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Due to socioeconomic factors, more couples are choosing to delay conception than ever. Increasing
average maternal and paternal age in developed countries over the past 40 years has raised the question
of how aging affects reproductive success of males and females. Since oxidative stress in the male re-
productive tract increases with age, we investigated the impact of advanced paternal age on the integrity
of sperm nucleus and reproductive success of males by using a Prdx6�/� mouse model. We compared
sperm motility, cytoplasmic droplet retention sperm chromatin quality and reproductive outcomes of
young (2-month-old), adult (8-month-old), and old (20-month-old) Prdx6�/� males with their age-
matched wild type (WT) controls. Absence of PRDX6 caused age-dependent impairment of sperm mo-
tility and sperm maturation and increased sperm DNA fragmentation and oxidation as well as decreased
sperm DNA compaction and protamination. Litter size, total number of litters and total number of pups
per male were significantly lower in Prdx6�/� males compared to WT controls. These abnormal re-
productive outcomes were severely affected by age in Prdx6�/� males. In conclusion, the advanced
paternal age affects sperm chromatin integrity and fertility more severely in the absence of PRDX6,
suggesting a protective role of PRDX6 in age-associated decline in the sperm quality and fertility in mice.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Delayed parenthood due to socio-economic factors is becoming
an increasingly widespread phenomenon in industrialized coun-
tries [1,2]. Paternal age has been continuously rising since 1980
[1]. Although we know more about the effects of maternal age on
reproductive outcomes, little is understood about the effects of
advanced paternal age on sperm quality, reproductive outcomes
and offspring health.

Epidemiologic studies have indicated that advancing paternal
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age at childbearing is linked to several genetic disorders, including
autism spectrum disorders [3,4], schizophrenia [5,6], and bipolar
disorder [7], as well as psychiatric and academic morbidity pro-
blems [8]. Recent genomic studies have reported that the age of
the fathers at conception is an important factor in determining the
number of de novo mutations in children [9].

There is growing evidence that advancing paternal age is as-
sociated with an increased frequency of certain genetic and
chromosomal defects in spermatozoa [10–12]. Clinical studies and
animal models have shown that the quality of semen changes with
advancing age, leading to decreased motility and abnormal mor-
phology of sperm, decreased semen volume, and altered preg-
nancy outcome [13–16]. These studies provide strong evidence
that spermatozoa produced in old males differ from those of
young ones, and are more sensitive to the oxidative stress asso-
ciated with paternal age [17,18]. Higher levels of double-stranded
DNA breaks were reported in older men [19], and a gradual age-
related upward trend has been proposed for DNA damage since
the DNA fragmentation index (DFI) increased more than double in
60-year old compared to 20-year old men [20,21].

The integrity of the sperm nucleus is a critical issue in male
fertility; several studies have shown that increased DNA
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://core.ac.uk/display/82388575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.sciencedirect.com/science/journal/22132317
www.elsevier.com/locate/redox
http://dx.doi.org/10.1016/j.redox.2015.02.004
http://dx.doi.org/10.1016/j.redox.2015.02.004
http://dx.doi.org/10.1016/j.redox.2015.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2015.02.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2015.02.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2015.02.004&domain=pdf
mailto:cristian.oflaherty@mcgill.ca
http://dx.doi.org/10.1016/j.redox.2015.02.004


B. Ozkosem et al. / Redox Biology 5 (2015) 15–2316
fragmentation in spermatozoa is associated with decreased ferti-
lity, infertility or problems in the health of the offspring [22–24].
Moreover, the evidence for increased sperm DNA damage with
advancing paternal age is well documented [25–27].

Peroxiredoxins (PRDXs) are newly discovered antioxidant en-
zymes with a wide distribution among species [28]. PRDX6 is a
novel antioxidant enzyme that contains one cysteine residue in its
active site (1-Cys PRDX) [29] and has glutathione peroxidase and
Ca2þ-independent phospholipase A2 activities [30] that protects
cells from oxidative stress-mediated damage [30]. PRDX6 is the
most abundant PRDX and is present in all compartments of human
spermatozoa [31,32]. Spermatozoa from infertile men have lower
levels of PRDX1 and PRDX6 associated with low sperm motility
and high DNA damage [33]. Moreover, we showed that PRDX6 was
the only PRDX member reacting with low amounts of hydrogen
peroxide (H2O2) in the range needed for sperm capacitation [31].

