004; Mather and Koch, 2011)

LANDSAT

5

TM 1 Digital number The brightness values of pixel that the sampling was done in it have been extracted

2 Atmospheric corrected

Digital Number

The atmospheric correction of digital numbers was done with dark object and regression

method

3 Radiance Extraction of radiance values based on metadata information

4 Illumination corrected

radiance
Radiance correction based on sun angle ð/Þ �L ¼ L 1

sinð/Þ

5 Terrain effect corrected

radiance
By the values of slope bt, aspect /t, Zenith angle hs and sun azimuth /s LN ¼ LcosðeÞ

coskðiÞcoskðeÞ
cosðiÞ ¼ cosðhsÞ cosðbtÞ þ sinðhsÞ sinðbtÞ cosð/s � /tÞ

6 Reflectance The reflectance is obtained by the information of row 3 qp ¼ pLkd
2

ESUNkcoshs

And for thermal band (6)

T ¼ K2

ln K1
Lk
þ1

� �

7 Illumination corrected

reflectance

The reflectance is obtained by the information of row 4

8 Terrain effect corrected

reflectance

The reflectance is obtained by the information of row 5

Remotely sensed data capacities 211
remotely sensed data (reflectance data, row 6, Table 2)
(description of soil indices in Table 3).

2.2.3. Remotely sensed modeling

2.2.3.1. Linear multivariable regression. Firstly, the data relat-
ing to the most appropriate categories (Table 2) and different
soil indicators in a stepwise linear multivariable regression

were entered as independent variables to model each indicator
(Table 1). The analysis was separately used for each scenario
(single and multi-temporal). Since increasing dimension can
be costly and increases model uncertainties in the remote

sensed modeling (Jensen, 2005), not only the maximum corre-
lation coefficient of the regression model without limitation,
on the number of sentences was assessed in the multivariate

linear regression modeling, but also three layer models were
extracted to use their parameters in nonlinear modeling to
evaluate the capacity of the model in a nonlinear manner. In

addition, in order to understand the influence of entering soil



Table 3 Soil evaluation indices used in this study.

Row Indicator name Equation Source

1 Tasseled cap coefficients Brightness = (0.3037 * TM1) + (0.2793 * TM2) + (0.4343 * TM3) + (0.5585 * TM4)

+ (0.5082 * TM5) + (0.1863 * TM7)

Li and Chen (2014),

Masoud (2014)

Greenness = (�0.2848 * TM1) + (�0.2435 * TM2) + (�0.5436 * TM3)

+ (0.7243 * TM4) + (0.084 * TM5) + (�0.18 * TM7)

Wetness = (0.1509 * TM1) + (0.1793 * TM2) + (0.3299 * TM3) + (0.3406 * TM4)

+ (�0.7112 * TM5) + (�0.4572 * TM7)

2 Bare soil NDBal1 = TM7 � TM6/TM7+ TM6 Zhao and Chen (2005)

NDBal2 = TM5 � TM6/TM5+ TM6

NDBal3 = TM3 � TM6/TM3+ TM6

3 Soil salinity Salinity Index1 = TM5 � TM7/TM5+ TM7 Wang et al. (2013)

Salinity Index2 = sqrt(TM1 � TM3)

4 Mineral and chemical

components

Chemical soil composition = TM5 � TM6/TM3+ TM6 Dogan (2009)

Ferrous minerals = TM5/TM4

Iron oxide = TM3/TM1

Clay minerals = TM5/TM7

5 Soil humidity Moisture Index = TM5/TM7 Goodwin et al. (2008)

Normalized difference water index = TM4 � TM5/TM4+ TM5
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quality indices (Table 3) on the regression model, the model
without entry, these indices were compared with the model cre-

ated by using them.

2.2.3.2. Artificial neural networks. Artificial neural networks

have been used to nonlinear modeling. An artificial neural net-
work has been entered into modern applied statistics as a reli-
able tool to solve many real world problems. Artificial neural

network success is due to its ability to describe and model dif-
ferent data sets, regardless of the nature of the relationship
between the data sets. In fact, artificial neural networks do
not have any limitations on the use type, and they can estimate

any function with any degree of complexity (Hill and Lewicki,
2006).

Artificial neural networks are the statistical tools that

mimic the brain functioning. The artificial neural network is
formed of a large number of neurons (nerve cells) similar to
a human brain that is identified as a node or hidden units, if

it receives a strong signal from another neuron to which it is
connected, it transmits the message. The nature of the signal
transmitted by a neuron depends on the type of function
imposed on it.

In fact, nodes and neurons can be considered as a series of
weakly processing units with parallel performance that each
function is a mathematical function that couldn’t have signifi-

cant performance, but if there are appropriate numbers of
them and the neurons are combined in a perfect way, they
can collectively reach every goal and can build any equation

(Hill and Lewicki, 2006). Therefore, the artificial neural net-
works can be used for statistical modeling of remotely sensed
data.

Recently, great advances have been created in artificial neu-
ral network models and currently a large number of neural net-
works with different structures are used (Ivancevic and
Ivancevic, 2005). In this study, according to Table 4 a total

of 11 different models of artificial neural network were used
to evaluate the increase in the accuracy of experiments using
these models by NeuroSolutions 6.0 software (www.neurosolu-

tions.com). For this purpose, instead of the result of the unre-
stricted multivariate linear regressions, results from confined
three layer multivariate linear regressions were used to

compare the performance of the two models (multivariate
linear regressions and artificial neural network models in
order to unwanted uncertainty were not accelerated (Jensen,

2005).
The first step, Genetic Optimization Algorithm, was used to

determine the input data, momentum values, and processing

elements in the hidden layer as well as number of the hidden
layers of neural network model set. In this phase, the results
of all the models were very similar, so separation of models
in terms of performance was impossible in this way. Therefore,

a key prerequisite was considered to compare the performance
of each model:

(1) All models were used in the simplest case (the increase in
the number of hidden layers and processing elements
was avoided).

