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We are concerned with an antagonistic stochastic game between two players A and B
which finds applications in economics and warfare. The actions of the players are
manifested by a series of strikes of random magnitudes at random times exerted by each
player against his opponent. Each of the assaults inflicts a random damage to enemy’s
vital areas. In contrast with traditional games, in our setting, each player can endure
multiple strikes before perishing. Predicting the ruin time (exit) of player A, along with
the total amount of casualties to both players at the exit is a main objective of this work.
In contrast to the time sensitive analysis (earlier developed to refine the information on
the game) we insert auxiliary control levels, which both players will cross in due game
before the ruin of A. This gives A (and also B) an additional opportunity to reevaluate his
strategy and change the course of the game. We formalize such a game and also allow
the real time information about the game to be randomly delayed. The delayed exit time,
cumulative casualties to both players, and prior crossings are all obtained in a closed-form
joint functional.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

This article deals with a stochastic game between two players A and B of a totally antagonistic nature. The actions of
the players are manifested by a mutual series of strikes of random magnitudes at random times. Each of the assaults is
intended to inflict damage to vital areas of defense, infrastructure, utilities, economics, and industry (warfare), as well as
drive down prices, cause the outsourcing of labor, render hostile advertisement, unfavorable trading of competitor’s stock,
lobbying politicians (competition of enterprises), arrange terror acts that involve human casualties, poison utilities and
spread infection through chemical or biological sabotage, hacking into banks, country defense network, and stock exchange
to cripple the economy (terrorism and cyber-terrorism).

In contrast with strictly antagonistic games best known in the literature, where a game ends with one single successful
hit, in our setting, each player can endure multiple strikes before perishing. Therefore, we assign to each player a (hypo-
thetical) threshold of endurance that represents how much damage he can sustain before succumbing. Each player will try
to defeat his adversary at his earliest opportunity, and the time when one of them collapses is referred to as the ruin time.
The latter is also called the exit from the game.

Predicting the ruin time, along with the total amount of casualties to both players at the exit has been an objective of
this and past work [14–17]. Actually, the defeat of one player, say of player A, is the focus of our investigation. There are
various ideas on how to refine the game. One of them is to make the processes time dependent including their relationship
with the exit time referred to as time sensitive analysis [14]. Another approach is to observe the time when player A crosses
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some smaller threshold M1 (< M), which we can vary, and that should take place at some earlier epoch. Both authors have
done exactly that in [17] arriving at closed form functionals of the processes at the exit of the game and at the crossing
of level M1. The closed form enabled one to alter M1 arbitrarily thereby refining the information on the status of player A
w.r.t. various thresholds instead of refining it w.r.t time as in [14]. A further refinement is to lay out the cross-level behavior
of the process associated with player B, in addition to that for player A. Thus we are looking into the time and value of the
“B-process” upon its crossing some N1 (< N). The simultaneous analysis with auxiliary layers for both players turns out to
be more complex than that for one player, but the results for one player was instrumental to get a closed form solution for
the general model.

Since in true antagonistic systems, the real time information may not be accessible, we assume that the course of the
game can be observed upon a sequence of random times T = {τ0, τ1, . . .} causing some random delays to the entering
information. The random times are not specified; but, dependent on what we want to model, they can be arbitrarily fine or
crude. It may seem like the delayed observation can cause a difficulty in determining who of the two players is ruined first
if their ruin times come close to each other or if the collected data is very crude. However, the probabilistic analysis we
render will provide a prediction of one player perishing ahead of the other upon one of the observation epochs. “Overlooked”
paths can be minimized by refining T and by introducing modulation. The latter can self control observation frequencies,
dependent on the severity of the situation. Another improvement can be rendered by an earlier detection of troubles through
the insertion of auxiliary thresholds.

The paper is organized as follows. In Sections 2 and 3 we introduce and describe a basic game. In Section 4 we discuss
and formalize modulation. In Sections 5 and 6 we analyze the main functional of the game bringing it to a closed form.

The article carries a game-theoretical setting and modeling; however, not in the very traditional sense (optimal strategies,
equilibria, differential equations, Markov decision processes, to name a few). As a chief tool, we apply and embellish fluctu-
ation theory [9,10,18–20], which stemmed from random walks [4] and the behavior of sums of independent and dependent
random variables (like Markov and semi-Markov sequences) about critical levels [43]. Then, the studies on fluctuation the-
ory were extended to exit times from sets by Wiener processes and compensated Poisson processes [24,25,31]. The latter
found applications to risk analysis. Fluctuation theory has also become a stand-alone area of stochastics, with wide spread
applications to physics [23,26,27,37] economics [32–35], stock market [11,12], biology [26], and queueing theory [21,42]. The
use of fluctuation theory in games has not been explored until recently [14–17].

From game-theoretic standpoint, our work concerns with purely antagonistic games [3,22,28,41] as oppose to cooper-
ative or partially cooperative games. The latter often applied in economics [2,8,29]. Antagonistic games are also used in
economics [32,39], warfare [1,5–7,27,28,38,40], and ecology [36].

An interesting article [30] by Kadankova is one of the recent papers on the theory of fluctuations somewhat (but not
directly) related to ours. In this paper the author derives the joint distribution of the first exit time from an interval and the
excess over a threshold at the exit time for a Poisson process with an exponentially distributed negative component and
the supremum, infimum, and the number of upcrossings and downcrossings, the number of passages into an exponentially
distributed interval of time and the excess over a boundary of an interval.

Finally, modulation has been widely used in finance, electrical and computer networks, and queueing. The first author
has been investigating modulated processes in a number of articles. A most recent related work is [13].

