A Note on Idempotent Matrices

C. G. Khatri Gujarat University Ahmedabad, India

Submitted by C. R. Rao

ABSTRACT

Let *H* be an $n \times n$ matrix, and let the trace, the rank, the conjugate transpose, the Moore-Penrose inverse, and a g-inverse (or an inner inverse) of *H* be respectively denoted by tr *H*, $\rho(H)$, H^* , H^{\dagger} , and H^- . This note develops two results: (i) the class of idempotent g-inverse of an idempotent matrix, and (ii) if *H* is an $n \times n$ matrix and $\rho(H) = \text{tr } H$, then $\text{tr}(H^2 H^{\dagger} H^*) \ge \rho(H)$, and the equality holds iff *H* is idempotent. This result is compared with the previous result of Khatri (1983), and some consequences of (i) and (ii) are given.

1. IDEMPOTENT MATRICES AND g-INVERSES

Let H be an $n \times n$ idempotent matrix. Then any g-inverse H^- of H is given by

 $H^- = H + (I - H)Z_1 + Z_2(I - H)$ for some matrices Z_1 and Z_2 .

This can be rewritten as

$$H^- = H_1 + H_2,$$

$$H_{1} = \left[I + (I - H)Z_{1}\right] H \left[I + Z_{2}(I - H)\right] \text{ and } H_{2} = (I - H)Z_{3}(I - H),$$
(1)

where Z_1 , Z_2 and Z_3 are arbitrary matrices. Notice that $\rho(H_1) = \rho(H)$. Observe that $H^- = H_1 + H_2$ is idempotent iff

$$H_1^2 + H_1H_2 + H_2H_1 + H_2^2 = H_1 + H_2$$

LINEAR ALGEBRA AND ITS APPLICATIONS 70:185-195 (1985)

© Elsevier Science Publishing Co., Inc., 1985 52 Vanderbilt Ave., New York, NY 10017

0024-3795/85/\$3.30

185

This condition implies

$$0 = HZ_{2}(I - H)Z_{1}H = HZ_{2}(I - H)Z_{3}(I - H) = (I - H)Z_{3}(I - H)Z_{1}H,$$

$$H_{2}^{2} = H_{2}.$$
(2)

The conditions (2) imply that $H_i^2 = H_i$ (i = 1, 2) and $H_1H_2 = H_2H_1 = 0$. Thus we get

THEOREM 1. Let H be an idempotent matrix. Then H^- is idempotent iff $H^- = H_1 + H_2$, $H_1 = [I + (I - H)Z_1]H[I + Z_2(I - H)]$, $H_2 = (I - H)Z_3$ (I - H), and Z_1 , Z_2 , and Z_3 satisfy the conditions (2).

Notice that H_1 is a reflexive idempotent g-inverse of H (that is, $H_1HH_1 = H_1$, $HH_1H = H$, and $H_1^2 = H_1$).

LEMMA 1. Let H be an idempotent matrix and H^* be a g-inverse of H. Then, $H = H^*$ is a Hermitian idempotent matrix.

Proof. This follows from H, HH^* , H^*H , and H^* being idempotent and $(H - HH^*)(H^* - HH^*) = (H - HH^*)(H - HH^*)^* = 0$.

NOTE 1. Lemma 1 can be rewritten in the following way: Let H be a non-Hermitian idempotent matrix. Then H^* cannot be a g-inverse of H.

LEMMA 2. Let H be an idempotent matrix and H^-H be Hermitian idempotent. Then

$$H^{-} = H_1 + H_2$$

with $H_1 = H^*(HH^*)^- H[I + Z_2(I - H)]$ and $H_2 = (I - H)Z_3(I - H)$, where Z_2 and Z_3 are arbitrary.

