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Abstract—In this paper, we introduce (1, 6. )-pseudomonotone-type set-valued mappings and
consider the existence of solutions to variational-type inequality problems for (1, 6. d)-pseudomonio-
tone-type set-valued mappings i1 nonreflexive Banach spaces. © 2001  Elsevier Science [id. All
righits reserved.
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1. INTRODUCTION

In 1995, Chang ef al. [1] first considered variational inequalities for monotone single-vahied
mappings in nonreflexive Banach spaces. Later on, Verma (2] and Watson [3] studied variational
inequalities for strong pseudomonactonicity and pseudomonotonicity for single-valued mappings
in nonreflexive Banach spaces. respectively. Recently, Lee ef al. [4] introduced (7, 8)-pseudo-
monotonicity, which generalizes and extends monotonicities mentioned above. And then, they
showed the existence theorem of solutions to generalized variational-like inequalities for single-
valued mappings in nonreflexive Banach spaces, which generalizes and extends some results in [2]
and [1,3], respectively.

In this paper, we first introduce (1, 8, §)-pseudomonotone-type, which generalizes and extends
{1, 8)-pseudomonotonicity to set-valued case. And then, we show that the existence theorem of
solutions to variational-type inequalities for (n, 8, §)-psendomonotone-type set-valued mappings
in nonreflexive Banach spaces.
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Let X be a real Banach space, T": X » 2X" where X* is the dual space of X, be a set-
valued mapping, K C X be aset, n: K x K — X", the second dual of X, be an operator,
and ¢ : K x K — R be a function. The so-called scalar variational-type inequality problem for
set-valued mappings is to find an 29 € K such that for all @ ¢ i there exists a vy & 7T'{1g) such
that

{vo,n(x, z0)) + (2, 20) > 0,

the single-valued case of which was first considered by Behera and Panda [5], and extended to
vector case for single-valued mappings using generalized Minty's lemma [6] and for sct-valued
mappings [7] using Fan's geometrical lemma [8].

DEerFINITION 1.1. Let X be a real nonreflexive Banach space with the dual X* and X** be the
dual of X*. Let T : K — 2%\ {D} be a set-valued mapping, n,0 : K x K — X** operators and
d: K x K — R a function, where K is a subset of X™*. T' is said to be (1, 8, § )-psendomonotonc-
type, if there exists a constant r (called (n, 0,5 )-pseudomonotone-type constant of T') such that
for all z,y € K and v € T(y), there exists u € I'(x) such that

(v, n(x, 1)) + 6(x,y) 2 0 implies (u,7(x,y)) = d(x,y) > vz, )%,
where || - || denotes the norm.

ExaMpPLE. Let X be a nonreflexive Banach space ¢g, then [y = ¢p* and I = ¢p**. Put K = {x €
loo : izl < 1}. Define n: K x K — o by n(z,y) = (22 + ;%)) for z = (x;),y = (1) € K\ {0}
and n(0,0) = (1)72,, § : K x K = Rand ¢ : K x K — I, by #(x,y) # 0 for x,y € K. Define
T: K Clg — 20\ {0} by for = = (2;);2, € K\ {0},

i ) . 1 X

T(z)y={n-4;: &, =(0,...,0,2;,0,...),ne NU(-N),i ¢ N} and 0 = (—,;;)
/=1
then T is (n, 8, §)-pseudomonotone-type mapping. In fact, for all @ = (z)2,, 4 = (y:);0, € K
and v = n-y; € T(y). Choose u = k- Z; € T(2) such that k- x; > n -y, for some k € NL (—N}.
Then ) .
(u—v,q(@,y)) _ (kB —n-gi iz, y)

18z, y)* 16¢z, ) |2
(k-ai—n-y) (2% +4°) o kexi—ney,
- ek eI
>, for some r > (.

