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Abstract 

A multicircuit is a multigraph whose underlying simple graph is a circuit (a connected 
2-regular graph). The List-Colouring Conjecture (LCC) is that every multigraph G has edge- 
choosability (list chromatic index) ch’(G) equal to its chromatic index x’(G). In this paper the 
LCC is proved first for multicircuits, and then, building on results of Peterson and Woodall, for 
any multigraph G in which every block is bipartite or a multicircuit or has at most four vertices 
or has underlying simple graph of the form KI,,,,. @ 1999 Elsevier Science B.V. All rights 
reserved 

Keywords: Edge-choosability; List chromatic index; Chromatic index; Edge colouring; List- 
colouring conjecture; Multicircuit 

1. Introduction 

Let G = (V,E) be a multigraph with vertex-set V(G) = V and edge-set E(G) = E. Let 
f : E --+ N be a function into the positive integers. We say that G is edge-f-choosable 
if, whenever we are given sets (‘lists’) A, of ‘colours’ with l&l = f (e) for each e E E, 
we can choose a colour c(e) E A, for each edge e so that no two adjacent edges have 
the same colour; in this case, we say loosely that G can be edge-coloured from its lists. 
The edge choosability, list edge chromatic number or list chromatic index ch’(G) of 
G is the smallest integer k such that G is edge-f -choosable when f(e) = k for each e. 
The ordinary edge chromatic number, or chromatic index, of G is denoted by x’(G); 
clearly ch’(G) 2 x’(G). The following conjecture was made independently by Vizing, 
by Gupta, by Albertson and Collins, and by Bollobis and Harris (see [4,5]). 

The List-Colouriug Conjecture (LCC). For every multigraph G, ch’(G) = x’(G). 
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Galvin [3] proved the LCC for bipartite multigraphs. Specifically, if G is a bipar- 
tite multigraph then ch’(G) = x’(G) = d(G), the maximum degree of G. In [l] we 
strengthened this result by proving that a bipartite multigraph G is edge-f-choosable, 
where f(e) = max{d(u), d(w)} for each edge e = uw of G. (Here d = dG denotes de- 
gree in G.) 

These results were extended to line-perfect multigraphs in [7]. Let w’(G) denote the 
size of a largest edge-clique (set of mutually adjacent edges) in G, and let o/G(e) de- 
note the size of a largest edge-clique containing edge e. A multigraph G is line-perfect 
if its line graph L(G) is perfect, that is, if x’(H) = w’(H) for every submultigraph H 
of G (since induced subgraphs of L(G) are the line graphs of arbitrary submultigraphs 
of G). It follows from a result of Maffray [6, Theorem 21 that a multigraph is line- 
perfect if and only if each of its blocks is bipartite, or has at most four vertices, or 
has underlying simple graph of the form Ki, i,P (p 23). In [7] we proved that if G 
is a line-perfect multigraph then G is edge-oh-choosable and ch’(G) = x’(G) = w’(G). 
This proves the LCC for line-perfect multigraphs, and it generalizes the results of the 
previous paragraph for bipartite multigraphs, since if G is bipartite then it is easy to 
see that w’(G)= d(G) and c.&(e)= max{d(u),d(w)} for each edge e=uw of G. 

Now let a multicircuit be a multigraph whose underlying simple graph is a circuit 
(a connected 2-regular graph), and let ye(e) denote the maximum value of [I,!?(C)]/ 
1; 1 V( C)l j 1 over all multicircuits C of odd order such that e E C C G (interpreted as 0 
if no such C exists). Let 

t&(e):= max{c&(e), ye(e)} and $‘(G) := max{&(e): e EE(G)} 

Clearly x’(G) > $‘(G), since at most 1; 1 V(C)11 edges of C can be given the same 
colour. In this paper we first prove the LCC for multicircuits (Theorem 1). We then 
go on to prove the LCC for multigraphs in which every block is line-perfect or a 
multicircuit. Specifically, we prove (Theorem 3) that if G is such a multigraph then G 
is edge-t&-choosable and ch’(G) = x’(G) = q(G). This generalizes the results of [7] 
mentioned above for line-perfect multigraphs, since if G is line-perfect then G contains 
no multicircuits of odd order greater than 3 and so $‘(G) = m’(G) and t,&(e) = w;(e) 
for each edge e. 

