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Abstract

Subjects indicated the tilt of dotted planes rotating in depth, in monocular viewing, under perspective projection. The responses
depended on the FOV (field of view) and on the angle W between the tilt and frontal translation (orthogonal to the rotation axis).
Response accuracy increased with the FOV, and decreased with W. Our results support the processing of the second-order optic flow
in all cases, but indicate that this flow is quantitatively small in small-field, leading to tilt ambiguities. We examine computational models
based on the affine components of the optic flow to interpret our results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Motion parallax is a visual depth cue that contributes to
the perception of the 3D space around us. For instance, it
has been shown that monocularly enucleated subjects tend
to rely on head movements to compensate for their lack of
binocular vision (Marotta, Perrot, Nicolle, Servos, & Goo-
dale, 1995), and that specific cortical circuits are dedicated
to the processing of motion variations in the visual scene
(reviews in Cornilleau-Pérès & Gielen, 1996, or Lappe,
2000). In parallel, many computer vision studies have
addressed the problem of computing 3D structure from
motion parallax in image sequences (Longuet-Higgins &
Prazdny, 1980; Waxman & Ullman, 1985).

The visual perception of surface orientation is required
for navigation, when climbing a slope for instance, or for
actions like grasping (Dijkerman, Milner, & Carey, 1996).
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The orientation of a plane relative to the eye can be
described by the slant and tilt (Stevens, 1983). Calling N

the vector normal to a plane (Fig. 1), the slant r quantifies
the global slope of the surface, relative to the line of sight,
and corresponds to the angle between N and this line. The
tilt s is the direction of maximal slope, i.e., the direction of
the projection of N in the frontoparallel plane (Figs. 2A
and B). Tilt computation requires only the computation
of ordinal relationships between object points (Garding,
Porrill, Mayhew, & Frisby, 1995; Koenderink & van
Doorn, 1995). On the opposite, the calculus of slant
requests a metrical representation of depth in the human
visual system. Note that this metrical representation of
depth should not be confounded with absolute distance
perception, which is normally based on the estimation of
distances scaled from the subject’s own body for instance
(e.g., the perception of absolute distances from self-motion,
or binocular disparity are scaled by quantities such as the
body displacements, the convergence angle, and interocular
distance).
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Fig. 1. A plane of normal N is seen in perspective projection, with the perspective centre located at the observer’s eye. Z is the axis from the eye to the
plane point, where the plane orientation is to be analysed. With Z, the axes X and Y form a coordinate system (XYZ) of the 3D space, and project as axes x

and y onto the frontoparallel plane, perpendicular to Z. The vector Nf is the projection of N onto the (xy) plane. Nf makes an angle s (the tilt) with the axis
x. N forms an angle r (the slant) with the axis Z.

Fig. 2. Illustration of the variations of different variables. (A) Varying the
tilt, i.e., the direction of maximal depth gradient. (B) Varying the slant,
i.e., the angle between the object plane and the frontoparallel plane. (C)
Varying the motion/orientation configuration. The winding angle W is the
angle between the tilt direction, and the component of frontoparallel
translation (orthogonal to the rotation axis).
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The human visual perception of slant has been intensive-
ly explored (e.g. Beck & Gibson, 1955; Börjesson & Lind,
1996; Braunstein, 1968; Freeman, 1966; Freeman, Harris,
& Meese, 1996; Gibson & Carel, 1952). By comparison,
and in spite of the growing importance attributed to the
perception of ordinal depth (Koenderink & van Doorn,
1995), the psychophysical studies on tilt perception remain
sparser. For surfaces with multiple orientations, Norman,
Todd, and Phillips (1995) found a high correlation between
the stimulus and perceived tilt, when 3D shape is specified
by motion, stereopsis or texture. For motion parallax,
Domini and Caudek (1999) and Todd and Perotti (1999)
found that observers estimate tilt more accurately than
slant in multiple-view stimuli. However, they used a single
direction of 3D motion (a rotation about a vertical axis),
which may bias the results (any information about the
direction of the 3D motion may simplify the resolution of
the 3D structure from motion problem). They did not
explore the general case where both the motion and tilt
direction vary randomly across trials. They also used an
orthographic projection, which is an approximation of per-
spective projection, valid only for small viewing angles.

