A Note on Idempotent Matrices

C. G. Khatri
Gujarat University
Ahmedabad, India

Submitted by C. R. Rao

Abstract

Let H be an $n \times n$ matrix, and let the trace, the rank, the conjugate transpose, the Moore-Penrose inverse, and a g-inverse (or an inner inverse) of H be respectively denoted by $\operatorname{tr} H, \rho(H), H^{*}, H^{\dagger}$, and H^{-}. This note develops two results: (i) the class of idempotent g-inverse of an idempotent matrix, and (ii) if H is an $n \times n$ matrix and $\rho(H)=\operatorname{tr} H$, then $\operatorname{tr}\left(H^{2} H^{\dagger} H^{*}\right) \geqslant \rho(H)$, and the equality holds iff H is idempotent. This result is compared with the previous result of Khatri (1983), and some consequences of (i) and (ii) are given.

1. IDEMPOTENT MATRICES AND g-INVERSES

Let H be an $n \times n$ idempotent matrix. Then any g-inverse H^{-}of H is given by

$$
H^{-}=H+(I-H) Z_{1}+Z_{2}(I-H) \quad \text { for some matrices } Z_{1} \text { and } Z_{2}
$$

This can be rewritten as

$$
\begin{gather*}
H^{-}=H_{1}+H_{2} \\
H_{1}=\left[I+(I-H) Z_{1}\right] H\left[I+Z_{2}(I-H)\right] \quad \text { and } \quad H_{2}=(I-H) Z_{3}(I-H), \tag{1}
\end{gather*}
$$

where Z_{1}, Z_{2} and Z_{3} are arbitrary matrices. Notice that $\rho\left(H_{1}\right)=\rho(H)$. Observe that $H^{-}=H_{1}+H_{2}$ is idempotent iff

$$
H_{1}^{2}+H_{1} H_{2}+H_{2} H_{1}+H_{2}^{2}=H_{1}+H_{2} .
$$

This condition implies

$$
\begin{gather*}
0=H Z_{2}(I-H) Z_{1} H=H Z_{2}(I-H) Z_{3}(I-H)=(I-H) Z_{3}(I-H) Z_{1} H \\
H_{2}^{2}=H_{2} \tag{2}
\end{gather*}
$$

The conditions (2) imply that $H_{i}^{2}=H_{i}(i=1,2)$ and $H_{1} H_{2}=H_{2} H_{1}=0$. Thus we get

Theorem 1. Let H be an idempotent matrix. Then H^{-}is idempotent iff $H^{-}=H_{1}+H_{2}, \quad H_{1}=\left[I+(I-H) Z_{1}\right] H\left[I+Z_{2}(I-H)\right], \quad H_{2}=(I-H) Z_{3}$ ($I-H$), and Z_{1}, Z_{2}, and Z_{3} satisfy the conditions (2).

Notice that H_{1} is a reflexive idempotent g-inverse of H (that is, $H_{1} H H_{1}=$ $H_{1}, H H_{1} H=H$, and $H_{1}^{2}=H_{1}$).

Lemma 1. Let H be an idempotent matrix and H^{*} be a g-inverse of H. Then, $H=H^{*}$ is a Hermitian idempotent matrix.

Proof. This follows from $H, H H^{*}, H^{*} H$, and H^{*} being idempotent and $\left(H-H H^{*}\right)\left(H^{*}-H H^{*}\right)=\left(H-H H^{*}\right)\left(H-H H^{*}\right)^{*}=0$.

Note 1. Lemma 1 can be rewritten in the following way: Let H be a non-Hermitian idempotent matrix. Then H^{*} cannot be a g-inverse of H.

Lemma 2. Let H be an idempotent matrix and $H^{-} H$ be Hermitian idempotent. Then

$$
H^{-}=H_{1}+H_{2},
$$

with $H_{1}=H^{*}\left(H H^{*}\right)^{-} H\left[I+\mathrm{Z}_{2}(I-H)\right]$ and $H_{2}=(I-H) \mathrm{Z}_{3}(I-H)$, where Z_{2} and Z_{3} are arbitrary.

