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Abstract

We outline problems that Rodica Simion was investigating that concern factorizatio
determinants of matrices whose entries are defined by combinatorial statistics.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we sketch as much as we can of one of the programs that Rodica
was very actively in the process of developing before her untimely passing in early
This program concerns factorizations of determinants of matrices that are defin
combinatorial statistics. We also provide some of the tantalizing computational evi
that she produced that suggests that this area is likely to have considerable depth.

Rodica’s interest in such problems began with Tutte’s paper [28], and was fu
reinforced by learning about meanders and their Gram determinants [6,7]. To provide
complete motivation, we start with the earlier work that motivated [28], which we me
in Section 3, after first sketching a few of the combinatorial preliminaries that enter in
discussion. Section 3 also contains the key results of [4,28] that so interested Rodica
problems and directions for future work that were part of Rodica’s program of resear
outlined in Section 4.
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2. Noncrossing partitions and type-B counterparts

We assume the reader is familiar with the set partition latticeΠn. This lattice has
a number of important relatives, the first of which we will encounter below is
lattice of noncrossing partitions. (For an extensive survey of noncrossing part
see [24].) A partitionπ = {X1,X2, . . . ,Xk} of {1,2, . . . , n} is noncrossing if whenever
a < b < c < d anda andc are in a blockXi of π andb andd are in a blockXj of π , then
Xi = Xj . Under the ordering (refinement) induced byΠn, the noncrossing partitions als
form a lattice [16], which is denoted byNCn. It is well known that the number of elemen
in NCn is thenth Catalan numberCn = 1

n+1

(2n
n

)
. The meet operations are the same inΠn

andNCn, but the join operations do not always agree; for instance, the join of 1/24/3 and
13/2/4 in Π4 is 13/24, which is crossing, so the join of these elements inNC4 is 1234.
The rank function ofNCn is the restriction of that ofΠn; in both cases, rk(π) = n−bk(π),
where bk(π) is the number of blocks ofπ .

The partition lattice can be generalized to Dowling lattices [10]; however, we
focus on the particular Dowling lattice of interest, namely, the lattice of type-B partitions.
A type-B partition of the set

[ ± n] := {+1,+2, . . . ,+n,−1,−2, . . . ,−n}

is a partitionπ of [±n] that satisfies two properties:

(i) for each blockX of π , the set−X := {−x | x ∈ X} is also a block ofπ , and
(ii) there is at most one blockX of π for whichX ∩ (−X) = ∅.

The block in condition (ii), when present, is called thezero block of π . Note that for the
zero blockX, we haveX = −X. By condition (i), the blocks ofπ other than the zero bloc
occur in pairsX,−X; the number of such pairs is the nonzero block statistic nzbk(π).
Thus,π = 1,−1/2,−4/− 2,4/3/ − 3 has zero blockX = {1,−1} and nzbk(π) = 2. As
with ordinary (type-A) partitions, type-B partitions are ordered by refinement, that is,
such partitionsπ andρ, we haveπ � ρ if and only if each block ofπ is contained in
a block ofρ. Under refinement, the type-B partitions of[±n] form a geometric lattice
denoted byΠB

n .
To get noncrossing partitions of typeB, place+1,+2, . . . ,+n,−1,−2, . . . ,−n in this

order clockwise around a circle. Forπ ∈ ΠB
n and each pairi, j of distinct elements o

[±n], draw a chord inside the circle between elementsi andj if i andj are in the same
blockX of π and at least one of the two arcs fromi to j contains no other element ofX. We
say thatπ is noncrossing if all such chords can be drawn without crossings. The exa
of π in the previous paragraph is crossing. Under refinement, the noncrossing par
of [±n] form a lattice, denotedNCB

n . The meet operations are the same inΠB
n andNCB

n ,
but the join operations do not always agree. The number of elements inNCB

n is the middle
binomial coefficient

(2n
n

)
. The rank function ofNCB

n is a restriction of that ofΠB
n , which

is given by rk(π) = n − nzbk(π). For more onNCB
n , see [21].
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3. Historical roots