Previously, we observed that reports of plane tilt from
motion parallax depend on the orientation of the tilt rela-
tive to the motion (Cornilleau-Pérès et al., 2002). Consider
a rotation in depth about a frontoparallel axis. Such a
motion involves a component of frontal translation Tf

orthogonal to the rotation axis (intuitively, it indicates
the overall motion direction projected in a frontoparallel
plane). We defined the winding angle W, as the angle
between the tilt and Tf (Fig. 2C), and found that the error
on the perceived tilt strongly increases with W in small field
(8� width), but more weakly so in large field (60� width).
This result has been confirmed by others (van Boxtel, Wex-
ler, & Droulez, 2003), but has not received any computa-
tional account, so far.

Yet, models of tilt computation from motion have been
proposed (Koenderink & van Doorn, 1976; Longuet-Hig-
gins, 1984; Subbarao, 1988). They indicate the existence
of multiple solutions (generally two) in the problem of tilt
computation from optic flow. These approaches express
the optic flow (retinal image velocity) projected by a mov-
ing plane as a second-order polynomial vector of the image
coordinates.

The present study aims at studying in details the
dependence of tilt perception from the winding angle W, in
small and large field, and at exploring the computational cor-
relates of this property. We start by recording the perceived
orientation of a moving plane in small (8�) and large (60�)
field of views. Because multiple-frame stimuli may provide
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complementary acceleration information (Hoffman, 1982),
we use two-view stimuli. We then study the exact shape of
the tilt response distributions for different W values. On
the theoretical side, we show that the second-order terms
of the flow are small, relative to the first order terms in our
small-field stimuli. We analyze the 3D content information
contained in the first-order terms, or affine flow. We describe
the associated 3D ambiguities, and study different con-
straints that could be associated by the visual system to the
affine flow to lift these ambiguities. The corresponding mod-
els predict different shapes of the tilt response distributions in
small and large field. The confrontation of these predictions
with our results leads to support the existence of a processing
of the full flow, including second-order terms, in our large
field conditions. In small-field, the weakness of the second-
order terms seems to induce an analysis of the first-order
(affine) flow, possibly associated with the stationarity
hypothesis proposed by others (Wexler, Panerai, Lamouret,
& Droulez, 2001).

2. Geometrical preliminaries

The position of the eye is the origin of a (XYZ) coordinate
system, with the Z-axis lying along the line of sight (Fig. 1).
(xy) is the axis system of the frontal plane, projected from the
system (XY). Let P be an object plane of equation

Z ¼ ZX � X þ ZY � Y þ Z0: ð1Þ
We exclude the case where P is parallel to the Z-axis,

because in that case it projects as a single line onto the
frontal plane. N is the normal to P, pointing toward the
eye, with coordinates (ZX, ZY, �1). Its projection in the
frontal plane is the vector s of coordinates (ZX, ZY) in (xy).

The angle between s and the x-axis is the tilt angle s
(Fig. 2A). The angle between N and the Z-axis is the slant

angle r (Fig. 2B). Under the axis orientation specified in
Fig. 1, calling s = tg r, we have:

ZX ¼ s � cos s;

ZY ¼ s � sin s
ð2Þ

The 3D motion of P can be decomposed in a rotation X
around the eye, of coordinates (XX, XY, XZ), and a transla-
tion T = (TX, TY, TZ). The vector Tf = (TX, TY) represents
the frontal translation. Note that if the plane rotates
around a frontoparallel axis, Tf is orthogonal to that rota-
tion axis (Cornilleau-Pérès & Droulez, 1989). The angle
between Tf and s is called the winding angle W (unsigned,
ranging between 0 and 90�, see Fig. 2C).

3. Psychophysics

3.1. Experiment 1

Subjects reported the tilt of a plane presented in 2 frame
image sequences in SF (small-field, visual angle 8�) and LF
(large-field, visual angle 60�) in monocular vision. The
orientation of the plane was indicated by the adjustment
of a graphical probe, superimposed on the moving stimu-
lus, a method inspired from Stevens (1983). Motion paral-
lax was generated through a rotation in depth of the plane,
about a frontoparallel axis of random direction. This
motion was chosen because

(1) It contains a component of frontoparallel translation
Tf proportional to the tangent of the 3D rotation
angle, and a component of rotation about the observ-
er’s eye (the latter being devoid of any depth informa-
tion). Tf is known to generate a reliable motion
parallax to the visual system, from a theoretical point
of view. In SF, for a static observer, the detection of
unsigned depth gradients is more accurate for a rota-
tion in depth (Tf embedded in a rotation in depth),
than for a pure frontal translation Tf (Dijkstra, Corn-
illeau-Pérès, Gielen, & Droulez, 1995). In LF, both
3D movements (a rotation in depth involving Tf, or
a pure Tf) lead to similar sensitivities to motion par-
allax. Therefore, the rotation in depth represents an
optimal condition for the detection of motion
parallax.