Proof. Notice that from (1), we get that

$$
H^{-} H=\left(I+(I-H) Z_{1}\right) H=H^{*}\left(I+Z^{*}(I-H)^{*}\right)
$$

is Hermitian, so that $\left[I+(I-H) Z_{1}\right] H H^{*}=H^{*}$, or $\left(I+(I-H) Z_{1}\right) H=$
$H^{*}\left(H H^{*}\right)^{-} H$. Hence, $H^{-}=H_{1}+H_{2}$ gives

$$
H_{1}=H^{*}\left(H H^{*}\right)^{-} H\left[I+Z_{2}(I-H)\right] \quad \text { and } \quad H_{2}=(I-H) Z_{3}(I-H)
$$

Note 2. If H and H^{-}are idempotent and $H^{-} H$ is Hermitian, then

$$
\begin{aligned}
H Z_{2}(I-H) H^{*} & =0 \\
H Z_{2}(I-H) Z_{3}(I-H) & =0 \\
(I-H) Z_{3}(I-H) H^{*} & =0
\end{aligned}
$$

These give $H Z_{2}(I-H)=H W_{2} R$ with $R=\left\{I-(I-H) H^{*}\left(H^{*}-H H^{*}\right)^{-}\right\}$ (I-H), and $H_{2}=T W_{3} R$ is idempotent, where W_{2} and W_{3} are arbitrary and $T=(I-H)\left\{I-\left(H W_{2} R\right)^{-}\left(H W_{2} R\right)\right\}$.

Similarly, we can establish

Lemma 3. Let H be an idempotent matrix and HH be Hermitian. Then

$$
\begin{gathered}
H^{-}=H_{1}+H_{2} \\
H_{1}=\left\{I+(I-H) Z_{1}\right\} H\left(H^{*} H\right)^{-} H^{*} \quad \text { and } \quad H_{2}=(I-H) Z_{3}(I-H),
\end{gathered}
$$

where Z_{1} and Z_{3} are arbitrary.
Further, if H^{-}is idempotent, then

$$
\begin{aligned}
(I-H) \mathrm{Z}_{1} H & =R_{1} W_{1} H \\
R_{1} & =(I-H)\left\{I-\left(H^{*}-H^{*} H\right)^{-}\left(H^{*}-H^{*} H\right)\right\}
\end{aligned}
$$

and

$$
H_{2}=R_{1} W_{3} T, \quad T=\left\{I-\left(R_{1} W_{1} H\right)\left(R_{1} W_{1} H\right)^{-}\right\}(I-H)
$$

where W_{1} and W_{3} are arbitrary matrices such that H_{2} is idempotent.

Lemma 4. Let H be an idempotent matrix, and let $I I I^{-}$and $I^{-} I$ be Hermitian idempotent. Then $\mathrm{H}^{-}=\mathrm{H}_{1}+\mathrm{H}_{2}$,

$$
H^{\dagger}=H_{1}=H^{*}\left(H H^{*}\right)^{-} H\left(H^{*} H\right)^{-} H^{*} \quad \text { and } \quad H_{2}=(I-H) Z_{3}(I-H) .
$$

Further, if H^{-}is idempotent, then H must be Hermitian and

$$
H^{-}=H+H_{2}, \quad \text { where } \quad H_{2} \text { is idempotent }
$$

Proof. $H H^{-}$and $H^{-} H$ are Hermitian $\Rightarrow H H_{1}$ and $H_{1} H$ are Hermitian. By Lemmas 2 and 3, we get $H_{1}=H^{*}\left(H H^{*}\right)^{-} H\left(H^{*} H\right)^{-} H^{*}=H^{\dagger}$.

