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If G is a claw-free graph, then there is a graph cl(G) such that

(i) G is a spanning subgraph of cl(G),

(ii) cl(G) is a line graph of a triangle-free graph, and

(iii) the length of a longest cycle in G and in cl(G) is the same.

A sufficient condition for hamiltonicity in claw-free graphs, the equivalence of some
conjectures on hamiltonicity in 2-tough graphs and the hamiltonicity of 7-connected
claw-free graphs are obtained as corollaries. � 1997 Academic Press

1. INTRODUCTION

In this paper, a graph will be a finite undirected graph G=(V(G ), E(G ))
without loops and multiple edges. For terminology and notation not
defined here we refer to [1]. For any set A/V(G ) we denote by (A) the
induced subgraph on A, G&A stands for (V(G)"A) and |(G&A)
denotes the number of components of G&A. The (vertex) connectivity of G
will be denoted by }(G) and the circumference of G (i.e., the length of a
longest cycle in G) will be denoted by c(G ). The line graph of a graph G
will be denoted by L(G). By a clique we mean a (not necessarily maximal)
complete subgraph of G.

If H is a graph, then we say that a graph G is H-free if G contains no
copy of H as an induced subgraph. Specifically, the four-vertex star K1, 3

will be also called the claw and in this case we say that G is claw-free.
Whenever vertices of a claw are listed, its center (i.e., the only vertex of
degree 3) will be always the first vertex of the list. It is well known (and
can be easily checked) that every line graph is claw-free.

For a vertex x # V(G), the set NG(x)=[ y # V(G) : xy # E(G )] is called
the neighborhood of x in G. We say that x is a locally connected vertex if
(NG(x)) is a connected graph. The set of all locally connected vertices
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of G will be denoted by Mloc(G ). If Mloc(G )=V(G ), then we say that G is
locally connected.

Oberly and Sumner [7] proved that every connected, locally connected
claw-free graph on at least three vertices is hamiltonian. This result was
later on strengthened in many directions; from one of these results (see
[4]) it e.g. follows that a claw-free graph G is hamiltonian if Mloc(G) is a
dominating set (i.e., every vertex in V(G )"Mloc(G) has a neighbor in
Mloc(G)) and (Mloc(G )) is connected.

A graph G is said to be t-tough (where t�0 is a real number) if
|S|�t } |(G&S ) for every set S/V(G ) with |(G&S )>1. The toughness
{(G ) of G is the maximum value of t for which G is t-tough ({(Kn)=� for
every n�1). In [2], Chva� tal conjectured the existence of an integer t0 such
that every t0-tough graph is hamiltonian. Since it is known [3] that for
every =>0 there is a (2&=)-tough graph on at least 3 vertices containing
no 2-factor, the smallest such value of t0 can be 2. The following conjecture
is usually attributed to Chva� tal.

Conjecture A. Every 2-tough graph on at least three vertices is
hamiltonian.

It is easy to observe that, for any graph G, {(G )�}(G )�2. Matthews and
Sumner [6] proved that if G is claw-free, then {(G )=}(G )�2. Conjec-
ture A, if true, therefore implies the following conjecture (by Matthews and
Sumner).

Conjecture B [6]. Every 4-connected claw-free graph is hamiltonian.

Since every line graph is claw-free, the following conjecture by
Thomassen [9] is a special case of Conjecture B.

Conjecture C [9]. Every 4-connected line graph is hamiltonian.

The following conjecture is a special case of Conjecture C.

Conjecture D. Every 4-connected line graph of a triangle-free graph is
hamiltonian.

Zhan [10] and independently Jackson [5] proved the analogue of
Conjectures C and D in the case of 7-connected line graphs.

Theorem E [10, 15]. Every 7-connected line graph is hamiltonian.

In the main result of this paper we show that for every claw-free graph
G there is a graph cl(G ) such that G is a spanning subgraph of cl(G ), cl(G )
is a line graph of a triangle-free graph and c(G )=c(cl(G )). In Section 3 we
prove the following corollary of this result.
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Theorem. (i) Conjectures B, C and D are equivalent.
(ii) Every 7-connected claw-free graph is hamiltonian.

2. MAIN RESULT

We begin with the following simple lemma.

Lemma 1. Let G be a graph such that, for every x # V(G ), (N(x)) is
either a clique or a disjoint union of two cliques. Then there is a triangle-free
graph H such that G=L(H ).