2. Preliminaries

To layout the game one step at a time we begin with a more rudimentary model which will be embellished in the
upcoming sections. Let (Ω, F (Ω), P ) be a probability space and let F A, F B , Fτ ⊆ F (Ω) be independent sub-σ -algebras.
Suppose

A :=
∑
j�0

x jεs j , B :=
∑
k�0

ykεtk , s0 = 0, t0 = 0, x j, yk � 0, (2.1)

are F A -measurable and F B -measurable marked Poisson processes (εa is a point mass at a) with respective intensities λA
and λB and position independent marking. They are specified by their transforms

Ee−uA(·) = eλA |·|[g(u)−1], g(u) = Ee−ux1 , Re(u) � 0, (2.2)

Ee−uB(·) = eλB |·|[h(u)−1], h(u) = Ee−uy1 , Re(u) � 0, (2.3)

| · | is the Borel–Lebesgue measure and x j and yk are nonnegative r.v.’s. Furthermore, let

T :=
∑
i�0

ετi , τ0 � 0, a.s. (2.4)

be an Fτ -measurable delayed renewal process. If(
A(t), B(t)

) := A ⊗ B
([0, t]), t � 0, (2.5)

then
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(A j, B j) := (
A(τ j), B(τ j)

) = A ⊗ B
([0, τ j]

)
, j = 0,1, . . . , (2.6)

forms the observation process upon A ⊗ B embedded over T , with respective increments

(X j, Y j) = A ⊗ B
(
(τ j−1, τ j]

)
, j = 0,1, . . . , X0 = A0, Y0 = B0. (2.7)

Obviously, the bivariate marked point process

Aτ ⊗ Bτ :=
∑
j�0

(X j, Y j)ετ j , (2.8)

where

Aτ =
∑
i�0

Xiετi and Bτ =
∑
i�0

Yiετi (2.9)

is with position dependent marking and with X j and Y j being dependent. With the notation

� j := τ j − τ j−1, j = 0,1, . . . , τ−1 := 0, (2.10)

we can evaluate the functional

γ (x, y, θ) = Ee−xX j−yY j−θ� j , Re(x) � 0, Re(y) � 0, Re(θ) � 0, (2.11)

using straightforward probabilistic arguments

γ (x, y, θ) = δ
{
θ + λA

(
1 − g(x)

) + λB
(
1 − h(y)

)}
, j = 1,2, . . . , (2.12)

where

δ(θ) = Ee−θ�1 , Re(θ) � 0 (2.13)

is the marginal Laplace–Stieltjes transform of �1,�2, . . . .

To allow the game to have some history prior to τ0 we have the “delayed” functionals

γ0(x, y, θ) = Ee−xA0−yB0−θτ0 = δ0
{
θ + λA

(
1 − g(x)

) + λB
(
1 − h(y)

)}
, (2.14)

where

δ0(θ) = Ee−θτ0 . (2.15)

Loosely speaking the game in this case is stochastic process Aτ ⊗ Bτ describing the evolution of a conflict between
players A and B known to an observer upon process T = {τ0, τ1, . . .}.

3. The formalism of a rudimentary game

The game is over when on the kth observation epoch τk (for some k), the collateral damage Ak to player A or Bk to
player B exceeds its respective threshold M or N , respectively. To further formalize the game we introduce the exit indices

μ := inf{ j � 0: A j = A0 + X1 + · · · + X j > M} (3.1)

and

ν := inf{k > M: Bk = B0 + Y1 + · · · + Yk > N}. (3.2)

Hence μ < ν and hence, player A is defeated at τμ , which takes place earlier than player’s B defeat at τν . The first passage
time τμ is the associated exit time from the game. The functional

Φμν = Φμν(α0,α1, β0, β1,h0,h1) = E
[
e−α0 Aμ−1−α1 Aμ−β0 Bμ−1−β1 Bμ−h0τμ−1−h1τμ

]
,

Re(α0) � 0, Re(α1) � 0, Re(β0) � 0, Re(β1) � 0, Re(h0) � 0, Re(h1) � 0 (3.3)

of the game will represent the status of both players upon exit time τμ and pre-exit time τμ−1. The latter is of particular
interest, because we would like to predict not only A’s ruin time but also one observation prior to this.

Theorem 1 [17] below combined with Proposition 1 [17] establishes an explicit formula for Φμν . With (2.12) and (2.15)
we abbreviate



556 J.H. Dshalalow, H.-J. Ke / J. Math. Anal. Appl. 353 (2009) 553–565
γ := γ (α0 + α1 + x, β0 + β1 + y,h0 + h1), (3.4)

γ0 := γ0(α0 + α1 + x, β0 + β1 + y,h0 + h1), (3.5)

Γ := γ (α1 + x, β1 + y,h1), (3.6)

Γ0 := γ0(α1 + x, β1 + y,h1), (3.7)

Γ 1 := γ (α1, β1 + y,h1), (3.8)

Γ 1
0 := γ0(α1, β1 + y,h1). (3.9)

Furthermore, we introduce the Laplace–Carson transform

L pq(·)(x, y) := xy

∞∫
p=0

∞∫
q=0

e−xp−yq(·)d(p,q), Re(x) > 0, Re(y) > 0, (3.10)

with the inverse

L−1
xy (·)(p,q) = L−1

(
· 1

xy

)
, (3.11)

where L−1 is the inverse of the bivariate Laplace transform.

Theorem 1. (See Dshalalow and Ke [17].) The functional Φμν satisfies the following formula:

Φμν = L−1
xy

(
Γ 1

0 − Γ0 + γ0

1 − γ

(
Γ 1 − Γ

))
(M, N), (3.12)

where Re(h0 + h1) � 0, Re(α0 + α1 + x) > 0, Re(β0 + β1 + y) > 0.