(2) The number of hidden layers in different models was
considered as identical as possible (except of the Modu-
lar feed forward network that at least needed substan-
tially two parallel hidden layers, and RBF, CANFIS

and SVM had no hidden layer, a hidden layer was used
for all other models).

(3) The number of processing elements in the input layer

was equal to 3 and in the output layer was equal to 1.
If there was a hidden layer, processing elements were
considered equal to 4 in all models.

(4) In all models, exemplars were equal to 100 and the Max-
imum Epochs were considered 1000.

(5) In all models except the CANFIS and SVM models

(because of their structure), the hyperbolic tangent was
considered as a transfer function of models and learning
rule was considered Levenberg-Marquardt.

(6) 30% of the samples were randomly considered as test

data and 70% of them as train data (for each field model
of soil degradation, once the test data were selected ran-
domly and then the selection did not change for the

indices and indicators for all the models).

http://www.neurosolutions.com
http://www.neurosolutions.com


Table 4 Summary of artificial neural network models used.

Row Neural network name Description (Ivancevic and Ivancevic, 2005)

1 Multilayer perceptrons (MLPs) Multilayer perceptrons (MLPs) are layered feedforward networks typically trained with static

backpropagation. These networks have found their way into countless applications requiring

static pattern classification. Their main advantage is that they are easy to use, and that they can

approximate any input/output map. The key disadvantages are that they train slowly, and require

lots of training data (typically three times more training samples than network weights

2 Generalized feedforward networks Generalized feedforward networks are a generalization of the MLP such that connections can

jump over one or more layers. In theory, a MLP can solve any problem that a generalized

feedforward network can solve. In practice, however, generalized feedforward networks often

solve the problem much more efficiently. A classic example of this is the two spiral problem.

Without describing the problem, it suffices to say that a standard MLP requires hundreds of times

more training epochs than the generalized feedforward network containing the same number of

processing elements

3 Modular feedforward networks Modular feedforward networks are a special class of MLP. These networks process their input

using several parallel MLPs, and then recombine the results. This tends to create some structure

within the topology, which will foster specialization of function in each sub-module. In contrast to

the MLP, modular networks do not have full interconnectivity between their layers. Therefore, a

smaller number of weights are required for the same size network (i.e. the same number of PEs).

This tends to speed up training times and reduce the number of required training examplars. There

are many ways to segment a MLP into modules. It is unclear how to best design the modular

topology based on the data. There are no guarantees that each module is specializing its training

on a unique portion of the data

4 Jordan and Elman networks Jordan and Elman networks extend the multilayer perceptron with context units, which are

processing elements (PEs) that remember past activity. Context units provide the network with the

ability to extract temporal information from the data. In the Elman network, the activity of the

first hidden PEs are copied to the context units, while the Jordan network copies the output of the

network. Networks which feed the input and the last hidden layer to the context units are also

available

5 Principal component analysis networks Principal component analysis networks (PCAs) combine unsupervised and supervised learning in

the same topology. Principal component analysis is an unsupervised linear procedure that finds a

set of uncorrelated features, principal components, from the input. A MLP is supervised to

perform the nonlinear classification from these components

6 Radial basis function (RBF) Radial basis function (RBF) networks are nonlinear hybrid networks typically containing a single

hidden layer of processing elements (PEs). This layer uses gaussian transfer functions, rather than

the standard sigmoidal functions employed by MLPs. The centers and widths of the gaussians are

set by unsupervised learning rules, and supervised learning is applied to the output layer. These

networks tend to learn much faster than MLPs.

7 Self-organizing feature maps (SOFMs) Self-organizing feature maps (SOFMs) transform the input of arbitrary dimension into a one or

two dimensional discrete map subject to a topological (neighborhood preserving) constraint. The

feature maps are computed using Kohonen unsupervised learning. The output of the SOFM can

be used as input to a supervised classification neural network such as the MLP. This network’s key

advantage is the clustering produced by the SOFM which reduces the input space into

representative features using a self-organizing process. Hence the underlying structure of the input

space is kept, while the dimensionality of the space is reduced

8 Time lagged recurrent networks

(TLRNs)

Time lagged recurrent networks (TLRNs) are MLPs extended with short term memory structures.

Most real-world data contain information in their time structure, i.e. how data change with time.

Yet, most neural networks are purely static classifiers. TLRNs are the state of the art in nonlinear

time series prediction, system identification and temporal pattern classification

9 Fully recurrent network Fully recurrent networks feedback the hidden layer to itself. Partially recurrent networks start

with a fully recurrent net and add a feedforward connection that bypasses the recurrency,

effectively treating the recurrent part as a state memory. These recurrent networks can have an

infinite memory depth and thus find relationships through time as well as through the

instantaneous input space. Most real-world data contains information in its time structure.

Recurrent networks are the state of the art in nonlinear time series prediction, system

identification, and temporal pattern classification

10 The CANFIS (Co-Active Neuro-Fuzzy

Inference System)

The CANFIS (Co-Active Neuro-Fuzzy Inference System) model integrates adaptable fuzzy inputs

with a modular neural network to rapidly and accurately approximate complex functions. Fuzzy

inference systems are also valuable as they combine the explanatory nature of rules (membership

functions) with the power of ‘‘black box” neural networks

11 The Support Vector Machine (SVM) The Support Vector Machine (SVM) is implemented using the kernel Adatron algorithm. The

kernel Adatron maps inputs to a high-dimensional feature space, and then optimally separates

data into their respective classes by isolating those inputs which fall close to the data boundaries.