(2) It maintains the central point of the stimulus static on
the screen, which is convenient to adjust a graphical
probe and indicate the surface orientation.

3.1.1. Methods

3.1.1.1. Subjects. Nine observers aged 21–28 served as naı̈ve
subjects. All of them had normal or corrected-to-normal
vision, and gave their written informed consent as to the
goal of the experiments.

3.1.1.2. Design. We examined the effects of two variables on
the judgments of tilt and slant: (1) the size of the visual
stimulus (diameter 8� or 60� visual angle) and (2) the wind-
ing angle W randomised between 0� and 90�. Within the
frontoparallel plane, the tilt s and the angle of the rotation
axis randomly varied between 0� and 360�. Therefore, the
winding angle W defined above varied randomly between
0� and 90� (the frontoparallel translation oscillates back
and forth during the trial and thus one cannot separate
out responses due to a positive or negative sign alone).
The slant r of the plane was 35�, and the rotation ampli-
tude between the two views was 3�. There were 8 sessions
of 108 trials for each field size. The SF and LF sessions
were performed alternately in random order.

3.1.2. Apparatus

The stimulus patterns were generated on a PC comput-
er, and displayed either on the 19-in. monitor (SF), or on a
rigid glass-fabric screen, using an Electrohome Marquee
Ultra8500 projector (LF). The stimuli had a diameter of
728 pixels. We used an anti-aliasing software to achieve
subpixel accuracy, each dot covering a 3 · 3 pixels area.
The refresh rate was 85 Hz.
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3.1.3. Stimuli

The viewing distance was 1.96 m (SF), and 1.73 m (LF),
with stimulus diameters of 27.5 cm and 2 m, respectively.
The stimuli were perspective projections of dotted planes
(Fig. 3A), with the centre of the perspective projection
located at the subject’s eye E. The centre of the stimulus,
on the screen, called point K, was located at the subject’s
eye level. The line EK intersected the stimulus plane in
K. The stimulus plane, defined by its tilt and slant, rotated
about a frontoparallel axis, passing through point K. In
this configuration, the whole stimulus projection is scale
invariant, and does not depend on the simulated viewing
distance.

The two views of the plane were calculated so that the
dot distribution had a uniform density on the projection

plane (i.e., in the display screen, Fig. 3A) for the median

position of the surface, defined as the intermediate position
between the 2 views. Also, this median position corre-
sponded exactly to the tilt s and slant r chosen for the stim-
ulus. Hence, the 2 views corresponded to tilt and slant
values which could differ by a maximum of 1.5� from the
median s and r, because they corresponded to a rotation
of �1.5� and 1.5� of the plane, from its median position.
The duration of each view was 0.38 ± 0.015 s. The dot
number was 572 ± 17. The mean dot speed was 0.03�/s in
SF, and 0.66�/s in LF.

We chose to use the same total resolution in SF and
LF, i.e., an angular resolution that scaled with the stim-
ulus size, and the same dot number, so as to maintain a
Fig. 3. (A) A dotted plane of a given orientation in space oscillates about
a frontoparallel axis between 2 extreme positions. For each of these
positions, the projections of the dots onto the frontoparallel screen plane
are calculated, using the subject’s eye as the centre of perspective
projection. (B) The subject sees the projection of the dots located within
a circular window. He/she adjusts a graphic probes superimposed on the
dot distribution, so as to indicate the perceived orientation of the plane.
similar amount of discretized visual information across
the SF and LF conditions. This was initially due to
technological constraints, because we could not increase
the resolution in LF. It turned out to be the right
choice, because if we had used the central low resolu-
tion of the projection screen in SF, the lower perfor-
mance observed in SF, as compared to LF, could
have been attributed to this low resolution (recall that
acuity is maximal in central vision for both position
and motion).

