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Abstract

String theory suggests the existence of a minimum length scale. An exciting quantum mechanical implication of this feature
is a modification of the uncertainty principle. In contrast to the conventional approach, this generalised uncertainty principle
does not allow to resolve space-time distances below the Planck length. In models with extra dimensions, which are also
motivated by string theory, the Planck scale can be lowered to values accessible by ultra high energetic cosmic rays (UHECRS)
and by future colliders, i.eM; ~ 1 TeV. It is demonstrated that in this novel scenario, short distance physics beléyw 1
is completely cloaked by the uncertainty principle. Therefore, Planckian effects could be the final physics discovery at future
colliders and in UHECRs. As an application, we predict the modifications te'tae — T f~ cross-sections.

0 2003 Published by Elsevier B.W@pen access under CC BY license.

1. Introduction In this Letter we will implement both of these
extensions in the standard model without the aim to
derive them from a fully consistent theory. Instead, we
will to analyse some of the main features that may

Mhrise by the assumptions of extra dimensions and a

minimal length scale.

In perturbative string theory [1,2], the feature of a
fundamental minimal length scale arises from the fact
that strings cannot probe distances smaller than the
string scale. If the energy of a string reaches the Planck
massmnp, excitations of the string can occur and cause
a non-zero extension [3]. Due to this, uncertainty in
position measurement can never become smaller than
Ip = h/mp. For a review, see [4,5].
~ E-mail addresseshossi@th.physik.uni-frankfurt.de Naturally, thi.s. mi.nimum length uncertainty is r_e-
(S. Hossenfelder), bleicher@th.physik.uni-frankfurt.de lated_ toa mOdIflcatlon_ _Of the standard commutation
(M. Bleicher). relations between position and momentum [6,7]. Ap-

Even if a full description of quantum gravity is not
yet available, there are some general features that see
to go hand in hand with all promising candidates for
such a theory. One of them is the need for a higher-
dimensional space—time, one other the existence of a
minimal length scale. The scale at which the running
couplings unify and quantum gravity is likely to occur
is called the Planck scale. At this scale the quantum
effects of gravitation get as important as those of the
electroweak and strong interactions.

0370-26930) 2003 Published by Elsevier B.W@pen access under CC BY license.
doi:10.1016/j.physletb.2003.09.040
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plication of this is of high interest for quantum fluctu- are expected in high-energy collisions [30]: produc-
ations in the early universe and for inflation [8—16]. tion of real and virtual gravitons [31-35] and the cre-
The incorporation of the modified commutation ation of black holes at energies that can be achieved at
relations into quantum theory is not fully consistent colliders in the near future [36—42] and in ultra high
in all approaches, therefore we will define physical energetic cosmic rays [43,44].
variables step by step. This Letter is organised as follows. We will be-
The existence of a minimal length scale becomes gin with a sketch of the basics of quantum mechan-
important even for collider physics with the further ics (Section 2), and in the third section modify these
incorporation of the central idea of large extra di- familiar relations by introducing generalised uncer-
mensions (LXDs). The model of LXDs, which was tainty. This will be done in % 1 dimensions first, then
recently proposed in [17-21], might allow to study we care for the full(3 + 1)-dimensional description
interactions at Planckian energies in the next genera- (this is understood to be the analysis on our brane). To
tion collider experiments. Here, the hierarchy-problem examine the phenomenologicalimplications on a basic
is solved or at least reformulated in a geometric lan- level, we first analyse the modified Schrédinger equa-
guage by the existence af compactified LXDs in tion, the Dirac equation and the Klein—Gordon equa-
which only the gravitons can propagate. The standard tion in Sections (4-6). In Section 7 we investigate the
model particles are bound to our 4-dimensional sub- influence of the minimal length scale on QED cross-
manifold, often called our 3-brane. This results in a sections at tree-level and compare withe~ data.
lowering of the Planck scale to a new fundamental Appendix A provides an estimation of the effect on
scale,M ¢, and gives rise to the exciting possibility of graviton production. We end with a conclusion of our
TeV scale GUTs [22]. results in Appendix B.
The strength of a force at a distancegenerated In the following, we use the conventioh =
by a charge depends on the number of space-like di- L M, c =1. Greek indices, i, ... run from0to 3.
mensions. For distances smaller than the compactifica-Latin indicesi, j, ... run from 1 to 3, Latin indices
tion radiusR, the gravitational interaction drops faster a, b, ...runfrom 4 to 4+d. In order to distinguish the
compared to the other interactions. For distances muchordinary quantities (e.g£) from the modified ones,
bigger thanr, gravity is described by the well-known we label the latter with a tildeK).
potential lawoc 1/r. However, forr < R the force
lines are diluted into the extra dimensions. Assuming
a smooth transition to Newton’s law, this results in a 2. The uncertainty relation
smaller effective coupling constant for gravity.
This leads to the following relation between the  |n standard quantum mechanics translations in
four-dimensional Planck mas&, and the higher-  space and time are generated by momenpnand
dimensional Planck mas#/;, which is the new  energyE, respectively. However, from purely dimen-

fundamental scale of the theory: sional reasons, the generators of the translations in
m’% _ RdM?+2. ) space and time are the wave vecigrand the fre-

guencyw. The relation betweeltk;, w) and (p;, E)
The lowered fundamental scale would lead to a js usually given, of course, by the constanfoften
vast number of observable phenomena for quantum chosen to be equal one):

gravity at energies in the rangé . In fact, the non-

observation of these predicted features gives first con- p; = fik;, (2)
straints on the parameters of the model, the number — ho. 3)

of extra dimensiong and the fundamental scal

[23-25]. On the one hand, this scenario has major con- In the present context it is of utmost importance to re-
sequences for cosmology and astrophysics such as thanvestigate this relation carefully.

modification of inflation in the early universe and en- Using the well-known commutation relations
hanced supernova-cooling due to graviton emission .