Now, for H^{-}to be idempotent, we must have H_{1}, H_{2} idempotent with $H_{1} H_{2}=H_{2} H_{1}=0$. Now, $H_{1}^{2}=H_{1} \Rightarrow H_{1}=H^{*}$. Further,

$$
\begin{aligned}
\left(H^{*}-H^{*} H\right)\left(H^{*}-H^{*} H\right)^{*} & =\left(H^{*}-H^{*} H\right)\left(H-H^{*} H\right) \\
& =H^{*} H-H^{*} H^{2}-H^{* 2} H+\left(H^{*} H\right)^{2}=0
\end{aligned}
$$

because $H H^{*} H=H$ and H^{*} are idempotent. Hence $H=H^{*} H=H^{*}$. This proves the lemma.

Note 3. Let H be a non-Hermitian idempotent matrix. Then there does not exist an idempotent g-inverse H^{-}of H such that $H^{-} H$ and $H H$ are both Hermitian idempotent.

Note 4. If $H^{-}=H_{1}+H_{2}$ is defined in (1) and H is idempotent, then H^{-}is reflexive g-inverse of H iff $H_{2}=0$. Hence, H^{\dagger} is idempotent iff H is Hermitian idempotent. If H is not a Hermitian matrix and H is idempotent, then H^{\dagger} cannot be idempotent.

3. CONDITIONS FOR AN IDEMPOTENT MATRIX

Khatri [1] has established the following:
Lemma 5. Let $H_{1}, H_{2}, \ldots, H_{k}$ and $H=\sum_{i=1}^{k} H_{i}$ be $n \times n$ matrices. Now consider the conditions
(a) $H_{i}^{2}=H_{i}$ for all i,
(b) $H_{i} H_{j}=0$ for all $i \neq j$,
(c) $H^{2}=H$,
(d) $\rho(H)=\sum_{i=1}^{k} \rho\left(H_{i}\right)$, and
(e) either $\rho\left(H_{i}^{2}\right)=\rho\left(H_{i}\right)$ or $\operatorname{tr} H_{i}=\rho\left(H_{i}\right)$ for all i.

Then
(i) (a) and (b) \Rightarrow all conditions,
(ii) (a) and (c) \Rightarrow all conditions,
(iii) (b), (c) and (e) \Rightarrow all conditions, and
(iv) (c) and (d) \Rightarrow all conditions.

Khatri [2] considered the situation (a) and (d) for Hermitian matrices $H_{1}, H_{2}, \ldots, H_{k}$. In this case, he established

Lemma 6. Let $H_{1}, H_{2}, \ldots, H_{k}$ be Hermitian idempotent matrices and $\sum_{i=1}^{k} \rho\left(H_{i}\right)=\rho(H)$ with $H=\sum_{i=1}^{k} H_{i}$. Then the product of the nonzero eigenvalues of H is $\Pi \lambda_{\mathrm{NE}}(H) \leqslant 1$, and the equality holds iff $H^{2}=H$ or $H_{i} H_{j}=0$ for all $i \neq j$.

In this note, we try to delete the condition of Hermitian matrices. For this, we establish

Theorem 2. Let H be an $n \times n$ matrix such that $\rho(H)=\operatorname{tr} H$. Then $\operatorname{tr}\left(H^{2} H^{\dagger} H^{*}\right) \geqslant \rho(H)$, and the equality holds iff $H^{2}=H$.

Proof. Let $I I$ be an $n \times n$ matrix of rank t. Then we can write

$$
H=B C \quad \text { and } \quad H^{\dagger}=C^{*}\left(C C^{*}\right)^{-1}\left(B^{*} B\right)^{-1} B^{*}=C^{\dagger} B^{\dagger}
$$

where C and B are $t \times n$ and $n \times t$ matrices of rank t. Let $Y=I_{t}-C B$. Then $\operatorname{tr} Y=t-\operatorname{tr} C B=t-\operatorname{tr} H=0$ and so $\operatorname{tr} Y^{*}=0$. Now, $H H^{\dagger}=$ $B\left(B^{*} B\right)^{-1} B^{*}$ and so

$$
\begin{aligned}
H^{2} H^{\dagger} H^{*}= & B(I-Y)\left(B^{*} B\right)^{-1}(I-Y)^{*} B^{*} \\
= & B\left(B^{*} B\right)^{-1} B^{*}-B Y\left(B^{*} B\right)^{-1} B^{*}-B\left(B^{*} B\right)^{-1} Y^{*} B^{*} \\
& +B Y\left(B^{*} B\right)^{-1}(B Y)^{*}
\end{aligned}
$$