The graphic probe adjusted by the subject to indicate the
perceived plane orientation consisted of a needle and an
ellipse. Subjects adjusted the needle orientation, and the
ellipse width with the computer mouse, to indicate the per-
ceived tilt (the direction of the needle) and slant (width of
the ellipse) (Fig. 3B), according to Stevens’ method. The
needle had a maximum length of 194 pixels, and the larger
width of the ellipse was fixed at 194 pixels. The mean
luminance was 0.23 cd/m2.

3.1.4. Procedure

The subject was seated in darkness, with head main-
tained in a chinrest, and an eye patch covering the non-
dominant eye. He/she was asked to fixate the centre of
the stimulus. The stimulus plane was presented in continu-
ous oscillation (with the 2 views displayed alternatively).
After 3 s of presentation, the subject could adjust the posi-
tion of the mouse to modify the orientation of the probe
superimposed on the stimulus. Upon completion of the
adjustment, he/she clicked on the mouse, and proceeded
to the next trial. The trial duration usually ranged around
8 s.

3.1.5. Data analysis

We partitioned the winding angles in nine intervals: 0�–
10�, 10�–20�, . . . 80�–90�. The average number of trials for
each subject in each W interval was 96 (standard deviation
7). Tilt sign is ambiguously perceived if subjects tend to
respond according to the true tilt s, as well as to the oppo-
site tilt s + 180�. We measured this ambiguity (tilt reversal)
by calculating the percentage of trials where the unsigned
tilt error ranges between 90� and 180�. We corrected the
responses for the 180� ambiguity (tilt reversal), i.e., if ss is
the stimulus tilt and sp is the reported tilt, we considered
the response as either sp or sp + 180�, whichever is closer
to ss. Thus, we obtained a ‘‘corrected absolute tilt error’’
ranging between 0� and 90�, as a measure of the
performance.

For the graphical presentation of the results, we consid-
er the bisector B of the vectors Tf and ss as the origin of the
angles. In this convention, if Tf is at angle W from ss, the
angle ss is set to �W/2, while Tf is at +W/2. In the case
where Tf is at �W from ss, we apply a reflection about B

to the 3 vectors Tf, ss and sp, so that we again affix an ori-
entation �W/2 to ss and +W/2 to Tf. Hence, for a given
value of W, we can group all responses into a single histo-
gram, with ss at �W/2 and Tf at W/2.
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Due to the periodicity of the tilt, we used circular statis-
tics to find the mean spm of the tilt distributions. For each
value s0 in [0, 180�] we calculated the mean of the reported
tilt within the single period [s0, s0 + 180�]. The mean corre-
sponding to the minimum variance was kept as the final
mean of the tilt distribution.

As the shape of most of the bisector-oriented distribu-
tions is found sharper than the normal distribution, we fit-
ted them with Laplace functions. In some cases, they were
also approximated by the sum of two Laplace
distributions.

Since most distributions are not strictly normal (for
instance the absolute tilt error is bounded by the value
0), we use non-parametric tests, except if otherwise stated.
For instance we calculate the Spearman correlation, and
we compare independent samples with the Mann–Whitney
U test (MWU). The level of significance is taken at
p < 0.05.

3.1.6. Results

3.1.6.1. Verbal reports. All subjects found the task more
difficult in SF than in LF. Eight of the 9 subjects reported
a perception of curved surfaces, rather than planes, for
large values of W, particularly in LF. The perceived curva-
ture was generally convex (i.e., the plane looks like a bump
seen from above).

3.1.6.2. Effect of the field of view (FOV) on the reported tilt

sign. We find 41% of tilt reversals in SF and only 2.4% in
LF. This confirms previous results showing that perspec-
tive projection lifts the 180� tilt ambiguity in LF (Cornil-
leau-Pérès, Wong, Cheong, & Droulez, 2000; Cornilleau-
Pérès et al., 2002) and, more generally, the ambiguity on
Fig. 4. Experiment 1. Average absolute tilt error in degrees (corrected for the
(upper curves) and large field (lower curves). (A) For Experiment 1, the data is
presented. They are averaged for all stimulus velocities and slants.
the depth sign (Dijkstra et al., 1995). All subsequent results
are corrected with respect to the tilt sign.

3.1.6.3. Effect of the FOV and W on the absolute tilt error.

The average absolute tilt error (Fig. 4B) is always lower in
LF than in SF, especially for large values of W. This effect
of the FOV is significant for 8 of the 9 subjects (MWU test
at p < 0.01), and for the whole population (MWU test
Z = 36, p < 0.001).