We recently showed that PRDX6 is required to maintain sperm
quality and function in mice; 2-month old Prdx6�/� males had
low sperm motility, reduced fertility, increased levels of oxidative
stress biomarkers (protein carbonylation, lipid peroxidation, and
DNA oxidation), and higher post-translational protein modifica-
tions (S-glutathionylation and nitrosylation) than the wild type
males [34]. Since oxidative stress is increased during aging, the
aim of the present study was to determine the impact of aging on
reproductive outcomes and sperm quality in Prdx6� /� male mice.
Materials and methods

Reagents

All chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA), except for monobromobimane (mBBr), purchased from
Calbiochem, San Diego, CA, USA. Biotinylated horse anti-mouse
IgG was bought from Vector Laboratories (Burlington, ON, Canada).
Alexa Fluor 555 conjugate of streptavidin and Prolong Antifade
were purchased from Molecular Probes (Eugene, OR, USA). The
anti-8-OHdG antibody was purchased from StressMarq Bios-
ciences Inc (Victoria, BC, Canada). Donkey anti-rabbit im-
munoglobulin IgG and goat anti-mouse IgG antibodies (both
conjugated with horseradish peroxidase) were provided by Ce-
derlane Laboratories Ltd (Hornby, Canada). Nitrocellulose mem-
branes (pore size, 0.22 mm) were bought from Osmonics Inc
(Westborough, MA, USA) and the enhanced chemiluminescence
kit Lumi-Light from Roche Molecular Biochemicals (Laval, QC Ca-
nada). Immunodetection of blotted proteins was performed with
radiographic films obtained from Fuji (Minami-Ashigara, Japan).
Other chemicals used were of at least reagent grade.

Animals

Prdx6� /� mice were produced at the Royal Victoria Hospital
Animal Facility from breeder pairs generously donated by Dr. Aron
Fisher (University of Pennsylvania) [35]. The Prdx6�/� mouse
model has been generated by Dr. Ye Shih Ho in collaboration with
the laboratory of Dr. Aron Fisher at the University of Pennsylvania
on a mixed background [35]. The mice were subsequently back-
crossed to 499.9% genetic identity for C57Bl/6 as determined by
microsatellite analysis performed by the Jackson laboratory [36].
Age groups were selected as 2 months, 8 months and 20 months,
and each age group consisted of Prdx6� /� mice (n¼10) and wild
type (C57BL/6J) (n¼10) for each age. Mice were maintained on a
14-h light/10-h dark cycle and provided with food and water ad
libitum. All procedures were carried out in accordance with the
regulations of the Canadian Council for Animal Care (CACC) and
were approved by the Animal Care Committees of McGill
University and the McGill University Health Centre. Mice of all
ages were euthanized at the end of 6-month long mating
experiments.

Mating experiments

All three age groups of Prdx6� /� males and their littermate
wild type controls (n¼10) to be paired with 8 week old wild type
females as duos, and monitored for litter numbers, litter size, sex
of the pups and total number of pups per male for 6 months.
Reproductive health of the offspring of these animals was also
monitored, at 2 months of age; each male offspring (n¼4) was
paired with a young wild type female for 2 months. Litter fre-
quency, litter size, number of litters and pups were evaluated. Pups
body weight at fixed 21-day for weaning time (normal time for
WT pups) as well as extra days to achieve weaning weight needed
for pups sired by Prdx6� /� fathers were recorded.