Proof. Notice that from (1), we get that

$$H^{-}H = (I + (I - H)Z_{1})H = H^{*}(I + Z^{*}(I - H)^{*})$$

is Hermitian, so that $[I + (I - H)Z_1]HH^* = H^*$, or $(I + (I - H)Z_1)H =$

 $H^{*}(HH^{*})^{-}H$. Hence, $H^{-} = H_{1} + H_{2}$ gives

$$H_1 = H^*(HH^*)^- H[I + Z_2(I - H)]$$
 and $H_2 = (I - H)Z_3(I - H).$

NOTE 2. If H and H^- are idempotent and H^-H is Hermitian, then

$$HZ_{2}(I - H)H^{*} = 0,$$

$$HZ_{2}(I - H)Z_{3}(I - H) = 0,$$

$$(I - H)Z_{3}(I - H)H^{*} = 0.$$

These give $HZ_2(I - H) = HW_2R$ with $R = \{I - (I - H)H^*(H^* - HH^*)^-\}$ (I - H), and $H_2 = TW_3R$ is idempotent, where W_2 and W_3 are arbitrary and $T = (I - H)\{I - (HW_2R)^-(HW_2R)\}$.

Similarly, we can establish

LEMMA 3. Let H be an idempotent matrix and HH^- be Hermitian. Then

$$H^- = H_1 + H_2,$$

 $H_1 = \{I + (I - H)Z_1\}H(H^*H)^-H^* \text{ and } H_2 = (I - H)Z_3(I - H),$

where Z_1 and Z_3 are arbitrary. Further, if H^- is idempotent, then

$$(I-H)Z_1H = R_1W_1H,$$

 $R_1 = (I-H)\{I - (H^* - H^*H)^- (H^* - H^*H)\},$

and

$$H_2 = R_1 W_3 T$$
, $T = \{ I - (R_1 W_1 H) (R_1 W_1 H)^{-} \} (I - H),$

where W_1 and W_3 are arbitrary matrices such that H_2 is idempotent.

LEMMA 4. Let H be an idempotent matrix, and let HH^- and H^-H be Hermitian idempotent. Then $H^- = H_1 + H_2$,

$$H^{\dagger} = H_1 = H^*(HH^*)^- H(H^*H)^- H^*$$
 and $H_2 = (I - H)Z_3(I - H)$.

Further, if H^- is idempotent, then H must be Hermitian and

 $H^- = H + H_2$, where H_2 is idempotent.

Proof. HH^- and H^-H are Hermitian $\Rightarrow HH_1$ and H_1H are Hermitian. By Lemmas 2 and 3, we get $H_1 = H^*(HH^*)^- H(H^*H)^-H^* = H^{\dagger}$.

Now, for H^- to be idempotent, we must have H_1, H_2 idempotent with $H_1H_2 = H_2H_1 = 0$. Now, $H_1^2 = H_1 \Rightarrow H_1 = H^*$. Further,

$$(H^* - H^*H)(H^* - H^*H)^* = (H^* - H^*H)(H - H^*H)$$
$$= H^*H - H^*H^2 - H^{*2}H + (H^*H)^2 = 0$$

because $HH^*H = H$ and H^* are idempotent. Hence $H = H^*H = H^*$. This proves the lemma.

NOTE 3. Let H be a non-Hermitian idempotent matrix. Then there does not exist an idempotent g-inverse H^- of H such that H^-H and HH are both Hermitian idempotent.

NOTE 4. If $H^- = H_1 + H_2$ is defined in (1) and H is idempotent, then H^- is reflexive g-inverse of H iff $H_2 = 0$. Hence, H^+ is idempotent iff H is Hermitian idempotent. If H is not a Hermitian matrix and H is idempotent, then H^+ cannot be idempotent.

3. CONDITIONS FOR AN IDEMPOTENT MATRIX

Khatri [1] has established the following:

LEMMA 5. Let $H_1, H_2, ..., H_k$ and $H = \sum_{i=1}^k H_i$ be $n \times n$ matrices. Now consider the conditions

(a) $H_i^2 = H_i$ for all i, (b) $H_i H_j = 0$ for all $i \neq j$, (c) $H^2 = H$, (d) $\rho(H) = \sum_{i=1}^k \rho(H_i)$, and (e) either $\rho(H_i^2) = \rho(H_i)$ or tr $H_i = \rho(H_i)$ for all i. Then

(i) (a) and (b) ⇒ all conditions,
(ii) (a) and (c) ⇒ all conditions,
(iii) (b), (c) and (e) ⇒ all conditions, and
(iv) (c) and (d) ⇒ all conditions.