Hence, on account of $B Y\left(B^{*} B\right)^{-1}(B Y)^{*}$ being positive semidefinite, we get

$$
\operatorname{tr}\left(H^{2} H^{\dagger} H^{*}\right)=t+\operatorname{tr}\left\{B Y\left(B^{*} B\right)^{-1}(B Y)^{*}\right\} \geqslant t
$$

and the equality holds iff $B Y=0$ or $B=H B$ or $H^{2}=H$. This proves the required result.

Note 5. Let H be a Hermitian matrix. Then $H^{2} H^{\dagger} H^{*}=H^{2}$ and if $\rho(H)=\operatorname{tr} H$, then $\operatorname{tr} H^{2} \geqslant \rho(H)$, and the equality holds iff H is idempotent.

Theorem 3.

(a) Let H be an $n \times n$ matrix such that the nonzero eigenvalues of H are real and $\operatorname{tr} H=\rho(H)=\rho\left(H^{2}\right)$. Then $\operatorname{tr} H^{2} \geqslant \rho(H)$, and the equality holds iff $\lambda_{\mathrm{NE}}(H)=1$.
(b) Let H be an $n \times n$ matrix such that the nonzero eigenvalues of H are real and positive, and $\operatorname{tr} H=\rho(H)=\rho\left(H^{2}\right)$. Then $\mathbb{I} \lambda_{\mathrm{NE}}(H) \leqslant 1$, and the equality holds iff $\lambda_{\text {NE }}(H)=1$.

Proof. (a): Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}$ be the nonzero eigenvalues of H, with $t=\rho(H)$ on account of $\rho(H)=\rho\left(H^{2}\right)$. Now $\rho(H)=\operatorname{tr} H$ implies

$$
\bar{\lambda}=\frac{1}{t} \sum_{i=1}^{t} \lambda_{i}=1 \text { and } \sum_{i=1}^{t}\left(\lambda_{i}-\bar{\lambda}\right)^{2} \geqslant 0 \Leftrightarrow \sum_{i=1}^{t} \lambda_{i}^{2} \geqslant t
$$

and the equality holds iff $\lambda_{i}=1$ for all $i=1,2, \ldots, t$.
(b): Now, since the λ_{i} 's are positive, we have

$$
\left(\prod \lambda_{\mathrm{NE}}(H)\right)^{1 / t}=\left(\prod_{i=1}^{t} \lambda_{i}\right)^{1 / t} \leqslant \bar{\lambda}=1,
$$

and the equality holds iff $\lambda_{i}=1$ for all $i=1,2, \ldots, k$. This proves Theorem 3.

Note 6. Notice that the nonzero eigenvalues of H can be one, but H cannot be idempotent even when the conditions $\operatorname{tr} H=\rho(H)=\rho\left(H^{2}\right)$ are satisfied. For example, consider

$$
H=\left(\begin{array}{rr}
0 & 1 \\
-1 & 2
\end{array}\right)
$$

Then H is nonsingular and $\lambda_{\text {NE }}(H)=1$ appears twice. Notice that H is not idempotent. In this situation, H is not semisimple. Thus, in Theorem 3, if we add the condition that H is semisimple, then we get the idempotency of H if $\lambda_{\mathrm{NE}}(H)=1$.