Remark 1. Because

γ (x, y, θ) = δ
{
θ + λA

(
1 − g(x)

) + λB
(
1 − h(y)

)}
(3.13)

(see Eq. (2.13)), the transform γ = γ (α0 + α1 + x, β0 + β1 + y,h0 + h1) abbreviated so in (3.4) will precisely be

γ = δ
{

h0 + h1 + λA
(
1 − g(α0 + α1 + x)

) + λB
(
1 − h(β0 + β1 + y)

)}
. (3.14)

The other transforms, following (3.4), can be easily specified accordingly. By Proposition 1 below, the series∑
j�0[γ (x, y, θ)] j (where γ (x, y, θ) = δ{θ + λA(1 − g(x))+ λB(1 − h(y))} as per (2.12)) related to the proof of Theorem 1, is

convergent if Re(θ) > 0, Re(x) > 0, Re(y) > 0, of which any two of the inequalities can be relaxed to �.

Proposition 1 [17] below will be needed in the sequel.

Proposition 1. The norm of δ, ‖δ{θ + λA(1 − g(x)) + λB(1 − h(y))}‖, is strictly less than 1 if

Re(θ) > 0, Re(x) > 0, Re(y) > 0. (3.15)

Of the three inequalities in (3.15) any two can be replaced with �.

Remark 2. In (3.10) when we introduced the Laplace–Carson transform, we restricted x and y as to Re(x) > 0 and Re(y) > 0.
Proposition 1 states that, for the sake of convergence, Eq. (3.15) must hold and even be relaxed by any two inequalities
replaced with �. Therefore, the natural requirements of (3.15) and Proposition 1 are met when we assume that merely
Re(θ) � 0.

4. A modulated game

In this section we will analyze the game introduced in Section 3 by using auxiliary “layers”. We will add two control
levels M1 < M and N1 < N and incorporate it into the main functional Φμν of (3.3). The information associated with the
so-called (M1, N1)-layer will become more conclusive if we can indicate on causes leading to the defeat of player A. We
will define the corresponding exit indices
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μ1 := min{ j � 0: M1 < A j � M}, (4.1)

ν1 := min{k > μ1: N1 < Bk � N}, (4.2)

μ := min{m > ν1: Am > M}, (4.3)

ν := min{n > μ: Bn > N}, (4.4)

in accordance with μ1 < ν1 < μ < ν (to be referred to as Case 1), and then the functional

Φμ1<ν1μν = E
[
e−a0 Aμ1−1−a1 Aμ1 −a2 Aν1−1−a3 Aν1 −a4 Aμ−1−a5 Aμe−b0 Bμ1−1−b1 Bμ1−b2 Bν1−1−b3 Bν1 −b4 Bμ−1−b5 Bμ

× e−h0τμ1−1−h1τμ1−h2τν1−1−h3τν1 −h4τμ−1−h5τμ
]
,

Re(α0) � 0, . . . ,Re(h5) � 0, (4.5)

which should give us a comprehensive information about the game (pretty much about both players) prior to the global
exit. Notice that even though we defined the r.v. ν in (4.4), we did not include the information on τν and the associated
crossing value Bτ at τν , because the game will be over by τμ . In real-world situations though mutual actions can still go on
beyond the truce possibly holding at τμ or at some later epoch. Nevertheless, we chose to drop them in order to simplify
the final formulas. The extended information however can be readily revived.

By varying the layers M1 and N1 we can emulate the evolution of the game to some degree in light of the continuous
time parameter processes. Furthermore, if we assume that this information will become available to both players, then
the game can be calibrated upon their chief reference times τμ1 , τν1 , τμ and τν . In other words, the game can become
modulated upon the main observation epochs changing their input parameters in accordance with the available data on
casualties. The original assumptions on processes A and B will thus be altered to turn them from independent marked
Poisson processes to modulated marked Poisson processes. Because of other technical challenges, we will keep the rigor
of modulation to a minimum. For more details on modulation the reader is referred to the recent article [13] by the first
author.

The modulation we are about to introduce will practically allow both players to elaborate the information about their
own casualties and casualties of the enemy and change the pace of their strategies.

Firstly, the parameters of the modulated Poisson random measure in (2.1) may alter at any observation epoch from T ,
but most significantly, upon crossings. We therefore assume that (2.2) and (2.3) will be modified as follows:

(1) If τ0 < t � τμ1 ,

Ee−uA((τ0,t]) = eλ1
A(t−τ0)[g1(u)−1], g1(u) = Ee−uxi , Re(u) � 0, (4.6)

Ee−uB((τ0,t]) = eλ1
B (t−τ0)[h1(u)−1], h1(u) = Ee−uyi , Re(u) � 0, (4.7)

with i being such that corresponding casualties xi, yi take place between τ0 and τμ1 .
(2) If τμ1 < t � τν1 ,

Ee−uA((τμ1 ,t]) = eλ2
A(t−τμ1 )[g2(u)−1], g2(u) = Ee−uxi , Re(u) � 0, (4.8)

Ee−uB((τ0,t]) = eλ1
B (t−τ0)[h1(u)−1], h2(u) = Ee−uyi , Re(u) � 0, (4.9)

with i being such that corresponding casualties xi, yi take place between τμ1 and τν1 .
(3) If τν1 < t � τμ2 ,

Ee−uA((τν1 ,t]) = eλ3
A(t−τν1 )[g3(u)−1], g3(u) = Ee−uxi , Re(u) � 0, (4.10)

Ee−uB((τν1 ,t]) = eλ3
B (t−τν1 )[h3(u)−1], h3(u) = Ee−uyi , Re(u) � 0, (4.11)

with i being such that corresponding casualties xi, yi take place between τν1 and τμ2 .
(4) If τμ2 < t,

Ee−uA((τμ2 ,t]) = eλ4
A(t−τμ2 )[g4(u)−1], g4(u) = Ee−uxi , Re(u) � 0, (4.12)