Therefore, the kernel Adatron is especially effective in separating sets of data which share complex

boundaries. SVMs can only be used for classification, not for function approximation

Remotely sensed data capacities 213
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(7) Each neural network model was run three times and

then was repeated 10 times and the best performance
was reported on the train and test data.

Because the samples were divided into two parts: training
and testing data, again the multivariate linear regression mod-
els were created with these training data and then the accuracy
of them were evaluated in the test data in order to compare

two methods of artificial neural network and linear regression
model.

3. Results

3.1. The role of data type used in performance of model

Table 4 shows the results of multivariate linear modeling using
different types of remote sensed time series data. It should be

noted in this table, the r column shows correlation coefficient
of the regression confined to three layers, while rtotal shows the
correlation coefficient without any limitation to the number of

layers. As shown in Table 5, for all criteria and indicators signif-
icant differences between the various data type functions are not
seen, whether in three layer regression modeling and whether to
without any limitation to numbers of layer for modeling. The

only topographic corrected data often show the lower model
accuracy as a result of studying most of the studied area that
is flat and plain, and it could be predicted. However, this differ-

ence was not significant. Thus, although significant differences
were not seen in the data type function, reflectance values
(row 6, Table 2) were used according to the recommendations

of additional resources (Jensen, 2005, 2007; Liang, 2004;
Mather and Koch, 2011) in all subsequent stages of the study.

3.2. The role of soil quality indices

Table 6 shows the effect of the variables in the regression
model. As you can see, there is no significant difference
between two models with or without soil quality indices, how-

ever, when soil quality indices were used to model the Aggre-
gate Size Distribution, Slaking and Dispersion, pH and
Organic C-labile fraction indicators have a better performance

(Table 6). Therefore, further statistical analyzes were allowed
using the multivariate linear regression models to select inputs
(either the model consists of bands or with the soil quality

indices).

3.3. Linear regression modeling: time series scenarios versus
single date scenario

Table 6 illustrates multi-temporal scenarios that show better
performance than single-temporal in all of the criteria and
indices of soil quality (except of Organic C-labile fraction using

soil quality indices). Sometimes improvement of multi-
temporal modeling power has been several times of single-
temporal scenarios. Even in case of Slaking and Dispersion

indicator related to the methodology of LADA, the time series
scenario has created a predictive model, while the single-
temporal scenario has not been able to make a model. An

increase in the modeling power using time series data has been
observed on indicators derived from laboratory and field mea-
surements, such as EC, pH, gravel percentage and Organic
C-labile fraction (in the case without the use of soil quality
indices).

3.4. Artificial neural network modeling: time series scenarios
versus single scenarios

The results of linear regression modeling (with layer limita-

tion) and different types of artificial neural network models
in two scenarios, single and multi-temporal, are shown in
Tables 7 and 8. Firstly, the comparison between, the correla-

tion coefficients of training data of regression modeling and
artificial neural network models showed that artificial neural
network models had a better performance than regression

modeling in two scenarios. However, correlation coefficients
of testing data did not show significant differences between
the linear regression model and the best neural network
model. In fact, in the complex nonlinear model of artificial

neural network, only the power of training data modeling
was increased, but created models did not have a good per-
formance. Generally, artificial neural networks often have

been more successful to model indicators and indices using
time series data like the regression models. This better perfor-
mance of time series data clearly shows correlation coeffi-

cients of train data and correlation coefficients of test data.
Among the different models of artificial neural networks,
Modular feed forward networks and SOFMs models in terms
of correlation coefficients of train data showed the best per-

formance. However, taking into account the correlation of
test data, the best performance cannot be easily identified.
However, CANFIS and RBF models are slightly better than

other models.

3.5. Comparing the performance of two models

Tables 9 and 10 show correlation coefficients of linear regres-
sion using training data used in neural networks in two scenar-
ios for this study. Correlation coefficients of test data are

calculated after applying the model obtained from the train
data based on test data. By comparing the correlation coeffi-
cients of the test data of Tables 9 and 10 with the test data
of Tables 7 and 8, it is found that generally the performance

of different models of artificial neural network is better than
regression models (more in a single-temporal scenario) and
power of the model in this case was more than doubled. Also,

the accuracy of the train data modeling of artificial neural net-
work is considerably higher than the linear regression models.
However, the results of the multi-temporal scenario (time ser-

ies data) and linear regression in most cases are not much dif-
ferent from the results of the best artificial neural network
model. The difference between two correlation coefficients is

less than 2.0 where artificial neural networks are better.

4. Conclusion

4.1. Data type

The results showed that if digital numbers are linearly prepro-

cessed and selected remotely sensed data meet the criteria men-
tioned earlier (such as, without radiometric and atmospheric
problems, cloud cover percent less than 10% and so on), there

aren’t significant differences between soil quality parameters



Table 5 comparison of linear regression performance in different data types of multi-temporal data.