Definition 1.1 generalizes the (3, §)-pseudomonotonicity for single-valued mappings in [4].
DEFINITION 1.2. Let7: K xK — X** be a function. A set-valued mapping T : I < X** —» 27
is said to be hemicontinuous, if for any x,y € K with v +i(y —x) € K for any t € (0,1], the
multifunction

te[0,1]— Tz +tly—x)) nly,x)
is upper semicontinuous (shortly, u.s.c.) at 0%, where
T(x+1ty—a)-n(yz) = {{s,n(y,2)) : s € Tz +t{y — 2))}.

The set-valued mapping T is said to be finite-dimensional u.s.c. if for any finite-dimensional
subspace F of X** with Kp = KNF #0, T: Kr — 2% is u.s.c. in the norm topology.
LeEMMA 1.1. (See [9].) Let X,Y be topolagical vector spaces and T : X — 2V be a set-valued
mapping.

(1) If K Is a compact subset of X, and 1" is u.s.c. and compact-valued, then T(K) is compact.

(2) If T is w.s.c. and compact-valued, then IT' is closed.

Let K be a subset of a topological vector space X. Then a mapping 7' : A — 2% is called

a Knaster-Kuratowski-Mazurkiewicz (in short, KIKKM) mapping (10 if for each nonempty finite
subset N of K. coN C T(N), where co denotes the convex hull and T(V) = U{T(x) 1w € N}.
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THEOREM 1.1. KKM THEOREM. (See [8].) Let K be an arbitrary nonempty subset of a
Hausdorff topological vector space X. Let a set-valued mapping T' : K — 2X be a KKM
mapping such that T(x) is closed for all € K and compact for at least onex € K. Then

() T(x) # 0.

TEHN

2. MAIN RESULTS

In this section, we first consider some result with (7, 8, §)-pseudomonotone-type hemicontinu-
ous set-valued mappings in nonreflexive Banach spaces. And then, we show that the existence
theorem of solutions to variational-type inequality problems for (1,8, §)-pseudomonotone-type
finite-dimensional u.s.c. compact set-valued mappings in nonreflexive Banach spaces.

THEOREM 2.1. Let X be a real nonreflexive Banach space and K a nonempty convex subset
of X**. Let T : K — 2% be an (1, 8, §)-pseudomonotone-type hemicontinuous set-valued map-
ping, and 7, 8 : K x K — X** operators and 6 : K x K — R a function such that

(i) n(x,z) =0, 6(z,z) =0, and §(z,x) =0, for all x € K and
(ii) for each y € K,

x — n(z,y) and x — 8(x,y) are affine, and x — {x,y) is convex.

Then the following variational-type inequality problems are equivalent.
Find 2o € K such that for all z € K there exists vo € T(xp) such that

(Uﬂan(Ia:CO)) + 6(1»170) = 0. (21)
Find 1o € K such that for all z € K there exists v € T{x) such that
(v,1(z, 20)) + 8(x,x0) 2 7|6(z, x0)]%, (2.2)

where r is the (7,0, 8)-pseudomonotone-type constant of T

ProoF. Equation (2.2) follows from (2.1) by the definition of (7, 8, 9)-pseudomonotone-type of T".
Conversely, suppose that (2.2) holds and set 2, = ¢ + t(z — zo), where x € K and t € [0,1].
Then z; € K, and we have v, € T(z;) such that

(vg, (2, 30)) + 0(2e,70) 2 7|8 (r, 20) 1.
Hence, by (ii), we have
t{{ve, n(x, 20)) + 8(z, z0)} + (1 — t){{ve, n(z0, o)) + 6(T0, 7o)}
> || t8(x, xg) + (1 — t)6(xo, zo)||*

Consequently, we have
(ves 1, Z0)} + 8(, z0) > 7t]|6(x, 20)||*. (2.3)

Suppose that (2.1) does not hold. Then there exists an x € K such that for any vy € T'(z)
{(vo,n{x, x0)) + 8z, z9) < 0.
By hemicontinuity of T', there exists to > 0 such that for any ¢ € (0,%y) and s € T'(xx¢),
(s,n{x, z0)) + 6z, z0) < 0.
Hence, we have that for any t € (0,tp) and s € T(zy)
(s,71(x, 20)) + (2, 20) < rt[|8(z, zo)lI?,
which contradicts (2.3). So (2.1) holds.
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CoOROLLARY 2.2. Considering T : K — X* instead of T : K — 2% and a zero function &
in Theorem 2.1, we can obtain Theorem 2.1 in [4], which generalizes Theorem 2.1 in [2] and
Lemma 1 in [3].