[19,26-29]. On the other hand, additional processes [%i: kj1 =i4ij. 4)
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guantisation in position representation= x; leads
to:

tand

1 — _Ial’
(,(A) = +i8[,

pi = hk; = —ihd;,
E = héd = +iho,.

(5)
(6)

In the momentum representatiop;, = p;, the
commutation relation is fulfilled by

. .. 0 9p; @ .0
X=ihi—=i——=i—.

opi 0Ok dp;  Ok;
The general relation for the root mean square devi-
ations for the expectation values of two operatdrs
andB,

(M

1, ~ ~
AAAB > §|<[A, Bl), €)
then leads to the uncertainty relation

1
ApiAx; > Sh. 9)

The equation of motion (no explicit time dependence)
for the wave function is generated by the evolution
operatorU:

[y () = Ut — 10)|¥ (10)). (10)
Ut —to) = exp(—,;—f(t - to)) (11)
= +ihd|y) = Ely). (12)

The time dependence of an operaff)r(no explicit

time dependence) is (in the Heisenberg picture) then

given by
93 A B (13)
d- T

3. Theminimal length

In order to implement the notion of a minimal
length L ¢, let us now suppose that one can increase
p arbitrarily, but thatk has an upper bound. This
effect will show up whenp approaches a certain
scaleMy. The physical interpretation of this is that
particles could not possess arbitrarily small Compton
wavelengthsa. = 2/ k and that arbitrarily small scales
could not be resolved anymore.

To incorporate this behaviour, we assume a rela-
tion k = k(p) betweenp andk which is an uneven
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function (because of parity) and which asymptotically
approachesﬂLf.1 Furthermore, we demand the func-
tional relation between the energyand the frequency
o to be the same as that between the wave vécamd
the momentunp.

In contrast to [8], there is no modified dispersion
relation in our approach, sinéev/0k = dE/dp. This
means that the functional behaviour bfp) is the
same as that ofo(E) up to a constant. A possible
choice for these relations is

_ wl(2-Y
L sk(p) =tanht V[<Mf) }

E \7
— / -
Lo(E) =tanh/” |:<Mf) ]

with a real, positive constamt. For simplicity, we will
usey =1.

In the following we will study two approximations,
from here on referred to as cases (a) and (b):

(14)

(15)

(a) the regime of first effects including order
(p/M s)3 contributions and
(b) the high energy limip > M.

Expanding tanfx) for small arguments gives for
case (a):

3

p 1/ p
Lek(p)~— — = 1 16
=35 (16)
L (E)~E 1(E N (17)
fe NMf 3 Mf ’
1 (k) ~ kL +}(kL )3 (18)
! By ~oL; + EwLp? (19)
This yields to 3rd order
dk 2
h—~_<i) ~1— (kLy)?, (20)
ap Mf

2 p 2

—— =14+ (kL ~1 — ] . 21
T e aL? 1 () (21)

1 Note that this is similar to introducing an energy dependence

of Planck’s constamt — #4(p).
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In case (b) we have tanh) ~ +1 F 2expF2x) for
|x] > 1, with the upper signs for positive valuesxaf

Skipping one factor 2 in the exponent, which can be
absorbed by a redefinition @f ;, one obtains:
Lk(p)~+17F 2exp<qci>, (22)
My
E
Liw(E)y~£l17F 2exp(:p—), (23)
My
1 1xkLy
—pk)~FIn| —— 24
r~Fin( 2. (2
1 lFwLy
—E@)~FIn| —— ). 25
E@~ (2 (25)
The derivatives are
LN ZeXp(_ﬂ), (26)
My
1 1 1
P (27)

nok  21FkL,
3.1. Generalized uncertainty

The quantisation of these relations is straightfor-
ward. The commutators betweénand £ remain in
the standard form given by Eq. (4). Inserting the func-
tional relation between the wave vector and the mo-
mentum then yields the modified commutator for the
momentum. With the commutator relatfon

—~ A

X, Ak = +i—, 28
[£. AK)] =+ o (28)
the modified commutator algebra now reads

A .op

,pl=+i—. 29
%, 1=+ (29)
This results in the generalised uncertainty relation

1|f/op

ApAx = =|{—)|. 30
>3 G) 0

In case (a), with the approximations (16)—(19), the
results of Ref. [8] are reproduced:

: p?
7

(31)