Khatri [2] considered the situation (a) and (d) for Hermitian matrices H_1, H_2, \ldots, H_k . In this case, he established

LEMMA 6. Let H_1, H_2, \ldots, H_k be Hermitian idempotent matrices and $\sum_{i=1}^k \rho(H_i) = \rho(H)$ with $H = \sum_{i=1}^k H_i$. Then the product of the nonzero eigenvalues of H is $\prod \lambda_{NE}(H) \leq 1$, and the equality holds iff $H^2 = H$ or $H_i H_j = 0$ for all $i \neq j$.

In this note, we try to delete the condition of Hermitian matrices. For this, we establish

THEOREM 2. Let H be an $n \times n$ matrix such that $\rho(H) = \operatorname{tr} H$. Then $\operatorname{tr}(H^2H^{\dagger}H^*) \ge \rho(H)$, and the equality holds iff $H^2 = H$.

Proof. Let H be an $n \times n$ matrix of rank t. Then we can write

$$H = BC$$
 and $H^{\dagger} = C^{*}(CC^{*})^{-1}(B^{*}B)^{-1}B^{*} = C^{\dagger}B^{\dagger}$.

where C and B are $t \times n$ and $n \times t$ matrices of rank t. Let $Y = I_t - CB$. Then tr Y = t - tr CB = t - tr H = 0 and so tr $Y^* = 0$. Now, $HH^{\dagger} = B(B^*B)^{-1}B^*$ and so

$$H^{2}H^{\dagger}H^{*} = B(I - Y)(B^{*}B)^{-1}(I - Y)^{*}B^{*}$$

= $B(B^{*}B)^{-1}B^{*} - BY(B^{*}B)^{-1}B^{*} - B(B^{*}B)^{-1}Y^{*}B^{*}$
+ $BY(B^{*}B)^{-1}(BY)^{*}.$

Hence, on account of $BY(B^*B)^{-1}(BY)^*$ being positive semidefinite, we get

$$\operatorname{tr}(H^{2}H^{\dagger}H^{*}) = t + \operatorname{tr}\left\{BY(B^{*}B)^{-1}(BY)^{*}\right\} \geq t,$$

and the equality holds iff BY = 0 or B = HB or $H^2 = H$. This proves the required result.

Note 5. Let H be a Hermitian matrix. Then $H^2H^{\dagger}H^* = H^2$ and if $\rho(H) = \operatorname{tr} H$, then $\operatorname{tr} H^2 \ge \rho(H)$, and the equality holds iff H is idempotent.

Theorem 3.

(a) Let H be an $n \times n$ matrix such that the nonzero eigenvalues of H are real and tr $H = \rho(H) = \rho(H^2)$. Then tr $H^2 \ge \rho(H)$, and the equality holds iff $\lambda_{NE}(H) = 1$.

(b) Let H be an $n \times n$ matrix such that the nonzero eigenvalues of H are real and positive, and tr $H = \rho(H) = \rho(H^2)$. Then $\prod \lambda_{NE}(H) \leq 1$, and the equality holds iff $\lambda_{NE}(H) = 1$.

Proof. (a): Let $\lambda_1, \lambda_2, ..., \lambda_t$ be the nonzero eigenvalues of H, with $t = \rho(H)$ on account of $\rho(H) = \rho(H^2)$. Now $\rho(H) = \text{tr } H$ implies

$$\overline{\lambda} = \frac{1}{t} \sum_{i=1}^{t} \lambda_i = 1 \text{ and } \sum_{i=1}^{t} (\lambda_i - \overline{\lambda})^2 \ge 0 \quad \Leftrightarrow \quad \sum_{i=1}^{t} \lambda_i^2 \ge t,$$

and the equality holds iff $\lambda_i = 1$ for all i = 1, 2, ..., t.