Note 7. Let $H_{1}, H_{2}, \ldots, H_{k}$ be idempotent matrices, and let $H=$ $\sum_{i=1}^{k} H_{i}$. Then H need not be semisimple even if $\rho(H)=\sum_{i=1}^{k} \rho\left(H_{i}\right)$.
(a) For example, let

$$
H_{1}=\left(\begin{array}{ccc}
. & \cdot & . \\
. & \cdot & . \\
1 & \cdot & 1
\end{array}\right) \text { and } H_{2}=\left(\begin{array}{ccc}
. & 1 & 1 \\
. & 1 & 1 \\
. & . & \cdot
\end{array}\right)
$$

Then

$$
\left(\begin{array}{lll}
\cdot & 1 & 1 \\
\cdot & 1 & 1 \\
1 & \cdot & 1
\end{array}\right)=H
$$

and $\rho\left(H^{2}\right)=1$, while $\rho(H)=\operatorname{tr} H=2=\rho\left(H_{1}\right)+\rho\left(H_{2}\right)$.
(b) Let

$$
H_{1}=\left(\begin{array}{ll}
\cdot & 1 \\
\cdot & 1
\end{array}\right) \quad \text { and } \quad H_{2}=\left(\begin{array}{rr}
\cdot & \cdot \\
-1 & 1
\end{array}\right)
$$

Then,

$$
H=\left(\begin{array}{rr}
. & 1 \\
-1 & 2
\end{array}\right)
$$

is not a semisimple matrix even though

$$
\rho(H)=\rho\left(H_{1}\right)+\rho\left(H_{2}\right)=\rho\left(H^{2}\right)=\operatorname{tr} H .
$$

Note 8. For getting an idempotent mairix, Theorem 3 can be rewritten as

Theorem 3^{\prime}.
(a) Let H be a semisimple matrix with real eigenvalues and $\rho(H)=\operatorname{tr} H$. Then $\operatorname{tr} H^{2} \geqslant \rho(H)$, and the equality holds iff H is idempotent.
(b) Let H be a semisimple matrix with nonnegative eigenvalues and $\rho(H)=\operatorname{tr} H$. Then $\Pi \lambda_{\mathrm{NE}}(H) \leqslant 1$, and the equality holds iff H is idempotent.

Notice that Theorem $3^{\prime \prime}(\mathrm{b})$ generalizes Lemma 6 of Khatri [2] in connection with Lavoie's inequality.

Note 9. Let $A^{\prime}=\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{k}^{\prime}\right)$ and $B-\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ be such that B_{i} is a g-inverse of A_{i} (or $H_{i}=B_{i} A_{i}$ is an idempotent matrix of rank A_{i}) for all $i=1,2, \ldots, k$. Let $B A=H$, and assume that H is a semisimple with nonnegative eigenvalues and $\rho(H)-\sum_{i=1}^{k} \rho\left(A_{i}\right)$ [or $\left.\rho(H)=\sum_{i=1}^{k} \rho\left(H_{i}\right)\right]$. Then $\Pi \lambda_{\mathrm{NE}}(H) \leqslant 1$, and the equality holds iff $H^{2}=H$ or $A_{i} B_{j} A_{j}=0$ for all $i \neq j$.

If $H=B A$ is semisimple with real eigenvalues and $\rho(H)=\sum_{i=1}^{k} \rho\left(A_{i}\right)$, then $\operatorname{tr} H^{2} \geqslant \rho(H)$ and the equality holds iff $H^{2}=H$ or $A_{i} B_{j} A_{j}=0$ for all $i \neq j$.

If $H=B A$ and $\rho(H)=\sum_{i-1}^{k} \rho\left(A_{i}\right)$, then $\operatorname{tr}\left(H^{2} H^{\dagger} H^{*}\right) \geqslant \rho(H)$ and the equality holds iff $H^{2}=H$ or $A_{i} B_{j} A_{j}=0$ for all $i \neq j$. Further, if Rank $B_{i}=$ Rank A_{i} for all $i=1,2, \ldots, k$, then $A_{i} B_{j} A_{j}=0 \Rightarrow A_{i} B_{j}=0$ for all $i \neq j$, and $A B$ is a diagonal idempotent matrix.