In his quest for a proof of what was then the Four Color Conjecture, G.D. Birk
introduced the chromatic polynomial (or chromial). Later, Birkhoff and Lewis [1] defi
two families of polynomials called constrained chromials and free chromials. They fo
on a particular class of maps in the plane, namely those in which all bounded
are triangles; the unbounded face may have anyn-gon (orn-ring) as its boundary. Th
Birkhoff–Lewis equations express each free chromial of ann-ring as a linear combinatio
of constrained chromials. The goal was to invert these relations, thus expressin
constrained chromial as a linear combination of free chromials.

Tutte [27] generalized these equations to planar maps (not requiring a triangu
inside then-ring) and redefined the free chromials in terms of partitions of the se
vertices that lie on then-ring. Now solving for the constrained chromials in terms
the free ones is a matter of Möbius inversion in the lattice of set partitions. Tutte
showed that these new chromials can be expressed as linear combinations of free ch
associated with noncrossing partitions, and now the question is reduced to findi
coefficients in these expressions. This requires inverting the matrix of chromatic
The matrix of chromatic joins is, up to similarity, the matrix

Tn(q) := [
qbk(α∨Πnβ)

]
α,β∈NCn

, (1)

whose rows and columns are indexed by the elements ofNCn, using the same ordering o
these partitions for the rows as for the columns, in which the entry in the row index
the partitionα and the column indexed by the partitionβ is qbk(α∨Πnβ), where this join is
computed inΠn rather than inNCn. For instance, using the ordering 1/2/3, 12/3, 13/2,
1/23, 123 of the elements ofΠ3, we have

T3(q) =




q3 q2 q2 q2 q

q2 q2 q q q

q2 q q2 q q

q2 q q q2 q

q q q q q


 ,

which has as its determinantq5(q − 1)4(q − 2). Inverting the matrixA of chromatic joins
raises the question of finding the determinant det(Tn(q)) of this matrix.

Tutte [28] and Dahab [4] derived elegant expressions for the determinant of the m
of chromatic joins. Their formulas involve theBeraha polynomials, which are defined a
follows:

p0(q) = 0,

pn(q) =
[n/2]∑
i=0

(−1)i
(
n − i − 1

i

)
q [n/2]−i , for n � 1.

Thus,p1(q) = 1,p2(q) = q , p3(q) = q − 1, p4(q) = q2 − 2q , p5(q) = q2 − 3q + 1.
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The following formula for det(Tn(q)) is a reformulation of what Tutte showed in [28

det
(
Tn(q)

) = q(
2n−1

n )
n−1∏
m=1

(
pm+2(q)

q pm(q)

)m+1
n ( 2n

n−1−m)
. (2)

It is not immediately evident that the right side of this equation is a polynomial iq ,
as it must be. The alternative formula derived in [4], given in Eq. (3) below, is clea
polynomial formula. It turns out that forn � 2, each Beraha polynomialpn(q) has one
irreducible factor,fn(q), called thenth Beraha factor, which does not divide any of th
polynomials with lower index. The following four Beraha factors will play a role in
computational evidence presented in Section 4:

f3(q) = q − 1,

f6(q) = q − 3,

f9(q) = q3 − 6q2 + 9q − 1,

f12(q) = q2 − 4q + 1.

Dahab [4] obtained the following formula:

det
(
Tn(q)

) =
n∏

i=1

fi+1(q)
δ(n,i), (3)

where the multiplicityδ(n, i) of the (i + 1)st Beraha factor is described in terms o
continued fraction: the value ofCn − δ(n, i) is the coefficient ofxn in the power series
Gi−1(x) defined by the continued fractionGr(x) = 1/(1 − xGr−1(x)) for r � 1, with
G0(x) = 1. The multiplicities of the irreducible factors have the following combinato
description:δ(n, i) is the number of Dyck paths from the origin to the point(2n,0), whose
maximumy-coordinate does not exceedn − i − 1 (see, e.g., [11]).