Ee−uB((τμ2 ,t]) = eλ4
B (t−τμ2 )[h4(u)−1], h4(u) = Ee−uyi , Re(u) � 0, (4.13)

with i being such that corresponding casualties xi, yi take place after τμ2 .
The corresponding functionals of casualties accumulated over the periods between observations T are modified as fol-

lows:

γl(x, y, θ) = Ee−xX j−yY j−θ� j = δl
{
θ + λl

A

(
1 − gl(x)

) + λl
B

(
1 − hl(y)

)}
, j, l = 0,1, . . . , (4.14)

where
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δ0(θ) = Ee−θ�0 , δ1(θ) = Ee−θ�i , i = 1, . . . ,μ1, (4.15)

δ2(θ) = Ee−θ�i , i = μ1 + 1, . . . , ν1, (4.16)

δ3(θ) = Ee−θ�i , i = ν1 + 1, . . . ,μ2, δ4(θ) = Ee−θ�i , i > μ2, (4.17)

formalizing the modulation of the observation process T which can also be impacted by the crossings data and thus yielding
a feedback effect.

5. Multilayers models. The main theorem

We define the four-variate Laplace–Carson transform, also to be referred to as the Lpqrs-transform,

Lpqrs(·)(u, v, x, y) := uvxy

∞∫
p=0

∞∫
q=0

∞∫
r=0

∞∫
s=0

e−up−vq−xr−ys(·)d(p,q, r, s),

Re(u) > 0, Re(v) > 0, Re(x) > 0, Re(y) > 0. (5.1)

Furthermore, introduce the following notation (having in mind (4.6)–(4.17)):

γ0 = γ0(a0 + · · · + a5 + u + x,b0 + · · · + b5 + v + y,h0 + · · · + h5), (5.2)

γ1 = γ1(a0 + · · · + a5 + u + x,b0 + · · · + b5 + v + y,h0 + · · · + h5), (5.3)

Γ0 = γ0(a1 + · · · + a5 + u + x,b1 + · · · + b5 + v + y,h1 + · · · + h5), (5.4)

Γ 1
0 = γ0(a1 + · · · + a5 + x,b1 + · · · + b5 + v + y,h1 + · · · + h5), (5.5)

Γ = γ1(a1 + · · · + a5 + u + x,b1 + · · · + b5 + v + y,h1 + · · · + h5), (5.6)

Γ 1 = γ1(a1 + · · · + a5 + x,b1 + · · · + b5 + v + y,h1 + · · · + h5), (5.7)

G1 = γ2(a2 + · · · + a5 + x,b2 + · · · + b5 + v + y,h2 + · · · + h5), (5.8)

g1 = γ2(a3 + a4 + a5 + x,b3 + b4 + b5 + v + y,h3 + · · · + h5), (5.9)

g12 = γ2(a3 + a4 + a5 + x,b3 + b4 + b5 + y,h3 + h4 + h5), (5.10)

F = γ3(a4 + a5 + x,b4 + b5 + y,h4 + h5), (5.11)

f = γ3(a5 + x,b5 + y,h5), (5.12)

f 1 = γ3(a5,b5 + y,h5). (5.13)

Theorem 2. Under the condition that

Re(a0 + · · · + a5 + u + x) > 0, Re(b0 + · · · + b5 + v + y) > 0, (5.14)

and

Re(h0 + · · · + h5) � 0, (5.15)

the L pqrs-transform of functional Φμ1<ν1μν satisfies the following formula:

Φ∗
μ1<ν1μν := Φ∗

μ1<ν1μν(u, v, x, y) := LpqrsΦμ1<ν1μν(u, v, x, y)

=
[
Γ 1

0 − Γ0 + γ0

1 − γ1

(
Γ 1 − Γ

)] g12 − g1

1 − G1

f 1 − f

1 − F
. (5.16)

Proof. Introduce the auxiliary stochastic multiparametric families

μ1(p, r) := min{ j � 0: p < A j � r}, (5.17)

ν1(p,q, r) := min
{
k > μ1(p, r): q < Bk � s

}
, (5.18)

μ(p,q, r) := min
{
m > ν1(p,q, r): Am > r

}
, (5.19)

ν(p,q, r, s) := min
{
n > μ(p,q, r): Bn > s

}
. (5.20)

In particular,
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μ1 := μ1(M1, M), ν1 := ν1(M1, N1, M), μ := μ(M1, N1, M), ν := ν(M1, N1, M, N).

The associated parametric family of random variables

{
1{μ1(p,r)= j, ν1(p,q,r)=k,μ(p,q,r)=m, ν(p,q,r,s)=n}; p > 0, q > 0, r > 0, s > 0

}
(5.21)

will be incorporated into the functional Φμ1<ν1μν in due course. To continue with the proof of Theorem 2 we will need
a lemma. The result of this lemma is quite unexpected. Unlike the game in Section 3, with independent thresholds for
players A and B, now we have two of the four thresholds dependent and yet the lemma asserts that the application of
operator Lpqrs to the family (5.21) produces the same result as for the case with no relationship between variable levels
p and r and q and s. The reason why the invariance of the mentioned partial order is surprising, because upon crossing
level p, process A, if unrestricted as per (5.17), may also exceed level r as well. The latter is undesired, because under
the current game settings, the r-crossing by A should occur only at a later time. So, by instructing these events to follow
chronologically, we would naturally expect their dependence in some form, as oppose to what we will see in (5.23) (see
also Section 2 of [17]). Yet the result of Lemma 1 seems to relax condition (5.17) that upon the p-crossing, the r-crossing
does not occur. A special case of this lemma was proved in [17].