Model
Name

Indices Indicators Multivariate linear regression

Digital number Atmospheric corrected
digital number

Radiance Illumination corrected
radiance

Illumination corrected
reflectance

Terrain effect corrected
radiance

Terrain effect corrected
reflectance

Reflectance

Band
Number &
Date

r rtotal Band
number &
date

r rtotal Band
number &
date

r rtotal Band
number &
date

r rtotal Band
number &
date

r rtotal Band
number &
date

r rtotal Band
number &
date

r rtotal Band
number &
date

r rtotal

IMDPA Soil quality EC Band4_DEC 0.623 0.708 Band4_DEC 0.623 0.708 Band4_APR 0.605 0.681 Band4_DEC 0.628 0.680 Band4_DEC 0.639 0.698 Band4_APR 0.59 0.677 Band4_APR 0.591 0.690 Band4_DEC 0.624 0.680
Band4_APR Band4_APR Band4_DEC Band4_APR Band4_APR Band4_DEC Band4_DEC Band4_APR
Band5_DEC Band5_DEC Band4_JUL Band4_DEC Band5_DEC Band4_JUL Band4_JUL Band5_DEC

Gravel Band4_OCT 0.732 0.798 Band4_OCT 0.732 0.798 Band4_OCT 0.753 0.819 Band4_OCT 0.748 0.821 Band4_OCT 0.770 0.821 Band4_OCT 0.763 0.809 Band4_JUL 0.749 0.804 Band4_OCT 0.751 0.811
Band5_APR Band5_APR Band5_APR Band5_APR Band5_APR Band5_APR Band6_APR Band5_APR
Band6_APR Band6_APR Band6_APR Band6_APR Band6_APR Band6_APR Band5_APR Band6_APR

Texture Band6_APR 0.366 0.411 Band6_APR 0.366 0.411 Band6_APR 0.366 0.411 Band6_APR 0.367 0.413 Band6_APR 0.365 0.412 Band4_JUL 0.293 0.293 Band4_JUL 0.292 0.292 Band6_APR 0.364 0.410
Band4_DEC Band4_DEC Band4_DEC Band4_DEC Band4_DEC Band1_APR Band1_APR Band4_DEC
Band6_JUL Band6_JUL Band6_JUL Band6_JUL Band6_JUL Band6_JUL

Soil depth Band4_JUL 0.552 0.570 Band4_JUL 0.552 0.570 Band4_JUL 0.552 0.570 Band4_JUL 0.552 0.569 Band4_JUL 0.551 0.568 Band4_JUL 0.566 0.566 Band4_JUL 0.571 0.571 Band4_JUL 0.551 0.569
Band5_DEC Band5_DEC Band5_DEC Band5_DEC Band5_DEC Band5_DEC Band5_DEC Band5_DEC
Band6_APR Band6_APR Band6_APR Band6_APR Band6_APR Band6_APR Band6_APR Band6_APR

LADA Visual
indicators of
soil quality

Tillage pan Band1_DEC 0.414 0.414 Band1_DEC 0.414 0.414 Band1_DEC 0.414 0.414 Band1_DEC 0.415 0.415 Band1_DEC 0.415 0.415 Band1_JUL 0.408 0.408 Band1_JUL 0.408 0.408 Band1_DEC 0.414 0.414
Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR
Band1_JUL Band1_JUL Band1_JUL Band1_JUL Band1_JUL Band1_JUL

Aggregate
Size
Distribution

Band4_JUL 0.437 0.437 Band4_JUL 0.437 0.437 Band4_JUL 0.437 0.437 Band4_JUL 0.438 0.438 Band4_JUL 0.438 0.438 Band4_JUL 0.435 0.435 Band4_JUL 0.435 0.435 Band4_JUL 0.437 0.437
Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR
Band1_APR Band1_APR Band1_APR Band1_APR Band1_APR Band1_APR Band1_APR Band1_APR

Soil Crusts Band3_DEC 0.523 0.590 Band3_DEC 0.523 0.590 Band3_DEC 0.523 0.590 Band3_DEC 0.528 0.592 Band3_DEC 0.528 0.592 Band1_JUL 0.517 0.540 Band1_JUL 0.517 0.540 Band3_DEC 0.523 0.590
Band7_APR Band7_APR Band7_APR Band7_APR Band7_APR Band7_APR Band7_APR Band7_APR
Band7_OCT Band7_OCT Band7_OCT Band7_OCT Band7_OCT Band7_JUL Band7_JUL Band7_OCT

Earthworms No Entry No Entry No Entry No Entry No Entry No Entry No Entry No Entry
Roots No Entry No Entry No Entry No Entry No Entry No Entry No Entry No Entry
Sum of visual
VS-Fast scores

Band1_DEC 0.381 0.393 Band1_DEC 0.381 0.393 Band1_DEC 0.381 0.393 Band1_DEC 0.383 0.395 Band1_DEC 0.383 0.395 Band1_JUL 0.352 0.352 Band1_JUL 0.361 0.361 Band1_DEC 0.381 0.393
Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR
Band1_JUL Band1_JUL Band1_JUL Band1_JUL Band1_JUL Band1_JUL

Soil
measurement
indicators

Slaking and
Dispersion

Band2_DEC 0.496 0.496 Band2_DEC 0.496 0.496 Band2_DEC 0.496 0.496 Band2_DEC 0.477 0.549 Band2_DEC 0.477 0.550 Band7_OCT 0.378 0.513 Band7_OCT 0.349 0.466 Band2_DEC 0.496 0.496
Band4_APR Band4_APR Band4_APR Band4_APR Band4_APR Band6_DEC Band5_DEC Band4_APR
Band2_OCT Band2_OCT Band2_OCT Band3_OCT Band3_OCT Band7_JUL Band7_APR Band2_OCT

pH Band7_DEC 0.456 0.456 Band7_DEC 0.456 0.456 Band7_DEC 0.456 0.456 Band7_DEC 0.463 0.463 Band7_DEC 0.463 0.463 Band7_JUL 0.402 0.402 Band7_JUL 0.402 0.402 Band7_DEC 0.456 0.456
Band5_APR Band5_APR Band5_APR Band5_APR Band5_APR Band5_APR Band5_APR Band5_APR
Band7_OCT Band7_OCT Band7_OCT Band7_OCT Band7_OCT Band7_OCT