(b): Now, since the λ_i 's are positive, we have

$$\left(\prod \lambda_{\mathrm{NE}}(H)\right)^{1/t} = \left(\prod_{i=1}^{t} \lambda_{i}\right)^{1/t} \leqslant \overline{\lambda} = 1,$$

and the equality holds iff $\lambda_i = 1$ for all i = 1, 2, ..., k. This proves Theorem 3.

NOTE 6. Notice that the nonzero eigenvalues of H can be one, but H cannot be idempotent even when the conditions tr $H = \rho(H) = \rho(H^2)$ are satisfied. For example, consider

$$H = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}.$$

Then H is nonsingular and $\lambda_{NE}(H) = 1$ appears twice. Notice that H is not idempotent. In this situation, H is not semisimple. Thus, in Theorem 3, if we add the condition that H is semisimple, then we get the idempotency of H if $\lambda_{NE}(H) = 1$.

IDEMPOTENT MATRICES

NOTE 7. Let H_1, H_2, \ldots, H_k be idempotent matrices, and let $H = \sum_{i=1}^k H_i$. Then H need not be semisimple even if $\rho(H) = \sum_{i=1}^k \rho(H_i)$.

(a) For example, let

$$H_1 = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & \cdot & 1 \end{pmatrix} \text{ and } H_2 = \begin{pmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \\ \cdot & \cdot & \cdot \end{pmatrix}.$$

Then

$$\begin{pmatrix} \cdot & 1 & 1 \\ \cdot & 1 & 1 \\ 1 & \cdot & 1 \end{pmatrix} = H,$$

and $\rho(H^2) = 1$, while $\rho(H) = \text{tr } H = 2 = \rho(H_1) + \rho(H_2)$. (b) Let

$$H_1 = \begin{pmatrix} \cdot & 1 \\ \cdot & 1 \end{pmatrix}$$
 and $H_2 = \begin{pmatrix} - & \cdot \\ -1 & 1 \end{pmatrix}$.

Then,

$$H = \begin{pmatrix} \cdot & 1 \\ -1 & 2 \end{pmatrix}$$

is not a semisimple matrix even though

$$\rho(H) = \rho(H_1) + \rho(H_2) = \rho(H^2) = \text{tr}H.$$

NOTE 8. For getting an idempotent matrix, Theorem 3 can be rewritten as

THEOREM 3'.

(a) Let H be a semisimple matrix with real eigenvalues and $\rho(H) = \operatorname{tr} H$. Then $\operatorname{tr} H^2 \ge \rho(H)$, and the equality holds iff H is idempotent.

(b) Let H be a semisimple matrix with nonnegative eigenvalues and $\rho(H) = \operatorname{tr} H$. Then $\prod \lambda_{NE}(H) \leq 1$, and the equality holds iff H is idempotent.

Notice that Theorem 3'(b) generalizes Lemma 6 of Khatri [2] in connection with Lavoie's inequality. NOTE 9. Let $A' = (A'_1, A'_2, ..., A'_k)$ and $B = (B_1, B_2, ..., B_k)$ be such that B_i is a g-inverse of A_i (or $H_i = B_i A_i$ is an idempotent matrix of rank A_i) for all i = 1, 2, ..., k. Let BA = H, and assume that H is a semisimple with nonnegative eigenvalues and $\rho(H) = \sum_{i=1}^k \rho(A_i)$ [or $\rho(H) = \sum_{i=1}^k \rho(H_i)$]. Then $\prod \lambda_{\text{NE}}(H) \leq 1$, and the equality holds iff $H^2 = H$ or $A_i B_j A_j = 0$ for all $i \neq j$.

If H = BA is semisimple with real eigenvalues and $\rho(H) = \sum_{i=1}^{k} \rho(A_i)$, then tr $H^2 \ge \rho(H)$ and the equality holds iff $H^2 = H$ or $A_i B_j A_j = 0$ for all $i \ne j$.