Organs and sperm samples

The testes, epididymides, seminal vesicles and other re-
productive accessory glands were removed immediately after eu-
thanasia. Body and reproductive organs (testes, epididymes,
seminal vesicles and prostate) weights were recorded. Cauda
epididymes were placed in phosphate-buffered saline (PBS) (1 mM
KH2PO4, 10 mM Na2HPO4, 137 mM NaCl, 2.7 mM KCl, pH 7.0) and
pierced with 27G needle 5 times to allow spermatozoa to swim-
out for 10 min at 37 °C. Spermatozoa were further diluted to
5�106 cells/ml in Biggers, Whitten, and Whittingham (BWW)
medium composed of 91.5 mM NaCl, 4.6 mM KCl, 1.7 mM CaCl2,
1.2 mM KH2PO4, 1.2 mM MgSO4, 25 mM NaHCO3, 5.6 mM D-glu-
cose, 0.27 mM sodium pyruvate, 44 mM sodium lactate, and
20 mM HEPES.

Sperm motility and cytoplasmic droplet retention

Sperm motility (total and progressive) and cytoplasmic droplet
retention determination were performed promptly, while keeping
the spermatozoa at 37 °C. Evaluation of sperm motility parameters
was conducted using a computer-assisted sperm analysis system
(CASA) with Sperm Vision HR software version 1.01 (Minitube,
Ingersoll, ON, Canada). A total of 200 spermatozoa were examined
for each sample. Samples were analyzed for percent motility as
well as progressive motility (average path velocity 425 mM/s).

The presence of cytoplasmic droplets, the leftovers of cyto-
plasm, was determined using the method established by Syntin
and Robaire [16]. Motility images that had been recorded with
CASA were still-frozen and spermatozoa were assessed for the
presence or absence of cytoplasmic droplets. Minimum of 100
spermatozoa (in duplicate) per animal were evaluated.

Sperm chromatin structure integrity

Sperm DNA fragmentation and DNA compaction were de-
termined by differential flow-cytometry-based assays using a
MACSQuant Analyzer flow cytometry (Miltenyi Biotec, Inc., Au-
burn, CA, USA). A total of 10,000 spermatozoa were analyzed per
assay.

Sperm DNA fragmentation
The susceptibility of sperm DNA to acid-induced denaturation

was assessed by the Sperm Chromatin Structure Assay (SCSA)
[37,38]. The flow cytometer is equipped with a 585/625 nm filter
and a laser tuned to 488-nm line excitation. The raw data were
processed using WinList Software (Verity Software, Topsham, ME,
USA). The extent of DNA denaturation was expressed as the
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percentage of DNA fragmentation (DNA fragmentation index, DFI)
and DNA compaction was assessed by calculating the High DNA
stainability (HDS).

Sperm DNA oxidation
The levels of 8-hydroxy-deoxyguanosine (8-OHdG) were de-

termined by immunocytochemistry. Sperm suspension was
smeared onto superfrost plus slides (Fisher Scientific, Montreal,
QC, Canada). Air-dried cells were permeabilized with 100% me-
thanol as done before [31]. Cells were rehydrated with PBS sup-
plemented with Triton-X100 (PBS-T), and blocked with 5% goat
serum in PBS-T for 30 min at 20 °C. Slides were washed in PBS-T
and incubated overnight at 4 °C with anti-8-OHdG antibody
(1:100) antibody. After a wash, cells were incubated with bioti-
nylated secondary antibody horse anti-mouse IgG (1:2000) for 1 h
at 20 °C. Then, streptavidin conjugated to alexa fluor 555 (1:500)
was applied to slides and smears were mounted with ProLong
Antifade (Molecular Probes, Eugene, OR, US), and coverslip.
Fluorescent signals were examined under an epifluorescence mi-
croscope (Zeiss Axiophot, Germany). All images were captured
with a digital camera (Retiga 1300, QImaging, Burnaby, BC, Cana-
da) and digitized with Northern Eclipse digital imaging software,
version 6.0 (Empix Imaging, Mississauga, ON, Canada). No distinct
signals were seen when the primary antibodies were omitted
26
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Fig. 1. Reproductive outcomes of aging males. Number of litters (A), of pups (B), weaning
of 21 days (D) of pups sired by 20-month old WT males mated with young WT female
�WT) or Prdx6� /� (Prdx6�/� �Prdx6� /�) females. @ and ^Mean the highest and low
matched group. N¼10 for each group and genotype.
(negative control). Results were presented as % of cells with po-
sitive signal.