Lemma 1. Let w(p,q, r, s, j,k,m,n)

= 1{μ1(p,r)= j, ν1(p,q,r)=k,μ(p,q,r)=m, ν(p,q,r,s)=n}1(p<r)1(q<s)1( j<k<m<n). (5.22)

Then, the following holds true:

Lpqrs
(

w(p,q, r, s, j,k,m,n)
)
(u, v, x, y)

= (
e−u A j−1 − e−u A j

)(
e−v Bk−1 − e−v Bk

)(
e−xAm−1 − e−xAm

)(
e−yBn−1 − e−yBn

)
1( j<k<m<n). (5.23)

Proof. From (5.17)–(5.20) we deduce that

w1(p,q, r, s, j,k,m,n) = 1{A j−1�p<A j}1{p<r}(1{r<Am} − 1{r<Am−1})

× 1{Bk−1�q<Bk}1{q<s}(1{s<Bn} − 1{s<Bn−1})1( j<k<m<n) (5.24)

after dropping 1{A j�r} as redundancy under 1{Am−1�r} and 1( j<m) and so doing it with 1{Bk�s} using similar arguments.
Applying operator (5.1) to (5.24) we have

Lpqrs
(

w1(p,q, r, s, j,k,m,n)
)
(u, v, x, y)

= uvxy,

A j∫
p=A j−1

e−up

{ Am∫
r=p

e−xr dr −
Am−1∫

r=p

e−xr dr

}
dp

Bk∫
q=Bk−1

e−vq

{ Bn∫
s=q

e−ys ds −
Bn−1∫

s=q

e−ys ds

}
dq1( j<k<m<n).

The latter readily reduces to (5.23) thereby completing the proof. �
Now, we return to the proof of Theorem 2. For the sequel we will need the following factorization of (5.23), which after

some algebra yields

Lpqrs
(

w1(p,q, r, s, j,k,m,n)
)
(u, v, x, y)

= e−(u+x)A j−1−(v+y)B j−1
(
e−xX j − e−(u+x)X j

)
e−(v+y)Y j e−∑k−1

i= j+1{xXi+(v+y)Yi}(e−yYk − e−(v+y)Yk
)
e−xXk e−∑m−1

i=k+1{xXi+yYi}

× (
1 − e−xXm

)
e−yYm e−∑n−1

i=m+1{yYi}(1 − e−yYn
)
1( j<k<m<n). (5.25)

The auxiliary process

X(p,q, r, s; j,k,m,n)

= e−a0 Aμ1(p,r)−1−a1 Aμ1(p,r)−a2 Aν1(p,q,r)−1−a3 Aν1(p,q,r)−a4 Aμ(p,q,r)−1−a5 Aμ(p,q,r)

× e−b0 Bμ1(p,r)−1−b1 Bμ1(p,r)−b2 Bν1(p,q,r)−1−b3 Bν1(p,q,r)−b4 Bμ(p,q,r)−1−b5 Bμ(p,q,r)

× e−h0τμ1(p,r)−1−h1τμ1(p,r)−h2τν1(p,q,r)−1−h3τν1(p,q,r)−h4τμ(p,q,r)−1−h5τμ(p,q,r)

× 1{μ1(p,r)= j,ν1(p,q,r)=k,μ(p,q,r)=m,ν(p,q,r,s)=n}1(p<r)1(q<s)1( j<k<m<n)

can be factorized as follows:
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X(p,q, r, s; j,k,m,n)

= e−(a0+···+a5)A j−1−(b0+···+b5)B j−1−(h0+···+h5)τ j−1 e−(a1+···+a5)X j−(b1+···+b5)Y j−(h1+···+h5)� j

× e−∑k−1
i= j+1{(a2+···+a5)Xi+(b2+···+b5)Yi+(h2+···+h5)�i}e−(a3+···+a5)Xk−(b3+···+b5)Yk−(h3+···+h5)�k

× e−∑m−1
i=k+1{(a4+a5)Xi+(b4+b5)Yi+(h4+h5)�i}e−aXm−b5Ym−h5�m

× 1{μ1(p,r)= j,ν1(p,q,r)=k,μ(p,q,r)=m,ν(p,q,r,s)=n}1(p<r)1(q<s)1( j<k<m<n). (5.26)

Multiplying (5.25) by (5.26) and regrouping the factors in accordance with the previous factorization pattern we have

X(p,q, r, s; j,k,m,n)Lpqrs
(

w1(p,q, r, s, j,k,m,n)
)
(u, v, x, y)

= e−(a0+···+a5+u+x)A j−1−(b0+···+b5+v+y)B j−1−(h0+···+h5)τ j−1

× (
e−(a1+···+a5+x)X j − e−(a1+···+a5+u+x)X j

)
e−(b1+···+b5+v+y)Y j−(h1+···+h5)� j

× e−∑k−1
i= j+1{(a2+···+a5+x)Xi+(b2+···+b5+v+y)Yi+(h2+···+h5)�i}

× (
e−yYk − e−(v+y)Yk

)
e−(a3+···+a5+x)Xk−(b3+···+b5)Yk−(h3+···+h5)�k

× e−∑m−1
i=k+1{(a4+a5+x)Xi+(b4+b5+y)Yi+(h4+h5)�i}(1 − e−xXm

)
e−a5 Xm−(b5+y)Ym−h5�m

× e−∑n−1
i=m+1{yYi}(1 − e−yYn

)
1( j<k<m<n). (5.27)

Then, returning to the main functional, by Fubini’s theorem and independent increments property, we have

Φ∗
μ1<ν1μν(u, v, x, y) := LpqrsΦμ1<ν1μν(u, v, x, y)

= Lpqrs

(∑
j

∑
k

∑
m

∑
n

E
[
X(p,q, r, s; j,k,m,n)w1(p,q, r, s, j,k,m,n)