If H = BA and $\rho(H) = \sum_{i=1}^{k} \rho(A_i)$, then $\operatorname{tr}(H^2 H^{\dagger} H^*) \ge \rho(H)$ and the equality holds iff $H^2 = H$ or $A_i B_j A_j = 0$ for all $i \ne j$. Further, if Rank $B_i =$ Rank A_i for all i = 1, 2, ..., k, then $A_i B_j A_j = 0 \Rightarrow A_i B_j = 0$ for all $i \ne j$, and AB is a diagonal idempotent matrix.

NOTE 10. Let A and B be $n \times n$ square matrices such that

$$\rho\left(\frac{A}{B}\right) = \rho(A, B) = \rho(B).$$

This condition is equivalent to $A = AB^{-}B = BB^{-}A$ for any g-inverse B^{-} of B. Let $H = AB^{-}$ and $H_0 = AB^{\dagger}$. Then $\rho(H) = \rho(A)$, and for any nonzero λ

$$|H - \lambda I| = |BB^{\dagger}AB^{-} - \lambda I| = |(AB^{-}B)B^{\dagger} - \lambda I| = |AB^{\dagger} - \lambda I| = |H_{0} - \lambda I|,$$

and hence the eigenvalues of H are the same as those of H_0 , so the eigenvalues of H are invariant under any choice of g-inverse B^- of B. In particular, if B is idempotent, then the eigenvalues of H are the same as those of A.

Now, we shall give some sufficient conditions on A and B so that $H = AB^-$ is semisimple with real eigenvalues.

CONDITION i. Let

$$\rho(A, B) = \rho\left(\frac{A}{B}\right) = \rho(B)$$

and B be idempotent. Let $B = B_1 B_2$ with $B_2 B_1 = I_t$ and $t = \rho(B)$. Let

$$(B_1, B_3) = B_{(1)}$$
 and $B_{(2)} = \begin{pmatrix} B_2 \\ B_4 \end{pmatrix}$

be nonsingular matrices such that $B_{(2)}B_{(1)} = I_n$. Then $B_{(2)} = B_{(1)}^{-1}$ and $B_4B_1 = 0$.

Now

$$B_{(1)}^{-1}HB_{(1)} = B_{(1)}^{-1}AB_2^* (B_2B_2^*)^{-1}B_2B^-B_{(1)}$$
$$= \begin{pmatrix} A_0 & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_t & C\\ 0 & 0 \end{pmatrix},$$

where $A_0 = B_2 A B_2^* (B_2 B_2^*)^{-1}$ and $C = B_2 B^- B_3$. If A is a Hermitian matrix, then there exists a nonsingular matrix R such that $A_0 = R D_\lambda R^{-1}$, where D_λ is a diagonal matrix with real diagonal elements. Let us denote

$$R_0 = \begin{pmatrix} R & -C \\ 0 & I_{n-t} \end{pmatrix}$$
 and $R_0^{-1} = \begin{pmatrix} R^{-1} & R^{-1}C \\ 0 & I_{n-t} \end{pmatrix}$

Then

$$B_{(1)}^{-1}HB_{(1)} = R_0 \begin{pmatrix} D_\lambda & 0\\ 0 & 0 \end{pmatrix} R_0^{-1},$$

and hence H is semisimple with real eigenvalues. Notice that the eigenvalues of H are the eigenvalues of $AB_2^*(B_2B_2^*)^{-1}B_2$ (= $AB^+B = A$).

CONDITION ii. Let A and B be Hermitian matrices such that $\rho(A, B) = \rho(B)$. Then $\rho(H) = \rho(AB^-) = \rho(A)$.