Chromomycin A3 (CMA3) labeling
The level of protamination was determined on the basis of the

accessibility of the fluorochrome, Chromomycin A3 (CMA3), to
bind to protamine free sites in the sperm DNA [39]. Aliquots of
epididymal spermatozoa (5�106 ml�1) were incubated with
0.25 mg/ml CMA3 in McIlvaine buffer (0.1 M citric acid, 0.2 M
Na2HPO4, 10 mM MgCl2; pH 7.0) and incubated for 20 min at 25 °C
in the dark. Results were presented as percentage of cells with
CMA3 labeling.

Monobromobimane (mBBr) thiol labeling assay
The presence of free thiols in sperm nucleus was determined by

labeling them with mBBr as previously described [39] with mod-
ifications. Briefly, spermatozoa were incubated in the presence or
absence of 1 mM dithiothreitol (DTT). After washed with PBS, the
samples were incubated in the dark with 0.5 mM mBBr for 10 min
at 37 °C. Spermatozoa were then washed in PBS, sonicated on ice
to separate heads from tails, and stored at 4 °C in the dark until
analysis. Results were expressed as the percentage of free thiols
determined from the mean fluorescence of spermatozoa incubated
without DTT and the fluorescence of DTT-treated cells.
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Statistical analysis

Normal distribution of data was confirmed using Shapiro–Wilk
or Lilliefors tests. Data were analyzed using two-way analysis of
variance (ANOVA) (for age and genotype), followed by post hoc
Bonferroni test. Differences with a p value of o0.05% were re-
garded as significant. Results are expressed as mean7SEM. Sta-
tistical analyses were performed using the Sigma Systat 13 (Systat
software Inc.).
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Fig. 3. Sperm motility in aging PRDX6� /� and WT mice. # and ^Mean the highest
and lowest values, respectively; *means lower than the other age-matched group
and ** Means different (po0.001). N¼10 for each group and genotype.
Results

Fertility in aging Prdx6� /� males is severely affected by aging

Given that Prdx6�/� males at 2 months of age had reduced
number of litters and pups (Fig. 1), we investigated whether ad-
vanced aging has an impact on fertility outcomes of Prdx6� /�

males. After 6 month-long mating experiments with young WT
females, Prdx6� /� males from 8 and 20 months of age groups
produced significantly lower number of litters per male compared
to age-matched WT controls (Fig. 1A). We observed a significant
decrease in the number of pups per male in Prdx6� /� mice at all
ages when compared to WT controls (Fig. 1B).

Pups sired by Prdx6� /� males required more time than those
from WT age-matched controls to reach the appropriate weight to
be weaned (Fig. 1C). This increased time was significantly higher in
pups sired by 20-month old Prdx6� /� mice compared to younger
knockout fathers. Interestingly, the weight of pups is influenced by
the 20-month old Prdx6�/� fathers since hetero or homozygous
pups had similar weight at 21 days but lower than that of pups
sired by 20-month old WT fathers (Fig. 1D).

Epididymal sperm maturation and motility are impaired in Prdx6� /�

during aging

Prdx6� /� epididymes have lower weight than WT controls and
other organ weights were similar in all groups (data not shown).
At 2 months of age, a significant percentage of spermatozoa from
Prdx6� /� mice had higher cytoplasmic droplet retention (CDR)
when compared to wild type (Fig. 2) and this proportion was
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mal spermatozoa. *Means lower than the respective age-matched group, **Means
significantly different (po0.001). # Means the highest value. N¼10 for each group
and genotype.
increased during aging, showing the oldest males the highest va-
lues of CDR.

Aging decreased sperm motility in WT and Prdx6�/� males
(Fig. 3); however, total and progressive sperm motility in
Prdx6� /� mice was significantly lower at all ages compared to
age-matched WT controls.