Now, we consider the existence theorem of solutions to variational-type inequality probleims
for (7, 8, §)-pseudomonotone-type finite-dimensional u.s.c. compact set-valued mappings in non-
reflexive Banach spaces.

THEOREM 2.3. Let X be a real nonreflexive Banach space and K a nonempty hounded closed
convex subset of X**. Let T : K — 2X7 be an (1,8, 8 )-pseudomonotone type finite-dimensional
u.s.c. compact set-valued mapping, and 5, 8 : K x K — X operators and § : K x I — R a
function such that

(i) p(z,z) =0, 8(z,z) =0, and §(z,x) = 0, for all x € K,
(ii) for each y € K,

x— n(z,y) and T — O(xz,y) are affine, and = — (z,y) is convex.
(iii) for each r € K,
y—nlz,y), y—8(z,y), and y— §(z,y) are continuous.
Then there exists o € K such that for all x € K there exists vq € T(xp) such that
{vo, p(z,20)) + &(x,zg) > 0.

ProOF. For each finite-dimensional subspace F of X** with Kp = KN F # §, we first consider
the following variational-type inequality.
Find g € Kp such that for all € Kp there exists vy € T(zy) such that

{vo, n{(z, z0)} + 8(z,20) = 0. (2.4)

Since K is a nonempty bounded closed convex set in a finite-dimensional space F and 7' :
Kg — 2% is us.c. compact-valued, (2.4) has a solution 2y € Kg. In fact, define a set-valued
map G : K — 2F for each y € Ky by

Gly) := {z € Kp : there exists v € T(z) such that (v, n(y,x)) + §(y,x) > 0}.

First, we prove that G is a KKM map. Suppose to the contrary that G is not a KKM niap. Then
there exists a finite set {z1,22,...,2,} in Kp, 0y >0, =1,2,... ;nand € co{a. a2, ..., }

such that B ) .
Z a; =1 and = Z o & U Glx;).
i=1 i=1 i=1
So, by Condition (ii) and definition of a set-valued map G, we have for all v € T(x).
n n
(vymp(z,z)) + §(x,x) = <v,7; (Z aixi,;r)> + 6 (Z ul;z,».;t)
1=] i=1
< { v, Z o (x4, £)> + Z ;8 (z;,2)

i=1

= Z ((v,n(zy, x)) + 6 (%4, 7))
<0, foralli=1,2,...,n.

By Condition (i}, this is impossible. Therefore, G is a KKM map.
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Next, we show that G(y) is closed in F', for all y € Kp. Let {z,} be a sequence in G(y)
converging to xp € F. Then we have there exists v,, € T(x,,) for each n such that

(Vns Y, T )Y + 8(y, 2) = 0.

By (1) of Lemma 1.1, T(KF) is compact, there exists v9 € T(Kp) such that v, — vp. Since T is
closed by (2) of Lemma 1.1, vg € T(xp). And by Condition (iii) and the fact that {||n(y, z,)|} is
bounded, we have

[(Une (Y )} + 8(: ) — {{v0, 0y, 7)) + &y, z0)} |
< on: (Y Tn)) — {vo, (Y zo))| + |(y, 0) — 3(y, 20)|
< [{vn = vo, (Y, za))| + [{vo, n(y, 2n) — n(y, z0))| + [8{(y, ) — 6{y, zo)]
< lva — wvoll - {imlys 2o )l + llwoll - 1n(ys T} — 0y, zo)l| + |6(y, Tn) — 8(y, zo)|
— 0, as n — oo.

Consequently, there exists vo € I'(xg) such that (v, n(y, z0)) +8(y,zo) > 0. Hence, zo € G(y),
thus, G(y) is closed in F. Moreover, G(y) is compact from the compactness of Kr. By KKM
theorem, [ ¢, G(z) is nonempty.