It is natural to generalize the matrixTn(q) in Eq. (1) in the following way. LetL be a
ranked lattice, letL′ be an induced subposet ofL (see, e.g., [26]). Let co(x) denote the
corank of an elementx of L, and let∨L and∧L denote the join and meet operations ofL.
Let

M(L′,∨L,q) := [
qco(α∨Lβ)

]
α,β∈L′,

the matrix, defined up to similarity, whose rows and columns are indexed by the ele
of L′, using the same ordering of these elements for the rows as for the columns, in
the entry in the row indexed by the elementα and the column indexed by the elementβ is
qco(α∨Lβ). The matrixM(L′,∧L,q) is defined in the same manner with∧L replacing∨L.
Since co(α) = bk(α) − 1 for α ∈ Πn, the matrix of chromatic joinsTn(q) is obtained by
dividing each entry ofM(NCn,∨Πn, q) by q .
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Lindstrom [18] gives an elegant factorization of the determinants ofM(L′,∨L,q)

and M(L′,∧L,q) in the case thatL equals L′. However, “hybrid” cases such a
M(NCn,∨Πn, q) andM(NCB

n ,∨ΠB
n
, q) are considerably more difficult to treat.

4. Directions and open problems

In this section, we mention various open problems and directions for research r
to the matricesM(NCn,∨Πn, q) andM(NCB

n ,∨ΠB
n
, q) that Rodica was developing. Th

reader should bear in mind that Rodica did not have sufficient time to fully investigate
topics; indeed, some were considered only very briefly. Thus, there may be easy pr
counterexamples for some of the problems mentioned below. However, the comput
evidence presented below suggests that the general thrust of this line of research i
to be both very challenging and fertile.

One of the problems of central interest to Rodica was the following.

Problem 1. Develop a formula for the determinant of the type-B matrix of chromatic joins
M(NCB

n ,∨ΠB
n
, q).

In the first four cases, these matrices have dimensions 2× 2, 6 × 6, 20× 20, and
70× 70. Rodica obtained the determinant ofM(NCB

n ,∨ΠB
n
, q) for n = 1,2,3,4, using

circular symmetry to reduce the amount of computation required for the 70× 70 case.
These determinants are

q − 1, (4)

(q − 1)5(q − 3), (5)

(q − 1)21(q − 3)6(q3 − 6q2 + 9q − 1
)
, (6)

and

(q − 1)85(q − 3)29(q3 − 6q2 + 9q − 1
)8(

q2 − 4q + 1
)
, (7)

that is,

f3(q),(
f3(q)

)5
f6(q),(

f3(q)
)21(

f6(q)
)6

f9(q),

and

(
f3(q)

)85(
f6(q)

)29(
f9(q)

)8
f12(q).

The unusual nature of these factors, namely that they are powers of every third B
factor, is part of what sustained Rodica’s interest in this problem.
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Problem 2. Are all factors of the determinant ofM(NCB
n ,∨ΠB

n
, q) of the formf3k(q) for

somek?

The matching polynomials of paths, i.e., Chebyshev polynomials of the second
play an essential role in the type-A case. Rodica noted a connection between
polynomialsf3k(q) and the matching polynomials of cycles. Letm(Cn;x) be the matching
polynomial of then-cycle Cn. (See [12, Chapter 1] for matching polynomials.) T
polynomialsm(Cn;√

x)2 − 1 arise in computations by Dabkowski and Przytycki
of two-variable annular skein determinants. Using standard results about Cheb
polynomials, one can show that the irreducible factors ofm(Cn;√

x)2 − 1 are all of the
form f3k(x) for somek dividing n. This makes it seem even more likely that the ans
to Problem 2 is affirmative; indeed, it seems that a wide variety of problems involv
same factors,f3k(x), and it may be that these are all special cases of a more fundam
problem.