Note 10. Let A and B be $n \times n$ square matrices such that

$$
\rho\binom{A}{B}=\rho(A, B)=\rho(B) .
$$

This condition is equivalent to $A=A B^{-} B=B B^{-} A$ for any g-inverse B^{-}of B. Let $H=A B^{-}$and $H_{0}=A B^{\dagger}$. Then $\rho(H)=\rho(A)$, and for any nonzero λ

$$
|H-\lambda I|=\left|B B^{\dagger} A B^{-}-\lambda I\right|=\left|\left(A B^{-} B\right) B^{\dagger}-\lambda I\right|=\left|A B^{\dagger}-\lambda I\right|=\left|H_{0}-\lambda I\right|
$$

and hence the eigenvalues of H are the same as those of H_{0}, so the eigenvalues of H are invariant under any choice of g-inverse B^{-}of B. In particular, if B is idempotent, then the eigenvalues of H are the same as those of A.

Now, we shall give some sufficient conditions on A and B so that $H=A B^{-}$is semisimple with real eigenvalues.

Conditron i. Let

$$
\rho(A, B)=\rho\binom{A}{B}=\rho(B)
$$

and B be idempotent. Let $B=B_{1} B_{2}$ with $B_{2} B_{1}=I_{i}$ and $t=\rho(B)$. Let

$$
\left(B_{1}, B_{3}\right)=B_{(1)} \quad \text { and } \quad B_{(2)}=\binom{B_{2}}{B_{4}}
$$

be nonsingular matrices such that $B_{(2)} B_{(1)}=I_{n}$. Then $B_{(2)}=B_{(1)}^{-1}$ and $B_{4} B_{1}=0$.

Now

$$
\begin{aligned}
B_{(1)}^{-1} H B_{(1)} & =B_{(1)}^{-1} A B_{2}^{*}\left(B_{2} B_{2}^{*}\right)^{-1} B_{2} B^{-} B_{(1)} \\
& =\left(\begin{array}{cc}
A_{0} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{t} & C \\
0 & 0
\end{array}\right),
\end{aligned}
$$

where $A_{0}=B_{2} A B_{2}^{*}\left(B_{2} B_{2}^{*}\right)^{-1}$ and $C=B_{2} B^{-} B_{3}$. If A is a Hermitian matrix, then there exists a nonsingular matrix R such that $A_{0}=R D_{\lambda} R^{-1}$, where D_{λ} is a diagonal matrix with real diagonal elements. Let us denote

$$
R_{0}=\left(\begin{array}{cc}
R & -C \\
0 & I_{n-t}
\end{array}\right) \quad \text { and } \quad R_{0}^{-1}=\left(\begin{array}{cc}
R^{-1} & R^{-1} C \\
0 & I_{n-t}
\end{array}\right)
$$

Then

$$
B_{(1)}^{-1} H B_{(1)}=R_{0}\left(\begin{array}{cc}
D_{\lambda} & 0 \\
0 & 0
\end{array}\right) R_{0}^{-1},
$$

and hence H is semisimpie with real eigenvalues. Notice that the eigenvalues of H are the eigenvalues of $A B_{2}^{*}\left(B_{2} B_{2}^{*}\right)^{-1} B_{2}\left(=A B^{+} B=A\right)$.

Condition ii. Let A and B be Hermitian matrices such that $\rho(A, B)=$ $\rho(B)$. Then $\rho(H)=\rho\left(A B^{-}\right)=\rho(A)$.
(a) Let A be nonnegative definite of rank r. Then $\rho(H)=r$. Let us denote $A=Y Y^{*}$ and $I-A A^{\dagger}=Z Z^{*}$, where $Y^{*} Z=0, Z^{*} Z=I_{n-r}$, and Y is an $n \times r$ matrix of rank r. Let $(Y, Z)=Y_{0}$. Then Y_{0} is nonsingular and

$$
Y_{0}^{-1}=\binom{\left(Y^{*} Y\right)^{-1} Y^{*}}{Z^{*}}
$$

Now

$$
Y_{0}^{-1} H Y_{0}=\left(\begin{array}{cc}
Y^{*} B^{-} Y & Y^{*} B^{-} Z \\
0 & 0
\end{array}\right)
$$

and $r=\rho(H)=\rho\left(Y Y^{*} B^{-}\right)=\rho\left(Y^{*} B^{-}\right)$. Now, assume that $\rho\left(H^{2}\right)=\rho(H)=r$.