In SF, the average absolute tilt error increases dramati-
cally with W. This effect is weaker in LF. The Spearman
correlation of the absolute tilt error with W is significant
for each subject in SF (overall coefficient: 0.472, p < 1.E-
6) and for 8 of the 9 subjects in LF (overall coefficient:
0.115, p < 1.E-6).

3.1.6.4. Effect of the FOV and W on the mean reported tilt.

A tilt-error can be due either to a lack of accuracy (a shift
of the mean reported tilt, away from the stimulus tilt), or to
a lack of precision (flattening of the response distribution).
Fig. 5 plots the histograms of bisector-oriented tilt reports
for each W interval, superimposed with a one-peak Laplace
fitting. The vertical dotted lines indicate the abscissae
�W/2 (stimulus tilt ss), and W/2 (frontal translation Tf).
The origin of the abscissae is the bisector B. The mean
reported tilt spm tends to deviate from the stimulus tilt
toward B. This effect is large in SF, and weak in LF.

Fig. 6 plots the mean individual perceived tilt spm in SF
and LF for each subject and W category. The ascending
straight line indicates the frontal translation Tf, while the
descending line indicates the stimulus tilt ss. As described
above, spm lies between Tf and ss in small field, but with
strong variations among subjects. For instance subject
180� tilt ambiguity) as a function of the angle W (in degrees) in small field
averaged over all subjects. (B) For Experiment 2, the individual curves are



Fig. 5. Experiment 1. Histograms of the tilt responses (corrected for the 180� ambiguity) in Experiment 1, and their Laplacian fitting. The vertical lines
indicate the stimulus tilt (left) and the direction of frontal translation (right). Each graph corresponds to a value of the angle W. (A) Small field. (B) Large
field.

Fig. 6. Experiment 1. Average individual perceived tilt in Experiment 1 (corrected for the 180� ambiguity), as a function of the winding angle (abscissa 1
corresponds to W in [0�–10�], 2 is for [10�–20�], etc.) in small field (upper graphs) and large field (lower graphs). The initials of the corresponding subjects
are indicated on each graph.
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CX tends to answer according to Tf, GY according to the
stimulus tilt ss and XT according to B. By contrast, in large
field, spm is close to ss for all subjects.

Therefore, spm is close to B (slightly toward ss) for the
grouped responses, with a large intersubject variability
(the individual spm lying between Tf and ss) in SF. In LF,
spm is close to ss. The accuracy of the responses decreases
as W increases in SF, but not in LF.

3.1.6.5. Effect of the FOV and W on the tilt response

distributions. The response distributions tend to flatten as
W increases (Fig. 5), indicating a corresponding decrease
in the response precision. This effect is strong in SF,
and slight in LF. In the latter case, the distributions
present a single peak (Fig. 5B). In small field, we usu-
ally observe a one-peak distribution (Fig. 5A) except
for W = 80�-90�, where the distribution tends to present
2 peaks at �W/2 and +W/2. Using a two-peak fitting
for 80� < W < 90� in SF, we find two symmetrical shal-
low peaks centred at Tf and ss (Fig. 7B) for the
grouped responses. The individual response histograms
(Fig. 7A) indicate that the general shape of the distribu-
tions varies among subjects. Two subjects respond
according to ss, two others according to Tf, and 4 oth-
ers present 2 response peaks located at less than 5�
from Tf and ss. Therefore, the existence of two equiva-
lent peaks atTf and ss is not confirmed at the individual
level.



Fig. 7. Experiment1. Response distributions for W in [80�–90�] (corrected for the 180� ambiguity), and their two-peaks Laplacian fitting. D1 and D2 are
the 2 Laplacian functions, and SUM is their summed distribution. (A) Individual distributions. (B) Grouped distribution.
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In summary, we observe different response patterns in
SF and LF. In SF, the increase of the absolute tilt error
with W is due to a decrease in accuracy and precision of
the responses, with the mean perceived tilt lying close to
the bisector of Tf and ss. In LF, the mean reported tilt is
close to the stimulus tilt, but the response precision
decreases as W increases. The response distributions tend
to be one-peak shaped, except when 80� < W < 90� in SF
where the grouped response distribution presents 2 peaks.