We note that the sequences

det
(
M(NC1,∨Π1, q)

)
, det

(
M(NC2,∨Π2, q)

)
, . . . ,

and

det
(
M(NCB

1 ,∨ΠB
1
, q)

)
, det

(
M(NCB

2 ,∨ΠB
2
, q)

)
, . . . ,

are divisibility sequences, that is, each term divides the next term in its sequence.
this, we first focus on the case ofΠn and NCn. Note thatNCn−1 is isomorphic to the
sublatticeNC′

n of NCn that consists of the elements in which{n} is a singleton block
In forming the matrixM(NCn,∨Πn, q), list the Cn−1 elements inNC′

n first. For α in
NCn − NC′

n, let α′ be α ∧ σn whereσn has just two blocks,{1,2, . . . , n − 1} and {n};
that is, α′ is formed fromα by taking n out of its block and making{n} a singleton
block. Thus,α′ is in NC′

n. Note that for anyα in NCn − NC′
n andβ in NC′

n, we have
bk(α ∨Πn β) = bk(α′ ∨Πn β) − 1 sinceα ∨Πn β andα′ ∨Πn β differ only in that{n} is a
singleton block of the latter. Thus, the firstCn−1 entries in columnα of M(NCn,∨Πn, q)

areq times the corresponding entries in columnα′. It follows thatM(NCn,∨Πn, q) can be
reduced to a matrix of the form

(
A 0
B C

)
,

whereA is q · M(NCn−1,∨Πn−1, q), the entries inB andC are polynomials inq , and0 is
theCn−1 × (Cn −Cn−1) matrix of zeros. The divisibility assertion follows immediately
taking the determinant. In the case ofΠB

n andNCB
n , note thatNCB

n−1 is isomorphic to the
sublatticeNC′B

n of NCB
n that consists of the elements in which{n} and{−n} are singleton

blocks. Forα in NCB
n −NC′B

n , letα′ beα∧σn whereσn has just one pair of nonzero block
{−n} and{n}; thus, inα′, the elementsn and−n have been separated from the blocks
which they occur inα, whether this is the zero block, or two other blocks. Note that
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n , we have nzbk(α ∨Πn β) = nzbk(α′ ∨Πn β)− 1. The

divisibility assertion now follows as in the earlier case.
The factorizations of determinants in [18] arise from a factorization of the matric

interest. This suggests the next problem.

Problem 3. Do the matricesM(NCn,∨Πn, q) andM(NCB
n ,∨ΠB

n
, q) have factorizations

that yield the desired factorizations of the determinants?

One can show that ifLn is the subsemilattice of modular elements ofΠn, then
the determinant ofM(Ln,∨Πn, q) can be reduced to computing the determinan
M(Ln,∧Ln, q), to which the results of [18] apply. More generally, one can ask
following question.

Problem 4. To what extent can matrices of the types considered here be altered an
yield interesting factorizations for the associated determinants?

In the example considered above using the modular elements ofΠn, the underlying
lattice was altered, leading to a subdeterminant; one could also alter the entries
original matrix to see how robust the factorizations are.

The next two questions seek structural reasons for the factorizations in Eqs. (2) a

Problem 5. What are the essential structural features ofΠn andNCn that account for the
factorizations in Eqs. (2) and (3)?

Problem 6. More generally, find conditions on a pair of latticesL andL′ such that the
determinant of the matrixM(L′,∨L,q) has a nice factorization.

In Problem 6, we assume thatL′ is also an induced subposet ofL. In relation to
Problem 5, we note that the latticesNCn andΠn are connected by a number of interest
properties. For instance it follows from the theory of matroid quotients [19] that,
true of any induced suborder ofΠn that includes all atoms and all elements of rank 2 t
cover more than two atoms, its “geometric closure” in the sense of line-closure [14] iΠn.
It follows that any geometric lattice of rankn − 1 into whichNCn can be embedded a
an order necessarily contains a restriction that is isomorphic toΠn. The counterparts o
these statements hold in the type-B setting. We note, however, thatNCn andNCB

n are not
minimal lattices that are suborders ofΠn andΠB

n , respectively, that have these property.
course,NCn andNCB

n have a number of other important properties that may be rele
they share their rank functions withΠn andΠB

n , they have the same meets asΠn and
ΠB

n , and they are self-dual. We note one more connection betweenNCn andΠn that has
a counterpart in the type-B setting and much more generally. Not only is there the nat
inclusion map ofNCn into Πn in which order and meets are preserved, but there is a
natural closure map ofΠn for which the (order-theoretic) quotient isNCn, namelyα �→ α

where

α = ∧NCn{β | β ∈ NCn andα � β}.