Prdx6 is required for integrity of sperm chromatin in old Prdx6� /�

mice

We next assessed the integrity of sperm chromatin in aging
Prdx6� /� males and their age-matched WT controls. An age-de-
pendent increase in sperm DNA fragmentation (DFI) was observed
in both groups of males. Starting from 2 months of age, DFI in
spermatozoa from Prdx6-null mice was significantly higher than
their age-matched WT controls (Fig. 4). By 20 months of age, the
highest values of DFI were observed in Prdx6� /� males. Similarly,
sperm DNA oxidation (8-OHdG) was increased due to age in both
groups (Fig. 5). Young Prdx6�/� (2-month old) had 8-OHdG values
that were more than double to those from age-matched WT con-
trols. Moreover, these values were higher at all ages in Prdx6� /�

mice compared to the age-matched WT controls (Fig. 5B).
Sperm DNA compaction was severely affected in Prdx6� /�

males (Fig. 6). The three parameters used to characterize sperm
DNA compaction (HDS, level of protamination; CMA3 labeling and
percentage of nuclear free thiols) were significantly higher in
Prdx6� /� spermatozoa compared to those from WT controls at all
ages. Interestingly, only the oldest WT males showed significant



WT
Prdx6 -/-

^

0

5

10

15

20

25

30
D

FI
(%

)

**

@

#

#

**

2 8 20
Age (months)

Fig. 4. Sperm DNA fragmentation in aging Prdx6�/� andWT mice. @ and^Mean the
highest and lowest values, respectively. # Means higher than the other age-mat-
ched group and ** Means different (po0.001). N¼10 for each group and genotype.

W
T

DAPI 8-OHdG Merge

2

2

8

20

8

Pr
dx

6-/-

20

Fig. 5. Sperm DNA oxidation in aging Prdx6�/� and WT mice. (A) Immunocytochemistr
were permeabilized with methanol and incubated overnight with the anti-8-OHdG antib
conjugated to Alexa Fluor 555. All pictures were taken at 1000� magnification using the
not shown). (B) Percentage of spermatozoa showing DNA oxidation (8-OHdG labeling).
other age groups of WT males (po0.001). N¼10 for each group and genotype.

B. Ozkosem et al. / Redox Biology 5 (2015) 15–23 19
increase of these parameters compared to the other WT groups.
Noteworthy, the lower sperm DNA compaction was evidenced also
by the greater nuclear area identified by DAPI stain in Prdx6� /�

and WT older mice compared to young WT animals (Fig. 5A).
Discussion

We demonstrate for the first time the impairment of sperm
function, sperm chromatin quality and fertility outcomes of
Prdx6� /� mice during aging. These findings support an important
role of Prdx6 in the protection of spermatozoa against the age-
related damage that translates into low reproductive success and
may affect offspring’s health.

One of the hypotheses for the effect of the loss of PRDX6 is that
there is an ongoing oxidative stress during aging. Indeed, in-
creased levels of reactive oxygen species (ROS) and a decrease in
antioxidant enzymes have been reported in aging male rats [40–
42]. This aging-associated oxidative stress promotes sperm DNA
oxidation and abnormal sperm chromatin in these animals [17,43].
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The increased levels of 8-OHdG and the abnormal sperm chro-
matin structure in aging male mice which are exacerbated by the
lack of PRDX6 indicates the presence of oxidative stress in the
aging testes of mice and suggests that PRDX6 is important to
scavenge ROS produced during the aging process. This conclusion
is of interest since previous reports have indicated the presence of
high levels of GSH peroxidase type form (GPX4) in testis and
suggested that this is the primary anti-oxidant enzyme in that
organ [44]. GPX4 is essential during spermiogenesis to form part
of the mitochondrial sheath by its interacting with hydroperoxides
[45,46]. The mitochondrial GPX4 knockout male mice are infertile
having morphologically abnormal spermatozoa [47]. However, the
role of mGPX4 as an antioxidant in the mature spermatozoa is
negligible since this enzyme is tightly bound in mitochondria and
its activity in vitro can only be obtained after solubilization with
high concentrations of dithiothreitol (0.1 M) in the presence of
guanidine [45]. The nuclear isoform of GPX4 (nGPX4) is also found
in spermatozoa, but it is not essential for sperm function since
nGPX4 knockout males are fertile [48]. Spermatozoa from
Prdx6� /� (Fig. 6C) or nGPX4�/� mice [48] showed lower sperm
DNA compaction with high levels of nuclear free thiols compared
to WT controls, indicating a possible cross-talk between PRDX6
and nGPX4 to maintain sperm chromatin stability by acting as
protamine thiol peroxidases responsible for the formation of
cross-linked protamine disulfides during sperm maturation [49].
However, the subfertility was observed only in Prdx6� /� males,
suggesting a major role of PRDX6 in maintaining normal sperm
chromatin structure. Moreover, GPX4 is not sufficient to maintain
normal age-related antioxidant function while PRDX6 plays an
important antioxidant role in the testis and spermatozoa pro-
tecting paternal DNA; PRDX6 has been shown previously to be
active in spermatozoa and to protect against oxidative stress
[31,33].