The underlying simple graphs of nonbipartite multicircuits are circuits of odd order, 
and they share with K,, 1, P the form ‘bipartite plus one edge’. Thus, it would generalize 
and unify some of the above results if one could prove the LCC for every multigraph 
whose underlying simple graph has this form. But even this comparatively modest 
extension appears to be hard. 

The rest of this paper is devoted to the proofs of the theorems mentioned above. 

2. Proofs 

We assume throughout that C = (V, E) is a multigraph with V = (~0,. . . , v,_ 1) and 
E=&U ... UX,_,, where n>3 andX,={ei,a,... , eLb, _I} is the set of edges between 
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ui and ui+i (where subscripts to v, X and p should be interpreted modulo n). Let 
C have m = c:zi ui edges and maximum degree A, and let the degree of Vi be 
d(vi) = pi-1 + pt. It is convenient to allow pi = 0 for some values of i, even though C 
is not then a multicircuit. If each edge of C is given a list of colours, we say that a 
colour is present on Xi if it belongs to the list of at least one edge in Xi. The following 
result is somewhat stronger than is needed in order to prove Theorem 1, and it may 
perhaps be of some interest in its own right. 

Lemma 1.1. Let lo,. . . , 1,-l be integers such that li >d(vi) for each i and, if n is 
odd, say n = 2 k + 1, then 

i: 12i2m. 
1=1 

Suppose that each edge ei,j is given a list of at least li -j colours. Then C can be 
edge-coloured from its lists. 

Proof. We prove the result by induction on m, noting that it clearly holds if m = 1; 
so suppose m > 2. Choose a colour c that is present in the list of at least one edge. 
There are two cases to consider. 

Case 1: There is some i such that c is present on Xi but not on Xi-1 (mod n). Then 
choose j maximal such that c is present in the list of ci,j and colour ei,j with c. Let 
C* := C - ei,j with c deleted from the list of every edge in Xi U&+1 that contains it. 
All parameters are the same in C* as in C except for the following (in an obvious 
terminology): m* =m- 1, ,u; =pi- 1, d*(vi)=d(vi)- 1, d*(vi+l)=d(vi+l)- 1, and 

e,*,f_l =ei,jj if j<j’<pi. Let US define 1” :=li - 1, l,*,, :=li+l - 1 and l::=l,, for 
all i’ 4 {i, i + 1). Then the hypotheses of the theorem are satisfied for C*, and we may 
suppose inductively that C* can be edge-coloured from its lists. Restoring edge ei,j 
with colour c gives the required edge-colouring of C. 

Case 2: Colour c is present on every Xi. Suppose first that n = 2k + 1. Note that 
m = uo + C,“=, d(vzi), and SO (2) implies xi”=, (12i - d(v2i)) >uo > 0. Choose an h # 0 
such that 12h >d(v2h). Let I := {0,2,. . . , 2h-2,2h+1,2h+3 ,..., n-2}. For each iEI, 
choose j(i) maximal such that c is present in the list of c;,j(i), colour ei,j(i) with c, and 
delete ei,j(i) from C. Delete c from the list of every other edge of C that contains c. If 
the resulting graph is C*, then m* =m-II =m-k, d*(vlh)=d(v2h), d*(vi)=d(vi)-1 
for every i # 2h, and e&, = ei,jf if i E I and j(i) < j’ <pi. Let US define 1’ := li - 1 
for every i. Then the hypotheses of the theorem are satisfied for C*, and we may 
suppose inductively that C* can be edge-coloured from its lists. Restoring the edges 
ci,j(i) (i E I) with colour c gives the required edge-colouring of C. 

Suppose finally that n is even. Then we can proceed in an exactly similar way with 
1:={0,2,. . . , n - 2}, except that now there is no exceptional vertex corresponding to 
&h in the above argument. 0 

We are now in a position to prove the LCC for multicircuits: 
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Theorem 1. If C is a multicircuit with n vertices, m edges and maximum degree A 
then 

if n is even, 
if n =2k + 1, 

and so the LCC holds for C. 