2 Here,A is an operator valued polynomial or formal serieg in

The derivative on the right-hand side has to be taken with respect to

k and then to be quantised.
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giving the generalised uncertainty relation

1 (p?)
ApAx > =-h|1+ — ).
pat 2<+M}%

In the asymptotic case (b) this yields

(32)

[x, p1~ iEeXp Ly,
2 My

1 1Pl
ApAx = —h{expl +— ) ).
4 Mg

Quantisation proceeds in the usual way from the
commutation relations. For scattering theory it is
convenient to work in the momentum representation,
p=p,k=k(p). From Eq. (7),

(33)

(34)

ap

X =0 =i—2 35
X =10k Iak p (35)
we obtain in case (a) (first derived in Ref. [6]):

. p2
X = |h(l+ M—}%)ap, (36)
and in case (b):
L _.h Pl
x%IEGX M—f)a,,. (37)

As a first application of this approach to quantum
mechanics, we will study the Schrddinger equation in
Section 4. Focusing on conservative potentials in non-
relativistic quantum mechanics we give the operators
in the position representation which is suited best for
this purpose:

f=x, k=—id,,
p=pk), (38)
yielding in case (a)
L2
ﬁz—ih(l— ?faf)ax. (39)

The new momentum operator now includes higher
derivatives.

Generalised to three dimensions, the momentum
operator in the position representatién= (9., d,, 9;)
is

2

A . L4 .
ﬁ:—ihv(l— ?fvz). (40)
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Sincek = k(p) we haveﬁ(l%)|k> = p(k)|k) and
SO |k) o« |p(k)). We could now add that both sets
of eigenvectors have to be a complete orthonormal
system and thereforgt’|k) = §(k — k'), (p/|p) =
8(p — p). This seems to be a reasonable choice at
first sight, sincek) is known from the cis-Planckian
regime. Unfortunately, now the normalisation of the
states is different becaugeis restricted to the Bril-
louin zoné —1/L, to 1/L .

To avoid the need to recalculate normalisation
factors, we choose the(k)) to be identical to thék).
Following the proposal of [6] this yields

(0 Ip) = (k(p)[k(p)) =8 (k(p) — k(p))

ap
=—48(p—p 41

s —r) (41)
and avoids a new normalisation of the eigen-functions
by a redefinition of the measure in momentum space

dp ok

W (42)

dp —

This redefinition has a physical interpretation because
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which has in case (a) the explicit form

in; ) ~ +(Etot— Ey/3M3)|9)). (47)

3.2. Lorentz invariance and conservation laws in

four dimensions

We will use the following short notations:

k=(k, »), (48)
p=(p.E). (49)

k=|]z|, ]zz(kx,kyvkz),

p=|l_5|7 ﬁz(px,py’pz),

As discussed above, we leave the dispersion re-
lation unmodified. However, ag = /p2? + m?2 ex-
presses the relativistic energy—momentum relation we
meet a serious problem at this point. The mass-shell
relation is a consequence pfbeing a Lorentz vec-
tor rather thark. Thus, we have to reconsider Lorentz
covariance in the trans Planckian regime. For energy
scales belowM ¢, an observer boosted to high veloci-
ties would observe arbitrarily large energies. We have
to assure then, that the Lorentz-transforrkesdways
stays below the new limit, which means its transforma-

we expect the momentum space to be squeezed at highion properties are not identical to those of the momen-

momentum values and weighted less.
For the different cases under discussion, one gets:

dp 1
—_——
h h 14+ (p/My)?

d_p — d_p2 ex;(— ﬂ)
h h Mg

The operator of time translation is no longer identi-
cal to the energy operator timasn this context. In or-
dinary quantum mechanics, both of them aréf. To
avoid confusion, letb be that operator defined by the
generator of the Lorentz algebra which belongs to the
time translation and = E (&) the energy-operator for
the free particleEwr = E (&) + V (£) is then the oper-
ator of the total energy, including a time-independent
potential V(x). The equation of motion for the wave
function is then given by

dp

Case(a): (43)

Case(b): (44)

(49)
(46)

Ut — to) = exp(—id(Eron) (t — 10))
= 1Y) =d(Ew¥),

3 We borrow this expression from solid state physics where an
analogous bound is present.

tum p. To put this in other words, a Lorentz boosted
observer is not allowed to see the minimal length fur-
ther contracted. Several proposals have been made to
solve this problem. Most of them suggest a modifi-
cation of the Lorentz transformation [45-48], but the
treatment is still under debate.

However, the appearance of this problem might not
be as astonishing as it seems at first sight. Because
the modifications we examine do occur at energies at
which quantum gravity will get important, curvature
corrections to the space—time must not be neglected
anymore. Therefore, the quantities should be general
relativistic covariant rather than flat space Lorentz co-
variant. These effects will then exhibit themselves in
strong background fields, but here also the particle’s
curvature itself makes an essential contribution. The
exact—but unknown—transformation should assure
that no coordinate transformation can pisheyond
the Planck scale. For practical use of the modified
guantum theory considered here, we treat the momen-
tump as the Lorentz covariant partner of the wave vec-
tor k. We will assume that the momentum is Lorentz
covariant and that the functional relation between the
two quantities, although unknown, is of the desired be-
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haviour. Inserting one of the approximations at the end
of the computation then breaks Lorentz covariance.