Salomon et al. [42], reported that an oxidative stress is ob-
served in testis of 24-month old rats due to a decrease in catalase,
2-Cys PRDXs, and GPX as well as superoxide dismutase activities
[42]. These enzymes can serve to maintain low intracellular su-
peroxide and H2O2 concentrations but are not able to reduce
phospholipid hydroperoxides in order to quench the chain reac-
tion of lipid peroxidation or to repair peroxidized cell membranes.
GPX4 and PRDX6 are the only enzymes that have been reported
with the ability to reduce phospholipid hydroperoxides at sig-
nificant rates [50]. The enzyme(s) responsible for the observed
GPX activity in the previous study [42] was not determined but
could have been PRDX6 since it as well as the classical GSH per-
oxidases (including GPX4) utilize the glutathione/glutathione re-
ductase system for their activity [51]. Even though these other
antioxidant enzymes display significantly lower activity in aged
testes, the greater oxidative stress-associated effect in our
Prdx6� /� compared to age-matched WT males highlights the
importance of this PRDX in the protection of the spermatozoon
during aging.

The damaged paternal DNA is associated with a variety of ab-
normal reproductive outcomes [52,53]. The abnormal re-
productive outcomes found in aging Prdx6�/� males (Fig. 1) could
be produced by defects in the paternal genome promoted by the
aging-related oxidative stress observed (Fig. 2B). It is known that
an increase in DNA damage such as aneuploidies and increased
mutation frequency during spermatogenesis occur in old com-
pared to young mice [54,55]. This increase in DNA damage is due
to an altered base excision repair activity due to a reduction of
apurinic endonuclease in old male mice [56]. Similarly, old male
rats show a significant reduction of apurinic endonuclease 1
(APE1) and X-ray repair complementing defective repair in Chi-
nese hamster cells 1 (XRRC1; a scaffolding enzyme involved in the
stabilization of the base excision repair pathway) in pachytene
spermatocytes, thus producing increased levels of 8-OHdG com-
pared to young animals [43]. Moreover, the spermatozoon does
not have a complete set of enzymes to perform an appropriate
DNA repair. Certainly, downstream base excision repair enzymes
APE1 and XRRC1 are absent in human spermatozoa [57]. There-
fore, although DNA glycosylases such as OGG1 are present in
spermatozoa [57] and can remove 8-OHdG, the abasic site cannot
be repaired and the DNA remains damaged.

It is then important to prevent as much as possible the oxida-
tive damage of paternal DNA to assure a healthy progeny; in this
model the absence of PRDX6 generates extensive DNA oxidation
which is exacerbated by age. This DNA oxidation may promote a
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high rate of DNA mutations because 8-OHdG induces DNA base
mutations such as G4T/C4A transversions [58] that can account
for the reduction of fertility observed in old Prdx6�/� males.
Therefore, the increased levels of 8-OHdG in spermatozoa ob-
served in PRDX6�/� males suggest the importance of PRDX6 in
the protection of paternal DNA against oxidative stress particularly
during aging.

PRDX6 is present in the human sperm head particularly in the
perinuclear theca [31]. The fact that sperm chromatin is severely
affected in Prdx6�/� males compared to WT controls (Figs. 4 and
5) and the location of PRDX6 in the sperm head suggest a role of
this antioxidant enzyme in the protection of the paternal genome
against ROS. Although the intimate relationship between PRDX6
and sperm DNA is still yet to be established, the fact that PRDX6
contains a lysine-rich C-terminus may allow this interaction. It is
known that The Plasmodium falciparum nuclear peroxiredoxin, a
1-Cys PRDX, is a genome wide chromatin associated nuclear per-
oxiredoxin that binds to DNA by its lysine rich C-terminus, thus
protecting the parasite genome against oxidative stress [59].