Proof. Suppose G satisfies the assumptions of the lemma. We can
suppose without loss of generality that G is connected (otherwise we apply
the proof to every component of G ) and E(G){< (otherwise apparently
G=L(K2)). Let K=[K1 , ..., Kl] be the collection of maximal cliques in G.
By the assumptions of the lemma, |V(Ki) & V(Kj)|�1 for every i{j, and
|[Ki : x # V(Ki)]|�2 for every x # V(G ). Let X=[x1 , ..., xk] be the set of
vertices of G which lie in exactly one clique of K and let H be the graph
with vertex set V(H )=X _ K and with edge set E(H )=[Ki Kj : |V(Ki) &
V(Kj)|=1, i{j ] _ [xmKj : xm # V(Kj)]. It is straightforward to check that
G=L(H ).

Suppose that H contains a triangle T. Then, by the definition of
H, V(T)/K (since vertices from X have degree 1 in H ). Let V(T )=
[Ki1

, Ki2 , Ki3] and let v # V(Ki1) _ V(Ki2). Then v is locally connected (in G )
and thus, by the assumptions of the lemma, (NG(v)) is a clique. This
implies Ki1=Ki2 , a contradiction. K

The following proposition shows that replacing the neighborhood of a
locally connected vertex of a claw-free graph G by a clique affects neither
the claw-freeness nor the circumference of G.

Proposition 2. Let G be a claw-free graph and let x be a locally connected
vertex of G such that (NG(x)) is not complete. Let N$=[uv: u, v # NG(x),
uv � E(G )] and let G$ be the graph with vertex set V(G$)=V(G) and with
edge set E(G$)=E(G ) _ N$. Then

(i) the graph G$ is claw-free,

(ii) c(G$)=c(G ).

Proof. (i) Suppose G$ is not claw-free and let H be a claw in G$. Since
G is claw-free, |E(H ) & N$|�1; since (NG$(x)) is a clique, |E(H ) & N$|�1.
Denote H=([z, y1 , y2 , y3]) , where zy1 # N$. Then xy2 � E(G ) (since
otherwise y2 # NG(x) and, by the construction of G$, y1y2 # E(G$)), and
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similarly xy3 � E(G). But then ([z, x, y2 , y3]) is a claw in G, which is a
contradiction. Hence G$ is claw-free.

(ii) We show that c(G )=c(G$). Since obviously c(G )�c(G$), it is
sufficient to prove that for every longest cycle C$ in G$ there is a cycle C
in G such that V(C$)=V(C ). Let, on the contrary, C$ be a longest cycle
in G$ such that there is no cycle C in G with V(C$)=V(C ). Then
E(C$) & N${< (since otherwise C$ is a cycle in G) and NG(x) _ [x]/
V(C$) (since (NG$(x)) is complete and C$ is a longest cycle in G$). Denote
by P1 , ..., Pk the components of the graph (V(C$)"[x], E(C$&x)"N$) and
put P(C$)=[P1 , ..., Pk]. Then each Pi is a (trivial or nontrivial) path in
G with endvertices in NG(x). Suppose that the cycle C$ is chosen such that,
among all cycles in G$ with vertex set V(C$), k=|P(C$)| is minimum.

Choose one of the orientations of C$ and, for any v # V(C$), denote by
v& and v+ the predecessor and successor of v on C$, respectively. For any
v1 , v2 # V(C$), denote by v1C$v2 or v1 C0 $v2 the consecutive vertices on C$
from v1 to v2 in the same or opposite orientation with respect to the orien-
tation of C$ (if v1=v2 , then we define both v1C$v2 and v1C0 $v2 as a single
vertex). Denote by y1

i , y2
i the endvertices of Pi , i=1, ..., k (not excluding

the possible case y1
i = y2

i ) and let the numbering of the paths Pi and of their
endvertices be chosen such that y1

1=x+, y2
k=x& and y1

i+1=( y2
i )+,

i=1, ..., k&1.
We show that yr

i ys
j � E(G ) for every r, s # [1, 2] and i, j # [1, ..., k], i{j.

Indeed, if e.g. y2
1 y1

2 # E(G ), then, replacing in P(C$) the paths P1 , P2 by the
path y1

1P1y2
1y1

2P2y2
2 , we have a contradiction with the minimality of k.

Other cases are similar.
Now, if k�3, then ([x, y1

1 , y1
2 , y1

3]) is a claw in G and if k=1, then
C=xy1

1P1 y2
1x is a cycle in G with V(C )=V(C$). Hence k=2 and

P(C$)=[P1 , P2].
If y1

1 {y2
1 and y1

1y2
1 � E(G ), then ([x, y1

1 , y2
1 , y1

2]) is a claw in G. Hence
either y1

1= y2
1 or y1

1y2
1 # E(G ) and, by symmetry, y1

2= y2
2 or y1

2y2
2 # E(G ).