Proof. It is clear from (1) that ch’(C) > x’(C) > $‘(C) and that I/‘(C) has the value 
stated above. Thus, it suffices to prove that ch’(C) < t,Y(C). This follows from 
Lemma 1.1, because if each edge of C is given a list of $‘(C) colours and we define 
li := t,V(C) for each i, then the hypotheses of Lemma 1.1 are satisfied. 0 

Of course, if n is even then C is bipartite and the result of Theorem 1 follows 
from [3]. For a similar reason, in Theorem 2 we assume n is odd; but we continue to 
allow even values of n in Lemma 2.1. Theorem 2 is a nonuniform strengthening of 
Theorem 1, different from that in Lemma 1.1, which we will use in Theorem 3 to deal 
with graphs that have multicircuits as blocks. 

Recall that a kernel of a digraph D is a set K of nonadjacent vertices such that 
every vertex in V(D)\K is joined by an arc to at least one vertex in K. A digraph D 
is normal if every induced complete subdigraph of D has a kernel, which necessarily 
consists of a single vertex. (A digraph is complete if each two vertices are adjacent in 
at least one direction.) We shall need the following lemma, in which we continue to 
use Xi and pi as defmed at the start of this section. 

Lemma 2.1. Suppose that Xi TX/‘) UX,(*) where X!” nX!*) = 0 for each 
iE{O,..., n - I}, and let #) := IX,“‘1 (j E {1,2}) so thai ,uLi(‘) I &*I L= p. Suppose 2 I. 
that, for each i, each element x EX~ is given a list of at least 

Pi-1 + PLY =d(vi) colours if x EX/‘), 
,tt;l)l + /ti + &‘, = d( vi) + &‘, - pi?, colours if x E X/*). (3) 

Suppose moreover that, if n is odd, then no colour is present on every Xi. Then C 
can be edge-coloured from its lists. 

Proof. Form a digraph D with V(D) = E(C) by joining x EX~ to x’ #x by an arc if 

x’ E 
{ 

Xi-1 UXi if xEXJ’) 

X.“’ UX UX!‘) ‘6 
r-l 1 1+1 

if x EX, . 
(4) 

Then D is an orientation of the line multigraph of C; this differs from the (simple) 
line graph L(C) in having two edges between x and x’ whenever x and x’ are parallel 
edges in C. We illustrate D diagrammatically in Fig. 1. Note that D is normal if n 2 4, 
since if D’ is an induced complete subdigraph of D then V(D’) GXi-1 UXi for some 
i, and then any vertex in the first nonempty set in the list 

V(D’) nX/(l), , V(D’) f7Xj~2), Y(D’) nX;(l),, V(D’) nX/‘) 

forms a kernel of D’. 
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Fig. 1. A diagrammatic representation of D. 

By comparing (3) and (4) we see that the lemma can be restated as follows: if 
each vertex x of D is given a list of more than d+(x) colours, where d+ denotes 
outdegree in D, and if no colour is present on every Xi when n is odd, then D can 
be (vertex-)coloured from its lists. We prove this by induction on the number IV(D)1 
of vertices in D, noting that it is certainly true if IV(D)1 = 1; so suppose / V(D)1 >2. 
Choose a colour c that is present in the list of at least one vertex of D, and let D, be 
the subdigraph of D that is induced by all the vertices whose lists contain colour c. 
The hypotheses ensure that D, is an orientation of the line multigraph of a bipartite 
submultigraph of C, and D, is normal (even if n = 3). Now, Maffray [6] proved that 
every normal orientation of the line multigraph of a bipartite multigraph has a kernel, 
and Galvin [3] gave a simpler proof of this (see also [2]). So let K be a kernel of 
D, and colour all vertices in K with c. Let D* := D - K with c deleted from every 
list. Then the hypotheses of the lemma (as restated at the start of this paragraph) hold 
for D*, and so we may suppose inductively that D* can be (vertex-)coloured from its 
lists. Restoring the vertices of K with colour c gives the required colouring of D. 0 

Theorem 2. Let C be a multicircuit with n = 2k + 1 vertices and m edges, and let 
v E V(C). Suppose that every edge incident with v is given a list of at least d(v) 
colours, and every other edge uw is given a list of at least max{d(u),d(w), [m/k]} 
colours. Then C can be edge-coloured from its lists. 

Proof. We prove the result by induction on m. It is not difficult to see that it holds if 
phi = 0 for some i (and this also follows from Theorem 3.3 of [7]); so suppose pi > 1 
for every i. Label C so that vo = v. 