An interesting finding was the delay of weaning time of pups
sired by PRDX6� /� males and exacerbated by aging (Fig. 1C) due to
a low weight at the time that WT pups were ready to be weaned
(Fig. 1D). We can consider that the damaged paternal genome in
Prdx6� /� mice triggers substantial development impairment of
these pups generating low birth weight. Moreover, this effect on
pup weight is clearly due to the damaged paternal DNA carried by
Prdx6� /� fathers regardless of the genotype of the mothers. This
result is in accordance with studies in humans where low birth
weight odds increased with advanced paternal age [60].

In a recent study, couples where only the man is smoker and
diabetic (both conditions associated with oxidative stress that
impact negatively on spermatozoa [61,62]) have children with low
birth weight [63]. It is possible that a higher rate of DNA mutations
is present in the paternal genome of aging PRDX6�/� mice due to
the accumulation of 8-OHdG, capable of inducing DNA base
transversions as mentioned above [58] that are inherited by the
offspring [64]. Since spermatozoa lack complete base excision re-
pair mechanism [57], these accumulated mutations maybe the
cause for the reduced fertility of PRDX6� /� males. Oxidative stress
is known to produce epigenetic instability promoting the sup-
pression of tumor suppressor genes and thus promoting hepato-
carcinogenesis [65]. It is plausible that the oxidative stress gen-
erated by the absence of PRDX6 in the knockout males promotes
epigenetic instability and consequent dysregulation of gene ex-
pression, therefore affecting the embryo development that will
translate into pups born with low weight and augmented weaning
time.

It has been recognized that the aging male is at risk of trans-
mitting multiple genetic and chromosomal defects to his child
[4,20]. Although the oocyte has the capacity to repair some degree
of paternal DNA damage [66], most of the sperm DNA damage
persists after fertilization and DNA synthesis in the embryo is in-
capable of repairing the damaged paternal DNA [67].

The effect of the aging-associated oxidative stress could be due
to a direct detrimental action on germ cells that will become
spermatozoa during spermatogenesis, but also due to an impair-
ment of epididymal maturation. Cytoplasmic droplet retention is a
well known indicator of abnormal epididymal epithelium func-
tion; increased number of spermatozoa with CDR is associated
with infertility [68]. Our results confirm previous studies where
increased CDR was observed in aging Brown, Norway male rats
[16]. Whereas the presence of a high percentage of cytoplasmic
droplets in spermatozoa is associated with a failure of spermato-
zoa to mature properly and thus may account for the reduced litter
size, this abnormal reproductive outcome can also be ascribed to
malfunctioning spermatozoa displaying severe motility
impairment (Fig. 3). However, what it is clear from these results is
that the absence of PRDX6 promotes a greater impairment of
sperm maturation and motility. We previously showed that
PRDX6� /� spermatozoa have increased levels of redox-dependent
modifications such as S-glutathionylation and carbonylation [34].
Redox-dependent modifications are associated with low sperm
motility and inability to achieve fertilizing ability as reported in
human spermatozoa [69]. Thus, the inability of aging PRDX6� /�

males to produce similar numbers of pups as the age-matched WT
controls could be due to the impaired motility and fertilizing
ability produced by increased levels of redox-dependent modified
proteins involved in the motility machinery and the sperm capa-
citation process.

In conclusion, we demonstrated that PRDX6 plays a significant
role in the protection of spermatozoa against the aging-associated
oxidative stress. Sperm chromatin and the functionality of sper-
matozoa is impaired by oxidative stress during spermatogenesis
and/or epididymal maturation and the absence of PRDX6 ex-
acerbated the damaged inflicted on the paternal genome gen-
erating a reduced number of pups in the aging knockout males. In
times where fatherhood is delayed due to social and economic
factors, it is important to minimize the aging-associated oxidative
stress to assure healthy offspring from older fathers.
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