Since (NG(x)) is connected, there is a path Q(C$) in (NG(x)) joining
one of y1

1 , y2
1 to one of y1

2 , y2
2 . Suppose that C$ is chosen such that, among

all cycles in G$ with vertex set V(C$) and with k=|P(C$)|=2, Q(C$) is
shortest possible and assume without loss of generality that Q(C$) is a
y2

1 , y1
2-path (otherwise we can modify the cycle C$ in (NG$(x)) in an

obvious way). Let y2
1=x0 , x1 , ..., xl= y1

2 be the vertices of Q(C$). Since
y2

1 y1
2 � E(G ), l�2. Note that, since (NG(x))/V(C$), V(Q(C$))/V(C$).

We now consider ([x1 , x&
1 , x+

1 , x]). Suppose first that x&
1 x # E(G ) or

x+
1 x # E(G ). If x1 # V(P2), then |V(P2)|�3 (since we already know that

x1 � [ y1
2 , y2

2]) and the cycle C=xy1
1 C$y2

1x1C$y2
2 y1

2C$x&
1 x (if x&

1 x # E(G ))
or C=xy1

1C$y2
1x1C9 $y1

2y2
2C9 $x+

1 x (if x+
1 x # E(G )) is a cycle in G with

V(C )=V(C$), which is a contradiction. Hence x1 # V(P1), but then
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similarly |V(P1)|�3 and the cycle C"=xx&
1 C0 $y1

1y2
1C0 $x1 y1

2 C$y2
2x (if

x&
1 x # E(G )) or C"=xx+

1 C$y2
1y1

1 C$x1 y1
2C$y2

2x (if x+
1 x # E(G )) is a cycle

in G$ with V(C")=V(C$), |P(C")|=2 and such that |V(Q(C"))|=
|V(Q(C$))|&1, which contradicts the' minimality of Q(C$). Hence
x&

1 x � E(G) and x+
1 x � E(G). Finally, if x&

1 x+
1 # E(G ), then similarly the path

Pi containing x1 has at least 3 vertices and C"=xy1
1C$x&

1 x+
1 C$y2

1x1y1
2C$y2

2x
(if x1 # V(P1)) or C"=xy1

1C$y2
1x1y1

2 C$x&
1 x+

1 C$y2
2 x (if x1 # V(P2)) is again

a cycle in G$ with V(C")=V(C$), |P(C")|=2 and such that |V(Q(C"))|=
|V(Q(C$))|&1. Hence ([x1 , x&

1 , x+
1 , x]) is a claw. This contradiction

proves Proposition 2. K

We can now proceed to the definition of the main concept of this paper

Definition. Let G be a claw-free graph. We say that a graph H is a
closure of G, denoted H=cl(G ), if

(i) there is a sequence of graphs G1 , ..., Gt such that G1=G, Gt=H,
V(Gi+1)=V(Gi) and E(Gi+1)=E(Gi) _ [uv : u, v # NGi (xi), uv � E(Gi)] for
some xi # V(Gi) with connected noncomplete (NGi (xi)) , i=1, ..., t&1,

(ii) no vertex of H has a connected noncomplete neighborhood.

(Equivalently, cl(G ) is obtained from G by recursively repeating the con-
struction described in Proposition 2, as long as this is possible).

Theorem 3. Let G be a claw-free graph. Then

(i) the closure cl(G ) is well-defined,

(ii) there is a triangle-free graph H such that cl(G )=L(H),

(iii) c(G )=c(cl(G)).

Proof. (i) Let H1 , H2 be two closures of G, suppose that E(H1)"
E(H2){< and let G1 , ..., Gt be the sequence of graphs that yields H1 .
Let j be the smallest integer for which E(Gj)"E(H2){< and let
e=uv # E(Gj)"E(H2). Then, since e # E(Gj), the vertices u, v have a com-
mon neighbor x in Gj&1 such that (NGj&1

(x)) is connected. But then, since
E((NGj&1

(x)) )/E(Gj&1)/E(H2), (NH2
(x)) is connected, hence e=uv #

E(H2)��a contradiction.

(ii) By part (i) of Proposition 2, cl(G ) is claw-free and hence, by the
construction, the neighborhood of every vertex of cl(G ) is either a clique or
is a disjoint union of two cliques. By Lemma 1, cl(G ) is a line graph of a
triangle-free graph.