F. Schmidt / Advances in Applied Mathematics 32 (2004) 380–390 387

f a

ting
s
r
f
et.)
matic
matrix
raev
gs,
4,

arcs

sults

ociated

er
n

ture.
erred.

more

also,

n [2].

,

From this, it follows from Rota’s fundamental result on the Möbius function o
quotient [22], that the sum

∑
µ(0̂, x) of the Möbius valuesµ(0̂, x), computed inΠn, over

all spanning crossing partitions (that is, elementsx of Πn such thatx = 1̂NCn ) is the Möbius
valueµ(0̂, 1̂) of NCn. This raises the question of giving a closed formula or genera
function for the number of spanning crossing partitions inΠn. This sequence begin
1,1,1,2,6,21,85. We have seen that det(M(L,∨Πn, q)) has interesting factorization fo
bothL = NCn andL = Ln, the lattice of modular elements ofΠn; we remark that both o
these lattices are quotients ofΠn. (See [15] for the lattice of all closures of an ordered s

In [2], Rodica proved relationships between the determinant of the matrix of chro
joins and the determinants of matrices that arise in topology and algebra. The
Ln(q) arose in Lickorish’s work [17] on the existence of the Witten–Reshetikhin–Tu
invariants for 3-manifolds. The matrixLn(q) is indexed by noncrossing perfect matchin
that is, noncrossing partitions of{1,2, . . . ,2n} in which each block has size two. (See [2
Section 4.3].) The entry in rowα and columnβ isq〈α,β〉; this exponent〈α,β〉, the Lickorish
bilinear form ofα andβ , is the number of closed curves that are formed when the
joining elements matched byα are drawn above the elements{1,2, . . . ,2n}, listed in a
line, and the corresponding arcs forβ are drawn below these elements. Based on the re
of [6,28], Rodica proved the following equation in [2]:

det
(
Tn

(
q2)) = qCn det

(
Ln(q)

)
. (8)

She also showed that the two determinants are directly related to a determinant ass
with a certain irreducible representation of the Hecke algebra of typeA, specifically,

det
(
Ln

(
q1/2 + q−1/2)) = qen det

(
S(n,n)(q)

)
, (9)

for some integeren, whereS(n,n)(q) denotes the Gram matrix (as in [8]) for the inn
product on the Specht module of the type-A Hecke algebra indexed by the partitio
λ = (n,n).

Thus, Rodica’s aim here was to unify various determinant results in the litera
However, the proofs in [2] are not the conceptual proofs that Rodica would have pref
Thus, she was interested in the following problem.

Problem 7. Find proofs of the results in [2], such as Eqs. (8) and (9) above, that are
algebraic or combinatorial.

In [6], the Temperley–Lieb algebra is used to compute the determinant ofLn(q). It
is well known that the Temperley–Lieb algebra is a quotient of the Hecke algebra;
Gram determinants for Hecke algebras have been computed both for typeA and for typeB
(see [8,9]). This connection remains to be exploited to prove results such as those i

One corollary of the formula for det(Ln(q)) is that there is a bijectionσ of noncrossing
perfect matchings such that the Lickorish bilinear form〈α,σ(α)〉 is always 1. However
explicitly finding such a bijectionσ is still open. Note that forn � 2, any suchσ is
necessarily a derangement since〈α,α〉 = n for every noncrossing perfect matchingα.
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Problem 8. Find a derangementσ of the setM of all noncrossing perfect matchings
{1,2, . . . ,2n} such that〈α,σ(α)〉 = 1 for all α ∈ M.

There are several possible type-B counterparts for the meander and Lickorish deter
nants. See, for example, [5].