In fact, in the present scenarik is also not
a conserved quantity in interactions, because the
relation betweerp andk is not linear anymore. In
single particle dynamics we have, in generalisation of
Eq. (13), the time evolution of the opera@r
d~ -
” A=[A, ] (50)

Since[A, B] = 0 is equivalent to{A, f(B)] =0
for any well defined functiong of B, guantities con-
served in ordinary quantum mechanics are also con-
served in the approach considered here. In particular,
the single particle momentughand energyf are con-
served if no interactions occur.

The canonical commutation relations are given by

.0pu
v = 51
[x", py] +I8kv, (51)
and
[pv, P;L] =0, (52)

with p = p(k) being a Lorentz vector and fulfilling all
requirements mentioned above.
The invariant volume element is then modified to

be
d* ok d* ok
Troe( 5t )= TETT5
A apy h v opy

In the last step we used the rotational invariance of the
relationsp,, = p,,(k,). Due to this the Jacobi matrix
is diagonal.

d*p — (53)

4. Schradinger equation

First we will have a look at the free scalar particle in
the low energy limit. We will define physical variables

step by step since different approaches to incorporate

the minimal length into quantum theory have been
given in the literature.

Let us consider the modified Schrédinger equation.
For usual one gets it by quantising the low energy
expansionp/m « 1, of the relativistic expression

E—m,/1+p—2 —m(l+ p—2+(9(( /m)3)>
B m2 2m? P

(54)
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and dropping the constant tesmbecause an additive
constant in the Hamiltonian does not change the
dynamics. By multiplying a phase e§pimt) to |y)
we could get rid of it. But now this prescription is not
applicable anymore because an additive constast in
does not yield an additive constantdnand therefore
is has to be kept.

With

3 2
E3= m3(l+ ﬁ + O((p/m)3)>

the modified Schrédinger equation, see (46), is then

given by
ﬁ2
Jo a3z lw

(56)
The first term can be dropped again, since it con-
tributes only an overall phase factor. This means, that
up to orderpZ/M]% and p2/m? no change in the dy-
namics occurs. However, the kept termwill yield
extra terms in higher order approximations. Eq. (56)
will modify the frequency spectrum of very heavy
(m ~ My) non-relativistic particles and has therefore
little applications.

Fortunately, we are mainly interested in general
in the energy spectrum and do not need to calculate
@ at all. Let us proceed now with the Schrodinger
equation for a particle in a potentid(x) with the
two most prominent cases: the harmonic oscillator and
the hydrogen atom. We want to calculate the modified
energy levels:, as solutions of the time-independent
Schrddinger equation. In the following we add<«

M. The time dependence is split off by a separation
of the vgriables and has the form éxpw,t) with
wp =w(Ey).

ﬁ2

2m

(55)

2 2

m

- M2

ihd, | y) = |:m<l
7

T a2
3M5

E,ly) = ( + V()?))IW)- (57)
For the harmonic oscillator with (x) = m$22x2/2

in the momentum representation, we find using

Eq. (36)
- ( (1+ pZ/Mfc)a,,f) ).
(58)

An analytic solution of this differential equation has
been given in [6] and, for a more general setting,
in [49].

P2

2m

mh2§22
2

Enl¥)
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The momentum space equation (58) is well suited  There is, however, a second way to calculate
for a numerical treatment. We have solved this eigen- the energy levels, which applies the semi classical
value problem numerically and it fits the analytically calculation of Bohr to the generalised uncertainty
obtained values of [6] to very high precision. The lev- principle.
els get shifted to higher energies with increasinig The Coulomb potential is a central potential, hence
comparison to the usudl, « 1/2 + n. Solving the the virial theorem states that for a particle moving in
eigenvalue equation in the position representation one this potential Exin = —%Epot. For an electron of mass
has to cope with the higher derivatives. For practical me in thenth level, the total energ¥,, is
purposes, one can resort to perturbation theory, as was 1
done analytically for the three-dimensional harmonic E, = EX" + EF®'= ZERO' = _gkin, (62)
oscillator in [50]. . 2 L .

The hydrogen atom is treated best in position Adding the Bohr quantl_satlon cpndmon, the wave-
representation to avoid the problem of substitufing Iength of the electron fits the circumference of the
i3, in the I/ potential* To derive the equation for ~ OrPit, one finds for thentlh 2Ieve| A = 2nnRy,, hence
the Coulomb potentiaV (r) = ¢2/r we will as usual ~ K(P) =n/Rn. NOWEy, = 5¢/Ry, SO the modifiedth
first transform into spherical coordinate®, ¢ with energy levelt, of the hydrogen atom fulfills
r = |F|. We look only at the case of vanishing angular ~ A1 Hk(p)?
dependencé,= 0. (For a treatment of the full angular £, = 7 R2 T2
dependence see [51], who uses the perturbation theory
method to calculate the shift in the energy spectrum.) Inserting now the approximation from Eq. (16) for

(63)