Then $Y^{*} B^{-} Y$ is nonsingular and Hermitian for any B^{-}. Under these conditions,

$$
Y_{0}^{-1} H Y_{0}=\left(\begin{array}{cc}
A_{0} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{r} & C \\
0 & 0
\end{array}\right)
$$

with

$$
A_{0}=Y^{*} B^{-} Y \quad \text { and } \quad C=A_{0}^{-1} Y^{*} B^{-} Z
$$

Then, using arguments similar to those given for Condition i, we see that H is semisimple with real eigenvalues.
(b) Let B be nonnegative definite of rank t. Let $B=Y Y^{*}$ and $I-B B^{\dagger}-$ $Z Z^{*}$, where $Y^{*} Z=0, Z^{*} Z=I_{n-t}$, and Y is an $n \times t$ matrix of rank t. Let $Y_{0}=(Y, Z)$. Then Y_{0} is nonsingular,

$$
Y_{0}^{-1}=\binom{\left(Y^{*} Y\right)^{-1} Y^{*}}{Z^{*}}
$$

and

$$
Y_{0}^{-1} H Y_{0}=\left(Y_{0}^{-1} H_{0} Y_{0}\right)\left(Y_{0}^{-1} B B^{-} Y_{0}\right)=\left(\begin{array}{cc}
A_{0} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
I_{t} & C \\
0 & 0
\end{array}\right),
$$

where $A_{0}=\left(Y^{*} Y\right)^{-1} Y^{*} A Y\left(Y^{*} Y\right)^{-1}$ and $C=Y^{*} B Z$. Then, arguing as for Condition i , we see that H is semisimple with real eigenvalues. For this situation, one can refer to Theorem 6.2.2 and Theorem 6.4.2 (ii) of Rao and Mitra [3].

The above results can be summarized as follows:

Theorem 5. Let A be a Hermitian matrix and B be an idempotent matrix such that

$$
\rho(A, B)=\rho\binom{A}{B}=\rho(B)
$$

Then H is semisimple with real eigenvalues which are the same as those of A. If $\rho(A)=\rho(H)=\operatorname{tr} H=\operatorname{tr} A$, then $\operatorname{tr} H^{2}=\operatorname{tr} A^{2} \geqslant \rho(A)$, and the equality holds iff H is idempotent. Further, if A is nonnegative definite, then $\Pi \lambda_{\mathrm{NE}}(H)=\Pi \lambda_{\mathrm{NE}}(A) \leqslant 1$, and the equality holds iff H is idempotent.
(a) If A is nonnegative definite and $\rho\left(H^{2}\right)=\rho(I)$, then II is semisimple with real eigenvalues. Further, if $\rho(A)=\operatorname{tr} H$, then $\operatorname{tr} H^{2} \geqslant \rho(H)$ and the equality holds iff H is idempotent.
(b) If B is nonnegative definite, then H is semisimple with real eigenvalues. Further, if $\rho(A)=\operatorname{tr} H$, then $\operatorname{tr} H^{2} \geqslant \rho(H)$, and the equality holds iff H is idempotent. Moreover, if A is nonnegative definite and $\rho(A)=\operatorname{tr} H$, then $\Pi \lambda_{\mathrm{NE}}(H) \leqslant 1$, and the equality holds iff H is idempotent.

The author is thankful to Professor C. R. Rao for some comments.

REFERENCES

1 C. G. Khatri, Some results for the singular nomal multivariate regression models, Sankhyă Ser. A 30:267-280 (1968).
2 C. G. Khatri, A generalization of Lavoie's inequality concerning the sum of idempotent matrices, Linear Algebra Appl. 54:97-108 (1983).
3 C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.