3.2. Experiment 2

In the first experiment, each W category is a 10� interval,
instead of a single W value. The second experiment exam-
ines the shape of the response distributions for single W

values, and tests the effect of plane slant and dot speed
on those distributions. Here ‘dot speed’ refers to the aver-
age 2D speed of the plane dots on the display screen.

3.2.1. Methods

They were the same as in Experiment 1, except for the
following:
3.2.1.1. Participants. Four observers aged 22–23 served as
naı̈ve subjects for this experiment. Two of them had partic-
ipated in the previous experiment. All had normal or cor-
rected-to-normal vision.

3.2.1.2. Design. We examined the effects of 4 parameters
on the judgements of plane orientation in terms of tilt
and slant: (1) size of the visual stimulus (diameter 8� or
60� visual angle) (2) W, with 5 values at 0�, 22.5�, 45�,
67.5�, and 90�. (3) plane slant, with 8 values between
17.5� and 35�, with a step of 2.5�. (4) average dot speed
V, with 6 speed values for each slant value. There were
10 possible tilt values, which were presented for each set
of parameters, making a total of 4800 trials for each
subject.

For a constant 3D rotational angle Ra, V increases
with slant, as V is roughly the product of the tangents
of Ra, and of the slant (Annex B) in SF. In order to
vary slant and V independently, we chose a different
range of 3D rotation angles for each slant values in
small field (Table 1), so as to obtain similar V values
across all slant values. The resulting correlation between



Table 1
Values of the slants (left column, in bold), rotation angles (in italics) and
mean dot speed (2 bottom rows, in �/s) in Experiment 2

Slant (�) 3D rotation angle (�)

17.5 2.22 4.44 6.65 8.86 11.07 13.28

20.0 1.92 3.85 5.77 7.68 9.60 11.52

22.5 1.69 3.38 5.07 6.75 8.44 10.13

25.0 1.50 3.00 4.50 6.00 7.50 9.00

27.5 1.35 2.69 4.03 5.37 6.72 8.07

30.0 1.21 2.43 3.64 4.85 6.06 7.27

32.5 1.10 2.20 3.30 4.40 5.50 6.60

35.0 1.00 2.00 3.00 4.00 5.00 6.00

Dot speed LF (± 15%) 0.24 0.47 0.66 0.87 1.07 1.28
Dot speed SF (± 4%) 0.011 0.021 0.031 0.042 0.052 0.062

The ‘LF’ and ‘SF’ bottom row gives the mean dot speed over the image in
large field and small field, respectively, with the possible variation range (in
percentage) in parentheses.
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V and slant was not significant (Spearman �0.01). In
LF, we kept the same set of rotation angles, and found
that V was then significantly correlated with slant, but
negatively (Spearman �0.21). Hence, in all conditions,
the chosen 3D rotation angles allow to cancel out the
positive correlation between slant and V. For each slant
and rotation angle, the V values are indicated in the bot-
tom row of Table 1.

In LF, the values of the slant and 3D rotation amplitude
were those used in SF. Therefore, the restriction of the cal-
culus of V to the central disk of 8� diameter (i.e., over an
area covering the small field stimulus) is identical in SF
and LF. The bottom row of Table 1 indicates the true aver-
age dot speed over the entire stimulus for the LF stimuli.
For instance, the minimum V value is 0.011�/s in SF and
0.24�/s in LF.

3.2.1.3. Data analysis. Although the response distributions
are usually not Gaussian, we chose to performed an
ANCOVA on the results, so as to find the general influence
of the multiple variables. We then controlled the main
effect with non-parametric tests (WMP is the Wilcoxon-
matched-pair test).
Fig. 8. Experiment 2. Circular histograms of the grouped raw responses (un
graphs) and large field (lower graphs). The black arrow indicates the true til
translation, and the rightward horizontal indicates the bisector of these 2 dire
3.2.2. Results

3.2.2.1. Effect of the field of view (FOV) on the reported tilt

sign. Fig. 8 shows the circular histograms of the bisector-
oriented tilt distributions for the different W and FOV,
grouping all slants, speeds and subjects, before correction
for the 180� tilt ambiguity. The black arrows indicate the
stimulus tilt (downward arrow) and frontal translation
(upward arrow). The zero (rightward) direction indicates
the bisector of these 2 directions. This graph illustrates
the weight of depth reversals in the subjects’ responses.
As in experiment 1, depth reversals are more numerous
in SF (35%) than in LF (0.1%). These percentages are both
smaller than in Experiment 1. This is due to an effect of
practice for subjects YF and YS who had already contrib-
uted to Experiment 1. Indeed their tilt reversals were fewer
(25% and 31% in SF and 0% in LF) than the numbers
found for the 2 new subjects (38 and 44% in SF, 0.4 and
0.04% in LF). We verified that the results described below
did not differ between the trained subjects YF and YS, and
the 2 naı̈ve subjects.