Water
Infiltration

No Entry No Entry No Entry No Entry No Entry No Entry No Entry No Entry

Organic C-
labile fraction

Band6_APR 0.555 0.575 Band6_APR 0.555 0.575 Band6_APR 0.555 0.575 Band6_APR 0.573 0.594 Band6_APR 0.573 0.594 Band7_JUL 0.536 0.536 Band7_JUL 0.535 0.535 Band6_APR 0.555 0.575
Band7_OCT Band7_OCT Band7_OCT Band7_OCT Band7_OCT Band4_JUL Band4_JUL Band7_OCT
Band4_JUL Band4_JUL Band4_JUL Band4_JUL Band4_JUL Band3_APR Band3_APR Band4_JUL

Sum of soil
measurement
VS-Fast
scores

Band1_DEC 0.614 0.614 Band1_DEC 0.614 0.614 Band1_DEC 0.614 0.614 Band1_DEC 0.611 0.611 Band1_DEC 0.611 0.611 Band1_JUL 0.478 0.478 Band1_JUL 0.478 0.478 Band1_DEC 0.615 0.615
Band6_APR Band6_APR Band6_APR Band6_APR Band6_APR Band3_JUL Band3_JUL Band6_APR
Band6_JUL Band6_JUL Band6_JUL Band6_JUL Band6_JUL Band6_JUL

Sum of VS-
Fast Scores

Total Score Band1_DEC 0.543 0.543 Band1_DEC 0.543 0.543 Band1_DEC 0.543 0.543 Band1_DEC 0.538 0.538 Band1_DEC 0.538 0.538 Band1_JUL 0.473 0.473 Band1_JUL 0.474 0.474 Band1_DEC 0.543 0.543
Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR Band3_APR
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Table 6 Performance Comparison of linear regression caused with or without the use of remote sensed indices of soil quality.

Model

name

Indices Indicators Reflectance

regression*
Model

name

Indices Indicators Reflectance

regression

rbs ris rbts rits rbs ris rbts rits

IMDPA Soil quality EC .345 .377 .68 .716 LADA Visual indicators of

soil quality

Earthworms .00 .00 .00 .00

Gravel .699 .699 .811 .829 Sum of visual VS-Fast

scores

.244 .340 .393 .394

Texture .188 .188 .410 .417 Soil measurement

indicators

Slaking and dispersion .00 .00 .496 .560

Soil depth .524 .527 .569 .567 Soil PH .00 .162 .456 .555

Total score .281 .281 .362 .362 Water infiltration .00 .00 .00 .00

LADA Visual indicators of

soil quality

Tillage pan .352 .352 .414 .428 Organic C-labile fraction .438 .624 .575 .608

Aggregate Size

Distribution

.287 .409 .437 .470 Sum of soil measurement

VS-Fast scores

.433 .433 .615 .694

Soil Crusts .366 .366 .590 .590 Sum of VS-Fast

Scores

Total score .419 .419 .543 .546

Roots 0.00 0.00 .00 0.00

rbts: Correlation coefficients of multi-temporal data without the use of remote sensed indices of soil quality.

ris: Correlation coefficients of single-temporal data with the use of remote sensed indices of soil quality.

rbs: Correlation coefficients of single-temporal data without the use of remote sensed indices of soil quality.
* rits: Correlation coefficients of multi-temporal data with the use of remote sensed indices of soil quality.
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modeling with digital number, and radiance and reflectance
data. Only terrain effect correction preprocessing shows differ-

ent results from other preprocessing due to the land slope.

4.2. The methodology of a field study of soil quality

There are two main problems to assess land degradation and
desertification using remote sensing (Yang et al., 2005): (1)
uncertainty field measurement and evaluation systems, (2) mis-

use of remotely sensed data power. Results showed that the
type of field methodology and criteria and indicators has a
great impact on remotely sensed modeling. Based on the find-
ings of this research, primarily if soil quality parameters are

quantitative and can be precisely measured, remotely sensed
data will prove far more effective in the modeling of measure-
ment. For example, the of gravel percentage, Organic C-labile

fraction, EC and pH parameters are better than the other
parameters that have been modeled due to being quantitative.
Even total scores of quantitative field measurements show the

capability of modeling.

4.3. Linear regression modeling

According to Table 6, the use of remote sensing indices of soil
quality is not always effective, but for some indicators (such as
aggregate size distribution and Organic C-labile fraction in a
single temporal scenario, and pH), the use of these indices

can help to increase the accuracy of modeling although these
remotely sensed indices have been created from the equations
conversion of the spectral bands. In other words, these indices

help for the modeling of nonlinear equation, but only in special
cases they are used properly. The iron oxide index is applied
more than the other indices for modeling and a ferrous miner-

als index is the next one, and both of them identify iron com-
pounds. According to Tables 6 and 7, the ferrous minerals
index entry in Organic C-labile fraction and pH modeling
increased the accuracy of modeling. These two indicators are

the ratio indices that are frequently used in remotely sensed
studies (Jensen, 2005), so it is recommended that in similar
studies, these ratios remotely sensed indices calculated for all

bands and applied for the non-linearity of the equations.
Almost for all soil quality parameters, linear regression
modeling of multi-temporal scenario shows much better per-

formance than single-temporal scenario. Although, most of
the parameters examined in this study will change little during
the years, but at a certain time, an indicator may show more

distinction than other indices due to environmental conditions
and physical–chemical construction. Therefore, it is recom-
mended that in these studies temporal series data are used with

more diversity and better distribution during the year.