We have then in position representation k(p), we obtain
4 2,2
.1 % ] PR
pr=ina, (1— ?faf)r, 59) =201 3mz) (64)
and for the energy operator we find SinceE = E"'n — p2/2me, we can expresg? by
52 Lf‘. 2 2 En, which results in the equation
& _ 3
Fe () e O g o (1 dmeb  MEED) gy
. i ~ o~ n n2 3 M2 9 M%)’

For the calculation of the eigenvalugg of E we can f f
substitute as usuap) = r|y) and then deal with the ~ where
equation 1

) . Eo_zeme~136ev (66)
~ h Ly 3 e
Enl¢) = <_% (8’ N ?8,) T 7) |#). (61) is the Rydberg constant. Introducing the abbreviations
As in the case of the harmonic oscillator, the higher _ _ Eo B = (67)
derivatives can be treated as perturbations, and the "~ n2’ 3M2’
corresponding shifts of the energy levels can be ) .
calculated. the cubic equation foE, reads

E%2=—¢,E, — 4, BE? — 4¢, B°E] (68)

4 It should be noted at this point that in [53], the hydrogen atom is
treated with a minimal length uncertainty relation in the momentum
representation. However, in contrast to our approach, the authors .
of [53] use a modification of standard quantum mechanics where Ej,

which is solved by

L (IF8ef —1—def)

- B2
the new position operators do not commute anympig,t ;] # 0. "ﬂ
This prohibits the use of the po_sltlon repres‘enta_tlon. Contrary to the ogn Mf 8 Egme 4 Eome
concordant results presented in [51], and in this Letter, the energy = > EOCTY7 572
levels of the hydrogen atom are shifted downwards in the approach 8 Eome 3n Mf 3 nMs

of [53]. ' (69)
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. 4 _ 2 .IO T T T T T T T T T
Neglect_lng terms of ordeO(l/Mf) = 0(B%), an I - observational limit
expansion of the square root yields for the energy ot .
levels the expression =

o8 4

E 4m E x 7} ]
~ 0 m 0 = L
E,rx——|1--—— ). 70 =

" n2 ( 3 MJ% n2> (70) L 6f .
>
D5 -
We can now compare our result with that obtained g
in [51] from perturbation theory. In that paperitwas @ 4| ]
found that with the modified uncertainty principle, the g 3l )
angular momentum degeneracy of the energy levels ‘45
of the hydrogen atom is lifted. We expect the best 5 2} ]
match with our semi classical result for the energy m ]
levels of highest angular momentum for a given main
quantum number. In fact, for/ =n — 1, the results 0 L

of [51] exhibit the same dependence of the shift on 5 10 15 20 25 30 35 40 45 50
Eo/n? in the order0 (1/M?) for largen, differing by Mt (GeV)
a factor 1/3 from our valuesWe note that the shift  Fig. 1. The relative energy shift of the S1-S2 hydrogen level from
found in [53] is similar in size, but has a different sign. usual uncertainty to generalised uncertainty as a function of the new
Al tee resuls, however, are consistent enough in S5, T2 Jere b s e sonres o
the absolute value of the shift in the energy levels to th(frefore Vales o1 < 10 %yev e mtod o
make comparisons to experimental data. As one might
have expected, the deviation caused by the modified
uncertainty principle is of ordeEome/M?, and then 5. QED
dependence of the shift is the same in all three results.

To get a connection to experiment, we note that the 5-1. The fermion field
transition frequency of the hydrogen atom from S1
to S2 level has been measured up to an accuracy of The creation and annihilation operators for anti-
1.8 x 10-%4 [54]. In the frequency range of interest, particles ~a, (p), ~a(p) and for particles*a, (p),
we can certainly neglect transforming the energy into *a,(p), respectively, obey the following anticommu-
a frequency with the new formula. Inserting the values tation relations:
and the current accuracy yields; £ 50 GeV, as was ot . L apy
obtained by [53]. The dependence of relative energy [ @, (p), as(p)], =885 — B [ ] w7
level shift on the fundamental scal s is shown in v ) '
Fig. 1, together with the current experimental bound. -+ —a N S oy Pv
An increase of the experimental precision by four [Far, ~a, ()], =88 p)ljl 3k, (72)
orders of magnitude would allow constraintsin as . . , ,
tight as the bounds from cosmological and high energy and the remaining anticommutators are |dent|qally
physics. An obvious idea would thus be to closely zero. The field opera}tq&p,,(g) C"’F”_be_ expanded n
examine constraints arising from high accuracy QED terms of t_hese creation and annihilation operators in
predictions, such ag — 2 of the muon [55] and the the following way:

Lamb shift of the hydrogen atom. dep m ok,
X) = ———— [—de
Vp.r(X) Xr:/ @2m)32\ hw [<8pu>
5 This difference is due to a different choice of parameters in X (+5lr(p)u(p, r)eikuxU

the modification of the Heisenberg algebra. For identical choices of — At _ikVx, 73
parameters our results agree with the results obtained by Brau [52]. +a,(p)v(p,r)€ ) (73)
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In this expression we used the following conventions
for the spinors:
_pxm
V2m(E + m)
—p+m

V2m(E + m)
wherev(0, r), u(0, r) are the unit spinors in the rest
frame, p = 0. These spinors obey the relations