Problem 9. Do Eqs. (8) and (9) have type-B counterparts? Is there a counterpart
Problem 8 in typeB?

In support of a type-B counterpart of Eqs. (8), we note the following examples
Rodica worked out. Consider centrally symmetric noncrossing perfect matchings of

[ ± 2n] = {+1,+2, . . . ,+2n,−1,−2, . . . ,−2n},
placed clockwise in order around a circle. Draw the arcs for one such matching,α, inside
the circle; draw the arcs for a second such matching,β , outside the circle. Let〈α,β〉 be the
number of pairs of componentsC,−C in the resulting diagram for whichC = −C. (Below
we will also want to consider the number of components in this diagram withC = −C; we
will denote this byg(α,β).) Let such matchings index the rows and columns of a ma
LB

n (q), and let the entry in rowα and columnβ be q〈α,β〉. The matricesLB
n (q) are a

possible type-B counterpart of the Lickorish matrices. The determinants of the mat
LB

n (q) in the casesn = 1,2,3 are, respectively,

q2 − 1,(
q2 − 1

)5(
q2 − 3

)
,

(
q2 − 1

)21(
q2 − 3

)6(
q6 − 6q4 + 9q2 − 1

)
.

This supports the natural conjecture that det(M(NCB
n ,∨ΠB

n
, q2)) = det(LB

n (q)). One may
usefully consider two-variable extensions of all the matrices mentioned in this pap
particular, again let centrally symmetric noncrossing perfect matchings on[±2n] index
the rows and columns of a matrixLB

n (q, z), and let the entry in rowα and column
β be q〈α,β〉 zg(α,β). The matrixLB

n (q, z) is equivalent to the two-variable annular ske
determinant considered in [3]. The determinants ofLB

n (q, z) for n = 1,2,3 are

(q − z)(q + z),

(q − z)4(q + z)4(q2 − 2− z
)(

q2 − 2+ z
)
,

(q − z)15(q + z)15(q2 − 2− z
)6(

q2 − 2+ z
)6(

q3 − 3q − z
)(

q3 − 3q + z
)
.

One hope is that at least one of the type-B determinants is a specialization of one
the Gram determinants found in [9]. Presumably the correct determinant would com
a representation of the Hecke algebra of degree

(2n
n

)
; thus, prime candidates would b

the representations indexed by the bipartitions(n,n), (n,1n), (1n, n), and(1n,1n). This
connection, in type-A, was shown by Rodica in [2].
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Rodica was at a very productive point in her career the decade before her pa
and she had time to pursue only a relatively small number of the many problem
arose naturally out of her work. In closing, we mention several of these problems th
somewhat more remotely related to the main themes of this paper. (See [23] for pro
of a different flavor that Rodica also developed.)

The type-B matrix of chromatic joins reflects a broad interest that Rodica had in typB

objects. Parts of her program for developing type-B counterparts of type-A objects are
contained in [25]. Some of the results in [25] suggest there should be simpler combin
proofs than Rodica had time to find. In particular, we mention that she was interes
finding a shorter, more elegant proof of [25, Proposition 1].

The lattice of noncrossing partitions,NCn, was one of the main themes in much
Rodica’s work (see [24]). The latticeNCn is known to have thek-Sperner property. Th
LYM property is stronger than the Sperner property. Recall (e.g., [13]) that a ranked
P has the LYM property if for every antichainA of P , we have

∑
a∈A

1

Wrk(a)
� 1,

whereWrk(a) is the number of elements ofP that have rank rk(a).

Problem 10. DoesNCn have the LYM property?

It is easy to check that the answer to Problem 10 is affirmative forn � 4.
It is natural to ask which attractive lattice propertiesNCn andΠn share. Consider, fo

instance, the following problem.

Problem 11. Is NCn universal in the same sense that the partition latticeΠn is universal?
(See [20].)

By the results in [20], an affirmative resolution to this problem is equivalent to sho
that any partition lattice can be embedded in some lattice of noncrossing partitions.
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