4.4. Modeling by artificial neural networks

In the modeling by artificial neural network like linear regres-

sion modeling, multi-temporal scenarios have a better perfor-
mance than single-temporal scenarios for both correlation
coefficients of training data and correlation coefficients of test-

ing data. It seems that in cases that the single-temporal sce-
nario was better, repeating modeling of the multi-temporal
scenario is not enough probably because the networks have

the extreme local optimum (Ivancevic and Ivancevic, 2005).
For example, the MLP model for multi-temporal scenarios
of soil depth (Table 8) shows that it may achieve much better

results by more iteration.
However, by the consideration of the correlation coefficient

of training data as criteria of accuracy assessment, it seems
artificial neural network models have succeeded in the model-

ing of all indicators and indies (whether quantitative or quali-
tative), but it can be generally concluded that the artificial
neural networks were better in quantitative data modeling by

taking into account both correlation coefficients of the training
and test data. However, among the artificial neural networks,
Modular feed forward networks showed the best correlation

coefficient of training data, but it is noted that the model
showed the weakest correlation coefficient of testing data in
most iterations. Therefore, when the Modular feed forward
networks used it is needed to take care and be sure to test

the model. SOFMs network, similar to Modular feed forward
networks, has the best correlation coefficient of train data after
modular networks.

Some neural networks have shown relatively uniform and
sometimes showed quite similar in different iterations. The



Table 7 Comparing the performance of different artificial neural network models and linear regression model in a single temp al scenario.

Model
name

Indices Indicators r Regression Artificial neural network models

Layer Significance
level

Multilayer
perceptrons

Generalized
feedforward
networks

Modular
feedforward
networks

Jordan and
Elman
networks

Principal
component
analysis
networks

Radia
basis
functio

Self-
organizing
feature
maps

Time lagged
recurrent
networks

Fully
recurrent
networks

Co-Active
Neuro-
Fuzzy
Inference
System

The Support
Vector
Machine

rtrain rtest rtrain rtest rtrain rtest rtrain rtest rtrain rtest rtrain r t rtrain rtest rtrain rtest rtrain rtest rtrain rtest rtrain rtest

IMDPA Soil Quality EC .42 Band4 .000 0.978 0.404 0.97 0.422 0.998 -0.355 0.92 0.56 0.84 0.283 0.7 0 11 0.98 0.322 0.8 �0.244 0.6 0.467 0.5 0.4 0.5 0.2
NDBS2 .004
Wetness .010

Gravel .65 Band4 .000 0.87 0.60 0.89 0.69 0.99 0.64 0.92 0.64 0.88 0.64 0.82 0 2 0.99 0.57 0.96 0.5 0.82 0.58 0.79 0.5 0.72 0.39
NDBS2 .000
Clay Minerals .003

Texture .23 Band4 .009 0.64 0.35 0.67 0.3 0.95 0.145 0.78 0.197 0.62 0.35 0.46 0 7 0.82 0.254 0.85 0.23 0.29 0.331 0.47 0.261 0.49 -0.11
NDBS3 .103

Soil depth .52 Band4 .000 0.83 0.315 0.86 0.336 0.995 0.213 0.93 �0.207 0.8 0.207 0.69 0 54 0.98 0.309 0.92 0.323 0.74 0.473 0.61 0.455 0.81 0.254
Band6 .001
Band5 .018

Total Score .292 Band4 .000 Becuase stepwise linear regression choice just one layer, modeling by Artifi al Neural Network modeling has not been done

LADA Visual Indicators of
Soil Quality

Tillage pan .352 Band1 .000 Becuase stepwise linear regression choice just one layer, modeling by Artifi al Neural Network modeling has not been done
Aggregate Size Distribution .409 Iron Oxide .000 0.72 0.330 0.74 0.385 0.997 0.311 0.753 0.277 0.722 0.344 0.56 0 58 0.896 0.320 0.7 0.308 0.47 �0.328 0.65 0.333 0.88 0.232

Band4 .001
Soil Crusts .366 Band4 .000 Becuase stepwise linear regression choice just one layer, modeling by Artifi al Neural Network modeling has not been done
Earthworms 0.0 No Entry Becuase stepwise linear regression choice no layer, modeling by Artificial N ural Network modeling has not been done
Roots .202 Salinity Index1 .014 Becuase stepwise linear regression choice just one layer, modeling by Artifi al Neural Network modeling has not been done
Sum of visual VS-Fast
scores

.340 Band1 .075 0.67 0.349 0.72 0.268 0.986 �0.328 0.788 0.299 0.71 0.349 0.53 0 36 0.88 0.263 0.66 0.331 0.44 0.192 0.486 0.302 0.69 0.315

Iron Oxide .004
NDBS3 .026

Soil Measurement
Indicators

Slaking and Dispersion 0.0 No Entry Becuase stepwise linear regression choice no layer, modeling by Artificial N ural Network modeling has not been done
pH .486 Band7 .000 0.8 0.144 0.81 0.510 0.991 0.266 0.857 0.396 0.789 0.371 0.67 0 35 0.973 0.360 0.844 0.407 0.63 0.371 0.62 0.280 0.776 0.377

Ferrous Minerals .000
Brightmess .000

Water Infiltration 0 No Entry Becuase stepwise linear regression choice no layer, modeling by Artificial N ural Network modeling has not been done
Organic C-labile fraction .493 Greenness .000 0.7 0.404 0.73 0.560 0.987 0.455 0.725 0.490 0.695 0.465 0.57 0 49 0.81 0.545 0.737 0.489 0.358 0.613 0.467 0.556 0.6 �0.119

Ferrous Minerals .001
Chemical Soil
Composition

.002

Sum of soil measurement
VS-Fast scores

.433 Band1 .000 Becuase stepwise linear regression choice just one layer, modeling by Artifi al Neural Network modeling has not been done

Sum of VS-Fast Scores Total Score .507 Band2 .000 0.735 0.329 0.757 0.351 0.949 �0.369 0.81 0.270 0.73 0.278 0.68 0 74 0.859 0.186 0.817 0.403 0.63 0.224 0.707 0.336 0.73 0.261
Clay Minerals .015
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Table 8 Comparing the performance of different artificial neural network models and linear regression model in a multi-tempora scenario.