Suppose first that some colour c is present on every Xi. Since m = p. + C,“=, d(vzi), 
there exists an h # 0 such that d(vzh) < [m/k1 . Proceed exactly as in Case 2 of 
Lemma 1.1. The graph C” constructed there will satisfy the hypotheses of Theorem 2, 
and so we may assume inductively that it can be edge-coloured from its lists. It follows 
that we can construct the required edge-colouring of C. 

So we may assume that no colour is present on every Xi. Note that the result 
follows immediately from Lemma 1.1 if d(vo) >d(v,_l), and so we may suppose 
d(u,-l)=d(vZk)>d(uo), that is, ~~-2 =~2k_-l >PO. Let 10 := ZZ~ :=d(vo), and for 
iE{l,..., 2k - 1) let li := max{d(v;),d(vi+l), [m/k]}, so that 

every edge in X; has a list of at least Zi colours. (5) 
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In order to apply Lemma 2.1, we define Z&’ := p2k and $&L-1 := Z&-i - po; then 
for i=2k- 1,2k-2,...,1 in turn we define 

“““= 

0 if pLj2) = 0, 

max{O,&), + d(~) _ Zi} otherwise. (6) 

Note that 

and so 0 <~f:)~ <pi-i always. So, for each i, let X/2’ be an arbitrary subset of Xi with 

cardinality ,#, and let X!” *- .-Xi\X/” and yj’) := pi -,@) = IX,(i)]. Note that &) = 0. 

NOW, m=‘,U2k+~,!=, b(@-I), SO that xi”=, (Z2j_i -d(vzi-l))~m-m+~2k=~~. 
It follows from this and (6) (for all odd i) that #) = 0. So if ,n/2) >O then either 
l<i62k- 1, in which case Zi3d(ui)+&), - pi?1 from (6), or else i = 2k, in which 
case 

d(Uzk) + ,@ - &, =d(Qk) + 0 - p2k-1 + PO =d(uo)= 12k. 

And if pi’) > 0 then either 1 < i < 2k - 1, in which case Zi > d( ui) by definition, or i = 0, 
in which case Zs =d(uo). In all cases the hypotheses of Lemma 2.1 are satisfied, by 
(5), and we deduce that C can be edge-coloured from its lists. 0 

Recall the definitions of t&(e) and $‘(G) from (1 ), and for a fixed u E V(G) define 

$& :E(G) -+ N by 

de(u) if e is incident with u, 
‘&0(e) ‘= { @h(e) otherwise. 

We can now prove our final and most general result. 

Theorem 3. If G = (V,E) is a multigraph in which every block is line-perfect or a 
multicircuit, and v E V, then G is edge-&- choosable. It follows that G is edge-@- 
choosable and ch’( G) = x’(G) = $‘(G), so that the LCC holds for G. 

Proof. The second sentence follows from the first since $‘(G) 2 t/&e) 2 t&,(e) for 
each e E E and v E V, and clearly ch’(G) > x’(G) > t,V(G). 

We prove the first sentence by induction on the number of blocks in G. There is 
no loss of generality in supposing that G is connected. If G has only one block then 
either G is line-perfect and the result follows from Theorem 2.3 of [7], or else G is 
a multicircuit of odd order and the result follows from Theorem 2. So suppose that G 
has more than one block. Then it has at least two endblocks (where an endblock is a 
block containing exactly one cutvertex). Let G2 be an endblock of G not containing u 
except possibly as its cutvertex w, and let Gi be the union of all blocks other than Gz. 
Then v E Gi, and Gi has one block fewer than G, and so we may suppose by induction 
that Gi is edge-$&,,,- choosable, and similarly that Gz is edge-t&,-choosable. Suppose 
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that each edge e of G is given a list of at least i+!&(e) colours. Since i&(e) 2 i/&,,(e) 
for each e E E(Gi), we can edge-colour G1 from these lists. Now a total of dc, (w) 
colours are used on edges of Gi at W. Remove these colours from the lists on all edges 
of G2 at W. If e is such an edge, then the number of colours remaining in its list is at 
least 

(regardless of whether u=w or not); and each edge e of Gz - w still has a list 
of at least $6 ,(e)>$& Je) colours. Hence we can complete the colouring from these 
lists. 0 ’ ’ 
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