(a) Let A be nonnegative definite of rank r. Then $\rho(H) = r$. Let us denote $A = YY^*$ and $I - AA^{\dagger} = ZZ^*$, where $Y^*Z = 0$, $Z^*Z = I_{n-r}$, and Y is an $n \times r$ matrix of rank r. Let $(Y, Z) = Y_0$. Then Y_0 is nonsingular and

$$Y_0^{-1} = \begin{pmatrix} (Y * Y)^{-1} Y * \\ Z^* \end{pmatrix}.$$

Now

$$Y_0^{-1}HY_0 = \begin{pmatrix} Y * B^- Y & Y * B^- Z \\ 0 & 0 \end{pmatrix},$$

and $r = \rho(H) = \rho(YY^*B^-) = \rho(Y^*B^-)$. Now, assume that $\rho(H^2) = \rho(H) = r$.

Then $Y * B^- Y$ is nonsingular and Hermitian for any B^- . Under these conditions,

$$Y_0^{-1}HY_0 = \begin{pmatrix} A_0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_r & C \\ 0 & 0 \end{pmatrix}$$

with

$$A_0 = Y * B^- Y$$
 and $C = A_0^{-1} Y * B^- Z$.

Then, using arguments similar to those given for Condition i, we see that H is semisimple with real eigenvalues.

(b) Let B be nonnegative definite of rank t. Let $B = YY^*$ and $I - BB^{\dagger} = ZZ^*$, where $Y^*Z = 0$, $Z^*Z = I_{n-t}$, and Y is an $n \times t$ matrix of rank t. Let $Y_0 = (Y, Z)$. Then Y_0 is nonsingular,

$$Y_0^{-1} = \left(\frac{(Y * Y)^{-1} Y *}{Z^*} \right),$$

and

$$Y_0^{-1}HY_0 = (Y_0^{-1}H_0Y_0)(Y_0^{-1}BB^-Y_0) = \begin{pmatrix} A_0 & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_t & C\\ 0 & 0 \end{pmatrix}$$

where $A_0 = (Y * Y)^{-1} Y * A Y (Y * Y)^{-1}$ and C = Y * BZ. Then, arguing as for Condition i, we see that H is semisimple with real eigenvalues. For this situation, one can refer to Theorem 6.2.2 and Theorem 6.4.2 (ii) of Rao and Mitra [3].

The above results can be summarized as follows:

THEOREM 5. Let A be a Hermitian matrix and B be an idempotent matrix such that

$$\rho(A, B) = \rho\begin{pmatrix}A\\B\end{pmatrix} = \rho(B).$$

Then H is semisimple with real eigenvalues which are the same as those of A. If $\rho(A) = \rho(H) = \operatorname{tr} H = \operatorname{tr} A$, then $\operatorname{tr} H^2 = \operatorname{tr} A^2 \ge \rho(A)$, and the equality holds iff H is idempotent. Further, if A is nonnegative definite, then $\prod \lambda_{\text{NE}}(H) = \prod \lambda_{\text{NE}}(A) \le 1$, and the equality holds iff H is idempotent.

194

(a) If A is nonnegative definite and $\rho(H^2) = \rho(H)$, then H is semisimple with real eigenvalues. Further, if $\rho(A) = \operatorname{tr} H$, then $\operatorname{tr} H^2 \ge \rho(H)$ and the equality holds iff H is idempotent.

(b) If B is nonnegative definite, then H is semisimple with real eigenvalues. Further, if $\rho(A) = \operatorname{tr} H$, then $\operatorname{tr} H^2 \ge \rho(H)$, and the equality holds iff H is idempotent. Moreover, if A is nonnegative definite and $\rho(A) = \operatorname{tr} H$, then $\prod \lambda_{NF}(H) \le 1$, and the equality holds iff H is idempotent.

The author is thankful to Professor C. R. Rao for some comments.

REFERENCES

- 1 C. G. Khatri, Some results for the singular normal multivariate regression models, Sankhyā Ser. A 30:267-280 (1968).
- 2 C. G. Khatri, A generalization of Lavoie's inequality concerning the sum of idempotent matrices, *Linear Algebra Appl.* 54:97-108 (1983).
- 3 C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York, 1971.

Received 1 January 1985; revised 24 April 1985