Model
name

Indices Indicators Regression Artificial neural network models

r Layer & date Significance
level

Multilayer
perceptrons

Generalized
feedforward
networks

Modular
feedforward
networks

Jordan and
Elman
networks

Principal
component
analysis
networks

Radial
basis
functio

Self-
organizing
feature
maps

Time lagged
recurrent
networks

Fully
recurrent
networks

Co-Active
Neuro-
Fuzzy
Inference
System

The
Support
Vector
Machine

rtrain rtest rtrain rtest rtrain rtest rtrain rtest rtrain rtest rtrain r t rtrain rtest rtrain rtest rtrain rtest rtrain rtest rtrain rtest

IMDPA Soil quality EC 0.625 Band4_DEC .000 0.89 0.555 0.896 0.581 0.998 0.357 0.948 0.649 0.882 0.554 0.85 0 51 0.988 0.576 0.915 0.607 0.6 0.624 0.653 0.603 0.61 0.290
Band4_APR .000
NDBS2_DEC .006

Gravel 0.773 Band4_OCT .000 0.903 0.716 0.92 0.72 0.999 0.5 0.922 0.652 0.912 0.732 0.877 0 35 0.996 0.563 0.964 0.698 0.83 0.639 0.83 0.667 0.73 0.323
Band5_APR .000
Iron Oxide_JUL .000

Texture 0.364 Band6_APR .000 0.73 0.223 0.765 �0.247 0.989 0.499 0.847 0.341 0.74 0.239 0.479 0 89 0.987 -0.312 0.923 �0.343 0.499 0.389 0.458 0.348 0.51 0.136
Band4_DEC .000
Band6_JUL .019

Soil depth 0.549 Band4_JUL .000 0.809 0.885 0.804 0.435 0.998 0.338 0.926 0.096 0.77 0.446 0.683 0 97 0.97 0.470 0.98 0.370 0.783 0.505 0.642 0.524 0.8 0.233
Iron Oxide_JUL .001
Band5_DEC .018

Total score .35 Band2_DEC .000 Becuase stepwise linear regression choice just one layer, modeling by Artifi al Neural Network modeling has not been done

LADA Visual Indicators of Soil
Quality

Tillage pan 0.400 Band1_DEC .000 0.63 0.281 0.69 0.244 0.997 0.184 0.8 0.344 0.63 0.281 0.5 0 35 0.899 0.171 0.78 0.483 0.5 0.262 0.57 0.286 0.938 0.223
Iron Oxide_APR .008

Aggregate Size Distribution 0.470 Iron Oxide_APR .000 0.77 0.454 0.786 0.495 0.998 0.413 0.84 0.374 0.764 0.453 0.66 0 25 0.963 0.297 0.69 0.445 0.47 0.313 0.643 0.508 0.876 0.459
Band4_JUL .002
Band4_APR .040

Soil Crusts 0.522 Band3_DEC .100 0.797 0.546 0.834 0.546 0.986 0.351 0.845 0.545 0.8 0.548 0.726 0 49 0.953 0.220 0.898 0.389 0.551 0.592 0.667 0.575 0.87 0.638
NDBS1_APR .000
Band7_OCT .002

Earthworms 0 No Entry Becuase stepwise linear regression choice no layer, modeling by Artificial ural Network modeling has not been done
Roots 0.228 Clay

Minerals_DEC
.005 Becuase stepwise linear regression choice just one layer, modeling by Artifi al Neural Network modeling has not been done

Sum of visual VS-Fast scores 0.394 Iron Oxide_APR .002 0.72 0.283 0.71 0.237 0.985 0.224 0.784 0.297- 0.73 0.207 0.55 0 0.925 0.315 0.69 0.266 0.576 0.189 0.153 0.160 0.714 0.146
Band7_DEC .000
Band5_APR .049

Soil Measurement
Indicators

Slaking and Dispersion 0.516 Band2_DEC .000 0.86 0.305 0.86 0.332 0.992 -0.169 0.848 -0.175 0.857 0.150 0.7 0 37 0.913 0.187- 0.926 0.287 0.647 0.317 0.7 0.431 0.830 0.241
Band4_APR .000
Greenness_OCT .000

pH 0.519 Ferrous
Minerals_DEC

.000 0.847 0.229 0.849 0.311 0.994 0.263 0.895 0.390 0.847 0.348 0.774 0 15 0.979 0.152 0.845 0.290 0.69 0.356 0.740 0.329 0.794 0.313

Salinity
Index1_OCT

.000

Wetness_DEC .003
Water Infiltration 0 No Entry Becuase stepwise linear regression choice no layer, modeling by Artificial ural Network modeling has not been done
Organic C-labile fraction 0.567 Greenness_APR .000 0.876 0.589 0.864 0.596 0.997 0.445 0.878 0.516 0.798 0.588 0.7 0 36 0.978 0.368 0.845 0.616 0.57 0.618 0.674 0.670 0.63 0.283