D utpnitpn =t grm,

u(p,r)= u(0,r), (74)

v(p,r) = v(0, 1), (75)

(76)

_ —m

Zv(p,r>v<p,r>=’5—2 : (77)
- m

The Lagrangian density which yields the Dirac
equation (see Appendix A) for the free fermion field
is
LG ) =iy (plh) —m)y. (78)

So we can read off [56,57] the free Feynman
propagator for the fermionszW in momentum
representation is

1
pk) —m+ie’
Alternatively, one could have derived this by evaluat-

ing time ordered products of the field operators us-
ing the relations (71)—(77). Evaluating the Feynman

T Ay = (79)
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5.2. The photon field

Starting from the expression of the energy density
of the photon field in the framework of a generalised
uncertainty principle:

1~
ZFH F/w»
with the modified field strength tensor, in case (a)
explicitly given by

E= (83)

LZ
I 2
Fu =0, (1—? H)A

2

L
f
— By (1— ?aE)AH,

we derive the corresponding Lagrangian density:

(84)

L= —% FWE,,. (85)
This can also be expressed as

L=— %A“DWA“ (86)
with

pw:(a_?fss)(av_%?ss). .

propagator by considering these time ordered productsysing this Lagrangian density the interaction-free

yields again (79) due to the cancellations of the mo-
mentum measures by the respective inverse terms.
To obtain the Hamiltonian density in the position

representatiort{(x), one has to treat the Lagrangian
density as a function of all appearing higher derivative
terms L(y, 0, ¢, Ww 8W,(1p) (see (78)). Therefore
we have to introduce to canonically conjugated mo-
menta:

0
m1(x) = m ”ﬂ (x), (80)
ALy L .
= = . 81
72(x) 2@ () 3 ¥l(x) (81)

The Hamiltonian density can now be derived using this
generalised scheme:

H(x) = 19 ¥ (x) + 12029 (x) —
2

_ L2
=iy (x)d, (1— L )w(x) (82)

Feynman photon propagatotA,, (in Feynman
gauge) can unambiguously determined to be

1

PApy=————.
e p2(k) +ie

(88)

5.3. Coupling

We introduce the electrodynamical gauge invariant
coupling as usual vid, — D, := 9, —ieA, in (78).
We keep as the approximation in case (a) only terms
up to first order ire and terms up to quadratic order in
1/M ¢, admixtures of both are neglected. This actually
yields the familiar interaction Lagrangian

Li=—eypyA". (89)
As before, we can derivH;, and find as usual
Li=—H;. (90)
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5.4. Perturbation theory

We see now that the only modification in comput-
ing a cross section arises from the different normali-
sation of the particle states and the different volume
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Here @ is the flux. In the laboratory system, we have
pir = 0,Eir = m, En = m + Eip — Ep, therefore
@V = 1. This leads to the following expression in the
laboratory system:

E

3
factors due to a suppressed occupation of momentumds (i — f) = #2(27)* M |2f1_Ef2 l‘[ Oy ds2. (96)
mEi> ; ap

space at high energies. Let us consider now as an im-
portant example the Compton scattering and ask for Explicitly

the QED prediction at tree level in perturbation the-
ory. We are using the following notation:

P, = (pi1, Ein):  initial electron
P, = (Piz2, Ei2):

P, = (pr. En):

initial photon
final electron

P, = (pi2, Ef2):  final photon (91)
and

Pi=Pj; TP

P =Py Py

E = FEj + Eip = Ex1 + Efo. (92)

The expression of thd-matrix element in the realm
of the generalised uncertainty principle is:

apy

T (93)

Si = @m)*Mus(p, —p) [ |

P;=P;

The probability of the initial particles to wind up in

a certain range of momentum spacB(d— f) can

be obtained in the usual way by putting the system
into a finite box with volumeV. Since the measure
of momentum space is modified this yields a Jacobian
determinant for every final particle. For our example
this reads

21)3\? ~
E) B

(T5)

and the differential cross section for two particles in
the final state is then

dP(i—>f):<

ok,
apy

(94)

2 Ex1 E2| ps2]

. 1~
da (i —>f)=h2(27'r)4q§—v|Mﬁ| E

ok,
o 0Py

ds2.

X

(95)

in case (a) and in the laboratory system, we
have

9 EZ Ei2)?
I1 p”=h4<1+—'§)<1+7(m+2'2) ) (97)
Lox, M2 M2

and the Jacobi determinant of the inverse function in
Eq. (96) is just given by the inverse of this expression.