])
(u, v, x, y)

=
∑
j�0

E
[
e−(a0+···+a5+u+x)A j−1−(b0+···+b5+v+y)B j−1−(h0+···+h5)τ j−1

]

× E
[
e−(a1+···+a5)X j

(
1 − e−u X j

)
e−xX j e−(b1+···+b5+v+y)Y j−(h1+···+h5)� j

]
×

∑
k> j

Ee−∑k−1
i= j+1{(a2+···+a5+x)Xi+(b2+···+b5+v+y)Yi+(h2+···+h5)�i}

× E
[
e−(a3+···+a5+x)Xk

(
1 − e−vYk

)
e−(b3+···+b5+y)Yk−(h3+···+h5)�k

]
×

∑
m>k

Ee−∑m−1
i=k+1{(a4+a5+x)Xi+(b4+b5+y)Yi+(h4+h5)�i}

× E
[
e−a5 Xm

(
1 − e−xXm

)
e−(b5+y)Ym−h5�m

] ∑
n>m

Ee−∑n−1
i=m+1 yYi E

[
1 − e−yYn

]
. (5.28)

Considering A−1 = B−1 = �−1 = ∑s−1
i=s = 0 and in light of (4.6)–(4.17) and (5.2)–(5.13), after the formal summation, we

will arrive at formula (5.16). Notice that the summation in the last factor of (5.28) gives 1. The convergence of the series∑
j�0 γ

j
1 (and other similar series) is due to Proposition 1 under a minor modification as in the formulation of Theorem 2.

Also notice that all related functionals in formula (5.16) are of type δ0, δ1, δ2, δ3, δ4. �
Remark 3. For the upcoming needs we introduce a tensor-like index operator J which will act on functionals like in
(5.2)–(5.13) as follows:

J iΓ = Γ i
0 − Γ0 + γ0

1 − γ1

(
Γ i − Γ

)
, i = 1,2, . . . . (5.29)

Using (5.29), thus we have formula (5.16) of Theorem 2 in a more compact form:

Φ∗
μ1<ν1μν := Φ∗

μ1<ν1μν(u, v, x, y) := LpqrsΦμ1<ν1μν(u, v, x, y) =
(

g12 − g1

1 − G1

f 1 − f

1 − F

)
J 1Γ. (5.30)

Remark 4. Note that the factor J 1Γ = Γ 1
0 − Γ0 + γ0

1−γ (Γ 1 − Γ ) in (5.16) and (5.30) is the same functional for the game of
two players A and B with no layers except for variables u and v being “purged”.
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6. Other cases of layers

In this section we incorporate layers in slightly different chronology. Because the techniques will be very similar, we will
cut them short. We begin with

Case 2: ν1 < μ1 < μ < ν

The corresponding control indices and the main functional are then defined as

ν1 := min{ j � 0: N1 < B j � N}, (6.1)

μ1 := min{k � ν1: M1 < A j � M}, (6.2)

μ := min{m > μ1: Am > M}, (6.3)

ν := min{n > μ: Bn > N}, (6.4)

Φν1<μ1μν := E
[
e−a0 Aμ1−1−a1 Aμ1 −a2 Aν1−1−a3 Aν1 −a4 Aμ−1−a5 Aμe−b0 Bμ1−1−b1 Bu1 −b2 Bν1−1−b3 Bν1 −b4 Bμ−1−b5 Bμ

× e−h0τμ1−1−h1τu1 −h2τν1−1−h3τν1 −h4τμ−1−h5τμ
]
. (6.5)

Introducing auxiliary stochastic multiparametric families and proceeding as in Case 1 (including a similar utility of Lemma 1)
we have

Φ∗
ν1<μ1μν := Φ∗

ν1<μ1μν(u, v, x, y) := LpqrsΦν1<μ1μν(u, v, x, y)

=
∑
j�0

E
[
e−(a0+···+a5 +u+x)A j−1−(b0+···+b5+v+y)B j−1−(h0+···+h5)τ j−1

]
× E

[
e−(a1+···+a5+u+x)X j e−(b1+···+b5)Y j

(
1 − e−vY j

)
e−yY j−(h1+···+h5)� j

]
×

∑
k> j

E
[
e−∑k−1

i= j+1{(a2+···+a5+u+x)Xi+(b2+···+b5+y)Yi+(h2+···+h5)�i}]
× E

[
e−(a3+···+a5+x)Xk

(
1 − e−u Xk

)
e−(b3+···+b5+y)Yk−(h3+···+h5)�k

]
×

∑
m>k

E
[
e−∑m−1

i=k+1{(a4+a5+x)Xi+(b4+b5+y)Yi+(h4+h5)�i}]

× E
[
e−a5 Xm

(
1 − e−xXm

)
e−(b5+y)Ym−h5�m

] ∑
n>m

E
[
e−∑n−1

i=m+1{yYi}]E
[
1 − e−yYn

]
.