3.2.2.2. Effect of the variables on the absolute tilt error.
Fig. 4B plots the average absolute tilt error as a function
of W in SF and LF. The curves are highly similar to
Fig. 4A, showing a good quantitative agreement between
our 2 experiments. First, the tilt errors are smaller in LF
than in SF (average difference 12�, ranging between 0�
and 33�, MWU test Z = 32, p < 0.001), and this is signifi-
cant for each subject (MWU test at p < 0.01). Second,
the absolute tilt error increases significantly with W for
all subjects in SF, and also, to a weaker extent, in LF.
For each subject, the corresponding Spearman correlation
ranges between 0.42 and 0.54 (p < 1E-6) in SF, and
between 0.07 and 0.20 (p < 0.001) in LF.

In order to quantify the role of slant and dot speed on
the absolute tilt error, we perform an ANCOVA with the
field-size (2 levels), and W (5 levels) as factors, and slant
S and speed level V as continuous predictors.

The results (Table 2A) indicate that field size and
W have the most significant effects, with the significant
corrected for the 180� ambiguity), for each W value in small field (upper
t direction, the grey arrow corresponds to the direction of frontoparallel
ctions.



Table 2
Effects of different variables on the absolute tilt error

A. ANCOVA on absolute tilt error B. Spearman correlation
between factor and absolute
tilt error

Factor F Small field Large field

Field size (F) 83.43

Winding angle (W) 21.88 0.93 0.40

Slant (S) 2.98 (p = 0.09) 0.03 (p = 0.66) �0.002
(p = 0.98)

Average dot speed (V) 48.48 �0.14 �0.15

F*W 12.51

W*V 3.68

(A) Results of an ANCOVA using FOV and W as factors, and the average
dot speed and the slant as covariates. (B) Spearman rank correlation
coefficients between the absolute tilt error and the variables W, S, and V in
small-field and large-field.
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interaction just described. The dot speed V is a more influ-
ential factor than the slant. As V increases, the tilt error
decreases significantly for each FOV (Table 2B, Fig. 9A).
This is confirmed at the individual level for 3 of the 4 sub-
jects in small field, and for all subjects in large field
(grouped responses for all W).

The Spearman correlations in Table 2B also indicate
that the effect of slant is small in LF, and is not significant
in SF.

3.2.2.3. Effect of the variables on the response distributions.

Fig. 8 indicates that we obtain the same trends as in
experiment 1, for the grouped response distributions
for all subjects, dot speed and slant values. In
particular

(1) In small field the mean perceived tilt is closed to B

(slightly toward ss), and the overall response variabil-
ity increases with W.

(2) In large field the mean perceived tilt is closed to ss (we
observed a deviation of less than 1� from ss for each
subject and W), and the response variability increases
slightly with W.
Fig. 9. Experiment 2. Analysis of the grouped tilt reports, (corrected for the 18
dot speed, labelled from 1 to 6 (see text) in small field (left graphs) and large
Since slant does not affect much the results, we focus on
the influence of V. In small field, an increase in V ‘‘pushes’’
the mean of the grouped responses toward the true stimu-
lus tilt (Fig. 9B left). In large field, the mean of the response
distributions varies little with V (Fig. 9B right); for each
W–FOV–slant or W–FOV–V category, this mean is less
than 3.9� from the true tilt. In all conditions, we observed
that the width of the distribution peaks was narrower as
speed increases.

Hence, the negative correlation between the absolute tilt
error and dot speed is due to a general decrease of the
response variability as speed increases, coupled with a gain
of accuracy in small field.

3.2.2.4. Two-peak Laplace fittings of the response distribu-

tions. We tested whether the response distributions could
be the sum of two Laplace distributions, when W = 90�
in small field. Fig. 10 shows that the response distribution
presents 2 rather symmetric peaks at less than 3� from Tf

and s for 3 subjects (TS, LO, and YF). For subject YS,
the distribution is flatter, with 2 underlying peaks close to
the stimulus tilt. Hence, the general 2 peak shape observed
at W = 90� in small field (Fig. 8, upper right graph with the
uncorrected 180� tilt ambiguity) is confirmed here for 3 of
the 4 subjects.