The amplitude summed over all possible initial and
final polarisationsg;, ef, remains in the well-known
standard form [58]

1 ~ et 1
= | Msi| =
462;61 "' 64(27)5 wrwipwn wi
Eip  Ep
x _+_—1+co§9] 98
|:Ef2 Eiz 9

with windex= @ (Eindex) - All this put together yields
1 do
= —(—>f
4 Z ag P
ojofejef
_ h2e I dk, (m + Eip — Et2) EY)
327221 Lop, wrpwipwnwiimkEi
E; E
Et2  Ei2
This example illustrates how modified cross sections
6 in scattering processes with two initial and two
final states can be obtained from the unmodified cross
sectionso. This relation is given by the following
formula:
do E, ak,
w 115,11

1% ap]}

1+ cog 0} . (99)

(100)

P;=P;

From the steps of calculation it can be seen that this
result holds in higher order perturbation theory, too.
The modification enters through the energies of the in-
and outgoing particles and their momenta spaces, only.
However, when incorporating higher orders one has
to bear in mind, that we approximated the interaction
Hamiltonian by neglecting terms of ord@r/M}Z,.
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These terms should reappear at higher energies leadindurther increase of the energy that can be delivered
to the necessity of a reordering of the corresponding by even larger colliders than the next generation can
perturbation series. To be precise, the full modified deliver (= 14 TeV at LHC) would not yield more
SM result contains more terms than one would have insight than the statement that there is such a smallest
taken into account by just using Eq. (100). scale in nature. As was formulated by Giddings this
Let us interpret this result physically before going would be “the end of short distance physics” [59,
any further. There are two factors occurring. The first 60]. However, this was mentioned in a different

shows that the physics at a certain enefypf two context. In our approach the production of tiny black
particles is now rescaled. It is identical to the physics holes is not yet possible at center of mass (c.0.m.)
that happened before at a smaller enefgyith E = energies,/s ~ My, because the distance needed for

ho(E). A higher energy is needed within our model two partons of energy: M to collapse and form a
to reach the same distance between the particles asblack hole is just ¢, but the particles cannot get that
in the standard model: to get the same resolution close any longer. (This might happen then at higher
as with the standard uncertainty principle, one has energies, see [1].) Therefore, we are most interested
to go to higher energies! Because the cross sectionsin testing the present model in ultra high energetic
decrease with energy this means our modified cross cosmic ray experiments, like the extended air-shower
section predictions are higher at the same energy thanmeasurements at KASCADE-Grande and at the Pierre
those of the standard model. The functional behaviour Auger Observatory [61], which allows a hundredfold
of the standard model result should be cutid c.0.m.-energy increase over the LHC energies.
and the range up td/ be stretched out to infinity. For energy/s (m.,m, < /s), Eq. (100) yields
In particular, only from this factor the cross section the simple expression with the functions inserted in
would asymptotically get constant at a value equal to the c.0.m. system
the unmodified standard model resultMj: . . ) 4

But there is another factor from the Jacobian, 9 __S (tanl—(i))
which takes into account that the phase space for thedo  (2M )% 2My
final states is reduced significantly from Planckian J5 -2

X (cosl?( )) .

i, (101)

energies on. Sinck(p) approaches a constant value,
its Jacobian and therefore the relation (100) drops to
zero. Putting both effects together, the cross section of We have used this functional behaviour to get the
our model drops below the unmodified standard model connection to the measured data of the LEP2 Collabo-
result: as can be seen from the Jacobian in case (b),ration, [62],ete™ — u™ ™ andete™ — vt~ cross
the cross section drops exponentially with the reaction sections. The derived factor is independent of the scat-
energy. tering angle. Hence, it holds for the total cross section,
The prediction of a dropping cross section in com- as shown in Fig. 2. In this context, note that possible
parison to the unmodified standard model results is limits on physics beyond the standard model in LEP2
quite remarkable. In most models with the assumption fermion pair production data have already been dis-
of extra dimensions only, an increase of the cross sec-cussed in [63] from the experimental view—this is one
tion is predicted This is due to the enhanced possible of the new trends in high-energy physics.
reactions when taking into account virtual gravitons
(see next section).
It is obvious by construction that in our model 6. Gravitons
no physics can be tested below the distaige If
the new scale is as low as TeV, as suggested by Many prominently discussed collider signatures of
the proposal of large extra dimensions, then an even LXDs are connected to the virtual and real gravi®n
production processes. Extensive studies of this subject
already exist in the literature (see, e.g., [64—66]). In
6 Note: [64] mentions the possibility of a dropping cross section these scenarios Kaluza—Klein excitations are given in
in the realm of large extra dimension scenarios. stepsn,/R. The maximum possible frequenay =
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Fig. 2. The ratio ofete™ — ut =, rTr~ cross sections calcu-
lated with the generalised and the ordinary uncertainty principle.
Data is taken from [62].

RMy is in these scenarios the natural cut-off. (For
simplicity we have set the compactification radii of all
extra dimensions to be equal.)

We start with the real gravitons, which are impor-
tant at energies M due to the significantincrease of
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Using Eq. (1) and the above expressions one
obtains for the number of final states:
Vs/2
_q10w
N(/5)=R2u_nR? / dm w(m)? 1@
0
m2
= V) dﬁzw(\/;/z)d
Mf
with £_1y being the surface of thé-dimensional
unit-sphere and 4 being its volume:
an/Z
rd/2)
These considerations yield the following estimation of
the real graviton production cross section:

2 d+2
+ e a)(ﬁ/Z))
> r0)e w(«/§/2)2< My '

(105)

(106)

Ru-1 = dV).