(iii) c(G )=c(cl(G)) immediately by part (ii) of Proposition 2. K
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3. COROLLARIES

Corollary 4. Let G be a claw-free graph. Then G is hamiltonian if and
only if cl(G ) is hamiltonian.

The following corollary shows that Conjectures B, C and D are equivalent.

Corollary 5. The following statements are equivalent.

(i) Every 4-connected claw-free graph is hamiltonian.

(ii) Every 4-connected line graph is hamiltonian.

(iii) Every 4-connected line graph of a triangle-free graph is
hamiltonian.

Proof. Obviously (i) O (ii) O (iii). If G is a counterexample to (i), then,
by Theorem 3 and by Corollary 4, cl(G) is a counterexample to (iii) and
hence also (iii) O (i). K

Corollary 6. Every 7-connected claw-free graph is hamiltonian.

Proof. If G is a 7-connected nonhamiltonian claw-free graph, then cl(G) is
a 7-connected nonhamiltonian line graph, which contradicts Theorem E. K

Corollary 7. Let G be a claw-free graph on at least three vertices.

(i) If cl(G) is a complete graph, then G is hamiltonian.

(ii) [4] If Mloc(G) is dominating and (Mloc(G)) is connected, then G
is hamiltonian.

(iii) [7] If G is connected and locally connected, then G is hamiltonian.

Proof. The statement (i) follows immediately from Corollary 4; if G
satisfies the assumptions of (ii) or of (iii), then cl(G) is complete and G is
hamiltonian by (i). K

Example. The graph in Fig. 1 is an example of a claw-free graph with a
complete closure which satisfies the assumptions of neither part (ii) nor part
(iii) of Corollary 7.

Remarks. 1. It is easy to see that cl(G) can be equivalently charac-
terized as the minimum (K4&e)-free graph on V(G) containing G.

2. If a claw-free graph G is k-connected, or satisfies some of the degree
conditions (expressed as a lower bound on $(G) or on _i (G)=
min[�x # S d(x): S/V(G) independent, |S|=i] in terms of a function of
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Fig. 1. A claw-free graph with a complete closure.

n=|V(G)| ), or is N2-locally connected (see [8]) etc., then apparently so
does the closure cl(G ). Proofs of many known sufficient conditions for
hamiltonicity in claw-free graphs can be therefore simplified by considering
cl(G).

3. It would be of interest to observe the behavior of some graph
parameters (such as e.g. the independence number) during the process of
constructing cl(G). Such observations could possibly yield extensions of
some line graph algorithms to the class of claw-free graphs.

ACKNOWLEDGMENTS

The main result of this paper was obtained in the stimulating atmosphere of the Euler
Institute for Discrete Mathematics and Its Applications workshop on hamiltonicity in 2-tough
graphs held in Enschede, The Netherlands, in November 1995. The final shape of the paper was
influenced by suggestions made by other participants of the workshop during the lively discus-
sion that followed the presentation of the first version of the proof.

FERENCES

1. J. A. Bondy and U. S. R. Murty, ``Graph Theory with Applications,'' Macmillan, London
and Elsevier, New York, 1976.

2. V. Chva� tal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973), 215�228.
3. H. Enomoto, B. Jackson, P. Katerinis, and A. Saito, Toughness and the existence of

k-factors, J. Graph Theory 9 (1985), 87�95.
4. R. Faudree, Z. Ryja� c� ek, and I. Schiermeyer, Local connectivity and cycle extension in claw-

free graphs, Ars Combinatoria, to appear.
5. B. Jackson, Hamilton cycles in 7-connected line graphs, preprint, 1989, unpublished.
6. M. M. Matthews and D. P. Sumner, Hamiltonian results in K1, 3-free graphs, J. Graph

Theory 8 (1984), 139�146.

223CLOSURE IN CLAW-FREE GRAPHS



File: 582B 173208 . By:CV . Date:07:07:01 . Time:10:34 LOP8M. V8.0. Page 01:01
Codes: 1544 Signs: 476 . Length: 45 pic 0 pts, 190 mm

7. D. J. Oberly and D. P. Sumner, Every connected, locally connected nontrivial graph with
no induced claw is hamiltonian, J. Graph Theory 3 (1979), 351�356.

8. Z. Ryja� c� ek, Hamiltonian circuits in N2-locally connected K1, 3 -free graphs, J. Graph Theory
14 (1990), 321�331.

9. C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986), 309�324.
10. S. Zhan, On hamiltonian line graphs and connectivity, Discrete Math. 89 (1991), 89�95.

224 ZDENE8 K RYJA� C8 EK