Letting &y € (e, Gz}, for all 2 € Kp, we have some vy € T(xq) with

<'U07 7)(337 $0)> + 5(33,.’50) = 0.

Now we will prove that T : Kr — 2% is hemicontinuous.
Since F is a finite-dimensional subspace of X**, x:y — x¢ strongly. Therefore, by Condition (iii),
there exists v € T'(z) such that

(o, n(z, )Y + &(z,20) > 7|6z, 20) |7, forallz € K.

Since T : Kr — 2% is us.c., for any z,y € Kp, if n{y,x) = 0, then it is clear that the
multifunction

t€0,1] +— T{z +t(y — z)) - n(y,x)
is u.s.c. at 0". Suppose that n(y,z) # 0 and £ > 0. Then by the upper semicontinuity of 7", there
exists ¢ € (0,1) such that for t € (0,25)

£

Tx+ty—z)) CT(z)+ _Iln(y,x)I| Bx-,

where Bx» = {z* € X* : ||z™|| < 1}.
So for t € (0,20} and z € T'(x + t(y — z)), there exists Z € T(z) and z* € Bx- such that

z=3+ & *
o Iy, z)
Note that e
Iz, n(y, )} — (Z,n(y, 2)}| = T [{z", n(y, z))|
€ .l

< o lz*|l - in(y, =)
<elz*|
<e

So we have that for t € (0, o),

T(x+ty — z)) - n(y,z) C T(z) - n(y,z) + Br.

Thus, T : Kz — 2% is hemicontinuous.
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On the other hand, since T is (n, 8, §)-pseudomonotone-type, by Theorem 2.1, there exists
v € T(x) such that
(v, n(x, 20)) + 8(z, o) = 7)|6{z, 20)|?, for all z € K. (2.5)
Let 3 ={F C X** : dim(F) < +oo and Kf # @}, and associate each F € & with a set
Wr := {&xg € Kp : there exists v € T'(z) such that
(v, n(z,z0)) + 8(x,20) = ri|0(z, xo)||%, for all z € Kp}.
By (2.5), we know that Wy is nonempty. Since Wr C K and K is weak*-closed, the weak*-
closure W} of Wg is contained in K. Next, for any n elements Fy,F5,..., F, in 3, let F be
the subspace spanned by the union |J_, F;, then it is obvious that dim(F) is finite and Kp
is nonempty, hence, F lies in & Moreover, W is nonempty and contained in Wy, for each
i =1,2,...,n. Therefore, we have

(2.6)

n

N W5, #0.

i=1
This implics that {W:, : F' € S} has the finite intersection property. Since K is bounded, by
Banach-Alaoglu theorem, K is weak*-compact, hence, we know that {W} : F € S} has the
nonempty intersection; i.e.,

[ Wr#0.

Feg
Take 2o € Npeg W} Then for each F € 3, 19 € K.

Next, we prove that there exists v € T'(z) such that

(v,n(x, z0)) + 8(z,z0) > 1|6(x, xo)|I?, for all z € K.

For a given x € K, take F € G such that € F. Since 2¢ € W}, there exists a net z, in Wg
such that xy — xp in the weak*-topology. Hence, by (2.6), there exists v € T'(z) such that

(v, m(z, 2)) + 8{z,2x) > r||8(x, 22)|%, for all x € K.
Hence, by Theorem 2.1, we see that there exists vy € T{xp) such that
{vo, n(x, 1p)) + 8z, zy) = 0, for all z € K.

COROLLARY 2.4. Considering T : K — X* instead of T : K — 2 and a zero function §
in Theorem 2.3, we can obtain Theorem 2.3 in [4], which generalizes Theorem 2.2 in [I] and
Theorem 2.2 in [2].

REMARK. We can obtain the same results as Theorem 2.1 and Theorem 2.3 for {1, 4, §}-pseudo-
monotone set-valued mappings, which also generalize some results in [2—4] and [1,2,4], respec-
tively.
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