Band6_JUL .001
Ferrous
Minerals_JUL

.002

Sum of soil measurement VS-
Fast scores

0.620 Band1_DEC .000 0.793 0.364 0.824 0.363 0.992 0.222 0.852 0.433 0.8 0.359 0.68 0 94 0.960 0.268 0.842 0.517 0.69 0.541 0.715 0.553 0.753 0.315
Band6_APR .000
Moisture
Index_OCT

.000

Sum of VS-Fast Scores Total Score 0.546 Band1_DEC .000
NDBS3_APR .001 0.732 0.370 0.759 0.352 0.958 0.273 0.86 0.301 0.837 0.322 0.7 0 03 0.817 0.509 0.824 0.273 0.7 0.171 0.71 0.378 0.75 0.454
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SVM model is more stable than all other models, and it does
not need to repeat. After that, CANFIS network showed the
most consistency in various iteration, and PCA and RBF were

in next stability. The MLP models and models derived from it
indicated very different results of modeling in various repeats.
Therefore, it is suggested that enough repeats are used to make

high sure before the end of the modeling by these networks (see
soil depth indicator in multi-temporal scenario of Table 8).

Using of Genetic algorithm was tried after achieving the

preliminary results of artificial neural network models, the
parameters of each network are optimized for soil quality indi-
cators modeling, but the results showed that in spite of a sig-
nificant increase in the correlation coefficient of training

data, the correlation coefficient of testing data is at the same
level of previous modeling. In fact, remotely sensed prediction
of soil parameters based on existing data did not show the

capability of increasing the power of modeling with this
method.

It may be thought that the increase of input dimension can

strengthen the artificial neural network models. However, as
Jensen (2005) noted, test uncertainty costs also went up with
an increase in the input dimension (an increase in data-input

to more than three-layers). The scientific analysis was exam-
ined for some quantitative indices such as organic carbon,
gravel, EC and pH, and it was observed that if the entrance
dimension into the artificial neural network is similar to the

output of stepwise linear regression, correlation coefficient
shows a considerable reduction in the test data, in spite of sig-
nificant increase in training data correlation coefficients.

Actual comparison of linear regression modeling and artifi-
cial neural networks to the training and testing data (Tables 9
and 10) showed that, although relationships between remotely

sensed data may be nonlinear in many cases (Jensen, 2007)
modeling accuracy won’t increase dramatically by using
nonlinear artificial neural networks. However, based on the

comparison of the numbers of Tables 7 and 9 it can be recom-
mended artificial neural networks modeling is better than
linear modeling such as regression modeling in single-
temporal scenarios. However, these networks cannot be

recommended by comparing Tables 8 and 10 due to the
complexity of neural networks and uncertain data that will
be created. In fact, actual accuracy of the two modeling in

multi-temporal scenario (regression and best model of neural
network) is close to each other (exception of PH). In this case,
multi-temporal nonlinear methods such as nonlinear remote

sensed indices are preferred.

4.5. Suggestions for further researches

Desertification affects different types of environments thus any

decision focusing on desertification requires deep research on
the characteristics of the area under analysis (Santini et al.,
2010). This paper is concerned with exploring an alternative

remotely sensed approach for assessing the soil degradation.
The procedure focuses on different criteria of two field based
methods of soil degradation assessment. This study shows that

quantitative indicators of these two models can be modeling
properly by remotely sensed data. However, LADA Method-
ology is preferred because some of its indicators can be mea-

sured by hands or portable Laboratory tools (indicators of
soil measurement VS-Fast scores criteria), it is possible to



Table 10 Rresults of linear regression modeling of training data of artificial neural network models in multi-temporal scenario.

Model

name

Indices Indicators Regression Model

name

Indices Indicators Regression Model

Name

Indices Indicators Regression

Reflectance Reflectance Reflectance

Band

number &

date

rtrain rtest Band number &

date

rtrain rtest Band number &

date

rtrain rtest

IMDPA Soil

Quality

EC Band4_DEC 0.691 0.609 LADA Visual

Indicators of

Soil Quality

Tillage pan Band1_DEC 0.401 0.336 LADA Soil

Measurement

Indicators

pH Ferrous

Minerals_DEC

0.278 0.063

Iron

Oxide_ Band4_APRتشهبیدرا Salinity

Index1_OCTBand5_DEC Aggregate

Size

Distribution

Iron

Oxide_APR

0.506 0.439

Band4_JUL Wetness_DEC

Band4_APR Organic C-labile

fraction

Greenness_APR 0.477 0.572

Gravel Band4_OCt 0.734 0.708 Soil Crusts Band3_DEC 0.510 0.481 Band6_JUL

NDBS1_APR Ferrous

Minerals_JULBand7_OCT

Band5_APR Sum of visual

VS-Fast

scores

Iron

Oxide_APR

0.463 0.170 Sum of soil

measurement VS-

Fast scores

Band1_DEC 0.661 0.576

Band7_DEC

Band5_APR Band6_APR

Band6_APR Soil

Measurement

Indicators

Slaking and

Dispersion

Band2_DEC 0.563 0.368

Texture Band6_APR 0.337 0.336 Moisture

Index_OTC

Band4_DEC Sum of VS-

Fast Scores

Total Score Band1_DEC 0.589 0.432

Band6_JUL Band4_APR

Soil depth Band4_JUL 0.596 0.366 NDBS3_APR

Band5_DEC Greenness_OCT

Band6_APR
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collect these data in field directly and there is no limitation to
use in other countries. But modified models of ESAs such as
IMDPA are region-based. We must point out both models

lack the setting that is needed for remote sensing analysis
and further researches must be done to combine different indi-
cators of soil degradation that are suitable for use in remotely

sensed data. Gravel percentage, Organic C-labile fraction, EC,
pH, Slaking and Dispersion, and Soil Crusts are indicators
that have the potential to be used in this new model.
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