As far as the modulation, without loss of generality, we just swap μ1 and ν1 to have the conditions similar to (4.6)–(4.17):
(1) If τ0 < t � τν1 ,

Ee−uA((τ0,t]) = eλ1
A(t−τ0)[g1(u)−1], g1(u) = Ee−uxi , Re(u) � 0, (6.6)

Ee−uB((τ0,t]) = eλ1
B (t−τ0)[h1(u)−1], h1(u) = Ee−uyi , Re(u) � 0, (6.7)

with i being such that corresponding casualties xi, yi take place between τ0 and τν1 .
(2) If τν1 < t � τμ1 ,

Ee−uA((τμ1 ,t]) = eλ2
A(t−τμ1 )[g2(u)−1], g2(u) = Ee−uxi , Re(u) � 0, (6.8)

Ee−uB((τ0,t]) = eλ1
B (t−τ0)[h1(u)−1], h2(u) = Ee−uyi , Re(u) � 0, (6.9)

with i being such that corresponding casualties xi, yi take place between τν1 and τμ1 .
(3) If τμ1 < t � τμ2 ,

Ee−uA((τν1 ,t]) = eλ3
A(t−τν1 )[g3(u)−1], g3(u) = Ee−uxi , Re(u) � 0, (6.10)

Ee−uB((τν1 ,t]) = eλ3
B (t−τν1 )[h3(u)−1], h3(u) = Ee−uyi , Re(u) � 0, (6.11)

with i being such that corresponding casualties xi, yi take place between τμ1 and τμ2 .
(4) If τμ2 < t (same as in (4.12)–(4.13)),

Ee−uA((τμ2 ,t]) = eλ4
A(t−τμ2 )[g4(u)−1], g4(u) = Ee−uxi , Re(u) � 0, (6.12)

Ee−uB((τμ2 ,t]) = eλ4
B (t−τμ2 )[h4(u)−1], h4(u) = Ee−uyi , Re(u) � 0, (6.13)

with i being such that corresponding casualties xi , yi take place after τμ2 .



562 J.H. Dshalalow, H.-J. Ke / J. Math. Anal. Appl. 353 (2009) 553–565
The corresponding functionals of casualties accumulated over the periods between observations T are modified as fol-
lows:

γl(x, y, θ) = Ee−xX j−yY j−θ� j = δl
{
θ + λl

A

(
1 − gl(x)

) + λl
B

(
1 − hl(y)

)}
, j, l = 0,1, . . . , (6.14)

where

δ0(θ) = Ee−θ�0 , δ1(θ) = Ee−θ�i , i = 1, . . . , ν1, (6.15)

δ2(θ) = Ee−θ�i , i = ν1 + 1, . . . ,μ1, (6.16)

δ3(θ) = Ee−θ�i , i = μ1 + 1, . . . ,μ2, δ4(θ) = Ee−θ�i , i > μ2, (6.17)

formalizing the modulation of the observation process T which can also be impacted by the crossings data and thus yielding
a feedback effect.

With the notation (5.2)–(5.13) and additionally,

Γ 2
0 = γ0(a1 + · · · + a5 + u + x,b1 + · · · + b5 + y,h1 + · · · + h5), (6.18)

Γ 2 = γ1(a1 + · · · + a5 + u + x,b1 + · · · + b5 + y,h1 + · · · + h5), (6.19)

G2 = γ2(a2 + · · · + a5 + u + x,b2 + · · · + b5 + y,h2 + · · · + h5), (6.20)

g2 = γ2(a3 + · · · + a5 + u + x,b3 + · · · + b5 + y,h3 + · · · + h5), (6.21)

we arrive at

Φ∗
ν1<μ1μν =

[
Γ 2

0 − Γ0 + γ0

1 − γ1

(
Γ 2 − Γ

)] g12 − g2

1 − G2

f 1 − f

1 − F
= J 2Γ

g12 − g2

1 − G2

f 1 − f

1 − F
. (6.22)

The above result can be summarized as

Theorem 3. Under the condition that

Re(a0 + · · · + a5 + u + x) > 0, Re(b0 + · · · + b5 + v + y) > 0, (6.23)

and

Re(h0 + · · · + h5) � 0, (6.24)

the Lpqrs-transform of Φν1<μ1μν satisfies formula (6.22).

Case 3: μ1 = ν1 < μ < ν .

The corresponding control indices and the main functional are then defined as

μ1 := min{ j � 0: M1 < A j � M}, (6.25)

ν1 := min{k � 0: N1 < Bk � N}, (6.26)

μ := min{m > ν1: Am > M}, (6.27)

ν := min{n > μ: Bn > N} (6.28)

and

Φμ1=ν1μν = E
[
e−(a0+a2)Aμ1−1−(a1+a3)Aμ1 −a4 Aμ−1−a5 Aμe−(b0+b2)Bμ1−1−(b1+b3)Bμ1−b4 Bμ−1−b5 Bμ

× e−(h0+h2)τμ1−1−(h1+h3)τμ1−h4τμ−1−h5τμ 1{μ1=ν1}
]
. (6.29)

Again proceeding as in Case 1 we have

Φ∗
ν1=μ1μν(u, v, x, y) = LpqrsΦμ1=ν1μν(u, v, x, y)

=
∑
j�0

E
[
e−(a0+···+a5+u+x)A j−1−(b0+···+b5+v+y)B j−1−(h0+···+h5)τ j−1

]
× E

[
e−(a1+a3+a4+a5+x)X j

(
1 − e−u X j

)
e−(b1+b3+b4+b5)Y j

(
1 − e−vY j

)
e−yY j−(h1+h3+h4+h5)� j

]
×

∑
m> j

E
[
e−∑m−1

i= j+1{(a4+a5+x)Xi+(b4+b5+y)Yi+(h4+h5)�i}]
× E

[
e−a5 Xm

(
1 − e−xXm

)
e−(b5+y)Ym−h5�m

]
. (6.30)
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Below are our conditions for the modulation:
(1) If τ0 < t � τμ1 = τν1 ,

Ee−uA((τ0,t]) = eλ1
A(t−τ0)[g1(u)−1], g1(u) = Ee−uxi , Re(u) � 0, (6.31)

Ee−uB((τ0,t]) = eλ1
B (t−τ0)[h1(u)−1], h1(u) = Ee−uyi , Re(u) � 0, (6.32)

with i being such that corresponding casualties xi, yi take place between τ0 and τμ1 = τν1 .
(2) If τμ1 = τμ1 < t � τμ2 ,