0'(6

(207)
The exact result for the fermion to real graviton plus
y cross section in the framework of the generalised
uncertainty principle depends on the amplitude of
the process and on the spin-sums. However, for the
following general considerations the estimate (107)
is sufficient. This cross section would be of the
same importance with SM processesitqualsM r,

the corresponding phase space factor. In order to esti-Which is here only possible asymptotically. Therefore,

mate theeTe~™ — ¥ G cross section in the context of
the modified uncertainty principle, we start with the
relation:

2
0(e+67 — yG) x e—ZN(\/E),
mp

(102)

we have to calculate the number of possible final
states wWithE = /s/2 in the c.0.m. system, which
is called N (4/s/2). N(4/s/2) can be obtained using
(with Am — dm):

dm_18E

-0 _ - 103
dn, Rw’ (103)

wherem is the apparent mass of the excitation of the
respective Kaluza—Klein state:

d+4
m? = pi =3 (E@a)? with w, = %". (104)
a=4

real gravitons are produced at a lower rate when a
generalised uncertainty principle is employed than
expected from LXD scenarios without the generalised
uncertainty relation. As a consequence, constraints
(e.g., by energy loss) from real graviton emission
should be reanalysed carefully in the context of the
minimal length proposal.

Now, let us turn to the virtual graviton production.
The free graviton propagator from [64] foX,, (gravi-
ton of apparent mass) is generalised to

G r_ _ Puvap

-~ pZ2—m?’
where P,,qp is the graviton polarisation tensor (the
exact form of the polarisation tensor can be found
in [64]). To calculate the complete graviton exchange
amplitudes, the amplitudes for differemthave to be
summed up. The ultraviolet-divergence of this sum
has to be fixed by introducing a cut-off parameter
A that is of orderM ;. Such an ad hoc introduction

(108)
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of a cut-off parameter is from a theoretical point of other calculations on this topic. Assuming the recent
view always somewhat dissatisfying. In the context proposition of large extra dimensions, the new scale
of the generalised uncertainty relation such a cut-off might be accessible in colliders. We use perturbation
parameter is naturally included from first principals theory to derive thee*e™ — f* f~ cross sections
via the minimal length scalé ;. Therefore, no ad hoc  with an approximated interaction Hamiltonian. We

cut-off parameter is needed: compare our results to recent data and find that the
limits on the new scale are compatible to those from

mit e different experimental constraints;/Ll; 2, 1 TeV.

Z = Q-1 dm (109) . I & :
p2 —m?2 P2 _m29E" Our model combines both large extra dimensions

and the minimal length scale and predicts dropping

Using case (b), it is easy to see that the UV-end cross sections relative to the standard model cross
converges for alf due to the exponential suppression sections. Further, we argue that the analysed Planckian
of the momentum measure. To calculate this integral, it effects hinder the emergence of other effects which
can be expanded in a power series/is/ M, as given are predicted abover 1 TeV, such as black hole and
in [64] using the cut-off parameter. In our approach the graviton production.
expansion coefficients could be calculated right away.
We will not perform this analysis here. This result will
not yield a more profound relation between the exact Acknowledgements
parameters and the expansion coefficients, since in our
approach the arbitrariness lies in the exact form of the  The authors thank L. Bergstrém, S.F. Hassan and
function E(w) applied, or its expansion coefficients, A.A. Zheltukhin for fruitful discussions. S. Hofmann
respectively. and S. Hossenfelder appreciate the kind hospitality of

Even if the details of graviton production are not  the Field and Particle Theory group at Stockholm Uni-
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that within our model the cross sections (e.g., the from the Wenner-Gren Foundation. S. Hossenfelder
above calculated (ete™ — f*f7)) are modified  wants to thank the Land Hessen for financial sup-
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similar magnitude which are working against each
other. Therefore, measurable deviations may occur
only at energies higher tha ;. If one is looking Appendix A. The Dirac equation
for signatures beyond the standard model, one should
focus instead on observables that are not too sensitive  |n ordinary relativistic quantum mechanics the
to the generalised uncertainty, such as modifications Hamiltonian of the Dirac particle is
in the spin distribution due to the exchange of a spin- '
2 particle or the appearance of processes that areH = mao:yo(ihy’ai +m). (A.1)
forbidden by the standard model. Furthermore, we
want to mention that most of the constraints on the
M scale are weakened in our scenario. (p —m)y =0, (A.2)

This leads to the Dirac equation

with the following standard abbreviation’ A, :=
7. Conclusions and p, = if#d,. To include the modifications due to
the generalised uncertainty principle, we start with the
We introduce modifications of quantum mechanics relation
caused by the existence of a minimal length scale _ P
Ly. We show that our approach is consistent with E = yo(y' pi (k) +m) (A-3)
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as the first step to quantisation. Including the al-
ternated momentum wave vector relatipk), this
yields again Eq. (A.2) with the modified momentum
operator

(p(k) —m)y =0. (A.4)
This equation is Lorentz invariant by construction

(see our general discussion in Section 3.2). Since it

contains—in position representation—3rd order deriv-

atives in space coordinates, it contains 3rd order time-
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(B.2). In case (a), one obtains the following explicit
expression in terms of derivative operators:

2 2

L% L
%y (av - 83) (au - ai)w =m?y.
(B.3)
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