Ee−uA((τν1 ,t]) = eλ3
A(t−τν1 )[g3(u)−1], g3(u) = Ee−uxi , Re(u) � 0, (6.33)

Ee−uB((τν1 ,t]) = eλ3
B (t−τν1 )[h3(u)−1], h3(u) = Ee−uyi , Re(u) � 0, (6.34)

with i being such that corresponding casualties xi, yi take place between τμ1 and τμ2 .
(3) If τμ2 < t

Ee−uA((τμ2 ,t]) = eλ4
A(t−τμ2 )[g4(u)−1], g4(u) = Ee−uxi , Re(u) � 0, (6.35)

Ee−uB((τμ2 ,t]) = eλ4
B (t−τμ2 )[h4(u)−1], h4(u) = Ee−uyi , Re(u) � 0, (6.36)

with i being such that corresponding casualties xi , yi take place after τμ2 .
The corresponding functionals of casualties accumulated over the periods between observations T are modified as fol-

lows:

γl(x, y, θ) = Ee−xX j−yY j−θ� j = δl
{
θ + λl

A

(
1 − gl(x)

) + λl
B

(
1 − hl(y)

)}
, j, l = 0,1, . . . , (6.37)

where

δ0(θ) = Ee−θ�0 , δ1(θ) = Ee−θ�i , i = 1, . . . ,μ1 = ν1, (6.38)

δ3(θ) = Ee−θ�i , i = μ1 + 1, . . . ,μ2, δ4(θ) = Ee−θ�i , i > μ2, (6.39)

formalizing the modulation of the observation process T which can also be impacted by the crossings data and thus yielding
a feedback effect.

Since (1 − e−u X j )(1 − e−vY j ) = 1 − e−vY j − e−u X j + e−u X j e−vY j , we have the second factor

E
[
e−(a1+···+a5+x)X j

(
1 − e−u X j

)
e−(b1+···+b5)Y j

(
1 − e−vY j

)
e−yY j−(h1+···+h5)� j

]
=

{
Γ 12

0 − Γ 1
0 − Γ 2

0 + Γ0, j = 0,

Γ 12 − Γ 1 − Γ 2 + Γ, j > 0,
(6.40)

where

Γ = γ1(a1 + a3 + a4 + a5 + u + x,b1 + b3 + b4 + b5 + v + y,h1 + h3 + h4 + h5), (6.41)

Γ 1 = γ1(a1 + a3 + a4 + a5 + x,b1 + b3 + b4 + b5 + v + y,h1 + h3 + h4 + h5), (6.42)

Γ 2 = γ1(a1 + a3 + a4 + a5 + u + x,b1 + b3 + b4 + b5 + y,h1 + h3 + h4 + h5), (6.43)

Γ 12 = γ1(a1 + a3 + a4 + a5 + x,b1 + b3 + b4 + b5 + y,h1 + h3 + h4 + h5), (6.44)

Γ0 = γ0(a1 + a3 + a4 + a5 + u + x,b1 + b3 + b4 + b5 + v + y,h1 + h3 + h4 + h5), (6.45)

Γ 1
0 = γ0(a1 + a3 + a4 + a5 + x,b1 + b3 + b4 + b5 + v + y,h1 + h3 + h4 + h5), (6.46)

Γ 2
0 = γ0(a1 + a3 + a4 + a5 + u + x,b1 + b3 + b4 + b5 + y,h1 + h3 + h4 + h5), (6.47)

Γ 12
0 = γ0(a1 + a3 + a4 + a5 + x,b1 + b3 + b4 + b5 + y,h1 + h3 + h4 + h5). (6.48)

Hence,

Φ∗
ν1=μ1μν =

[
Γ 12

0 − Γ 1
0 − Γ 2

0 + Γ0 + γ0

1 − γ1

(
Γ 12 − Γ 1 − Γ 2 + Γ

)] f 1 − f

1 − F

=
[
Γ 12

0 − Γ 1
0 + γ0

1 − γ1

(
Γ 12 − Γ 1)] f 1 − f

1 − F
−

[
Γ 2

0 − Γ0 + γ0

1 − γ1

(
Γ 1 − Γ

)] f 1 − f

1 − F

=
(

f 1 − f

1 − F

)(
J 12 − J 2)Γ. (6.49)

The above result can be summarized as
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Theorem 4. Under the condition that

Re(a0 + · · · + a5 + u + x) > 0, Re(b0 + · · · + b5 + v + y) > 0, (6.50)

and

Re(h0 + · · · + h5) � 0, (6.51)

the Lpqrs-transform of Φ∗
ν1=μ1μν satisfies formula (6.49).

Remark 5. The inverse of the Lpqrs-transform is L−1
uvxy(·)(p,q, r, s) = L−1(· 1

uvxy ), where L−1 is the four-dimensional inverse
Laplace transform. When applied to the transformed functionals Φ∗ in Theorems 2–4, it will restore the original functionals
Φ of the game.

Summing up all three transformations from Theorems 2–4 gives

Φ∗
μ1ν1μν := Φ∗

μ1<ν1μν + Φ∗
ν1<μ1μν + Φ∗

ν1=μ1μν = f 1 − f

1 − F

{
g12 − g2

1 − G2

(
J 1 + J 2)Γ + (

J 12 − J 2)Γ }
. (6.52)

(6.52) gives the transformed functional of the game lost by player A and with two variable layers. The total functional of
the game with two variable auxiliary layers M1 and N1 (without any relation between the two) can be obtained by the
application of the inverse L−1

uvxy to (6.52):

Φμ1ν1μν = L−1
uvxy

(
f 1 − f

1 − F

{
g12 − g2

1 − G2

(
J 1 + J 2)Γ + (

J 12 − J 2)Γ })
(M1, N1, M, N). (6.53)
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