Since V has a significant effect on the tilt error, we
examined its effect on the grouped response distributions
for small field and W = 90�. We found that the 2 peaks
exist at each speed level, with similar locations (the tilt
and the frontal translation). An increasing speed leads
to the narrowing of both peaks, and the elevation of
the height of the peak located at �W/2 (true tilt) relative
to the size of the peak located at W/2 (frontal
translation).

3.2.2.5. Separation of the effects of dot speed and 3D
rotation amplitude. The previous analysis exaggerates the
role of dot speed as a factor in the tilt responses for 2 rea-
sons. First, the slant tangent varies by a factor 2 for a given
V value, while V undergoes a sixfold variation for each
0� ambiguity) as a function of the winding angle, for different values of the
field (right graphs). (A) Absolute tilt error. (B) Mean reported tilt.



Fig. 10. Experiment 2. Individual tilt response distributions (corrected for the 180� ambiguity) for W = 90� in small field, with the two-peak Laplacian
fitting. D1 and D2 are the 2 fitted Laplacian functions, with their sum SUM.
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slant value (Table 1). Second, for a constant slant value, V

and Ra (the 3D rotation amplitude) covary. As indicated in
the computational analysis below (see also Annex B), the
second-order optic flow increases with Ra, and should play
a key role in disambiguating the tilt direction.

In order to separate the influence of Ra and V, we mea-
sured the absolute tilt error ATEcirc from the tilt response
distributions through circular statistics. This was done for
each V, slant, FOV, and W value. Each distribution con-
tained 40 responses (4 subjects, 10 tilt values). The absolute
difference between the mean (by circular statistics) of this
distribution, and the stimulus tilt was equal to ATEcirc.
We first checked that an ANCOVA, designed as the
ANCOVA above, led to similar results, in terms of the
influence of V vs slant. Then we performed 2 different
analyses.

First, in order to quantify the influence of Ra when V is
constant, we compare ATEcirc for the minimal slant of
17.5� (i.e., for the maximum Ra value) and the maximal
slant of 35� (i.e., for the minimum Ra value), in each of
the 6 V-categories. Over the 30 points obtained (6 V-values,
5 W-values), the improvement of performance was signifi-
cant in SF (ATEcirc decreases by 1.71�, WMP Z = 2.44
p = 0.015) but not in LF (decrease of ATEcirc 0.09�,
WMP Z = 0.91 p = 0.36). Hence, Ra modulates the tilt
percept in SF, but not in LF.

In a second analysis, we chose the pairs of stimuli in
Table 1 that correspond to the same Ra value (up to
±10%). For instance we paired the stimulus 1 with
V1 = .87�/s, S1 = 25� (as dot speed and slant, respectively)
with the stimulus 2 with V2 = 1.28�/s and S2 = 35�, because
they both correspond to a 3D rotation amplitude of 6�.
Over 32 such independent pairs, we calculated the varia-
tions of ATEcirc when
(1) Ra is constant and V increases (from stimulus V1S1 to
stimulus V2S2).

(2) V and Ra increase at the same time (from stimulus
V1S1 to stimulus V2S1).

We also imposed that the mean relative variations of Ra
and V were of similar magnitude (about 35%) for all our
comparisons, between pairs of indices 1 and 2.

In SF, ATEcirc hardly decreases in the first case (mean
0.23�) and this decrease is not significant (Z = 0.77,
p = 0.44). On the opposite, in the second case, the error
decreases by 0.90� in average, which is significant
(Z = 2.3, p = 0.44). In LF, comparisons (1) and (2) led to
non-significant effects.

These two results confirm that the major effect of dot
speed found above is partly due to the concomitant
increase in Ra, in SF, and that maintaining a constant
Ra weakens the effect of a V increase.

3.3. Conclusion

Our psychophysical results can be summarized as
follows:

(1) Tilt reversals (corresponding to a 180� ambiguity
on the tilt direction) are observed at a rate of about
35–40% in SF, and less than 3% in LF. Conclu-
sions below are for responses corrected for this
ambiguity.

(2) Tilt errors are larger in SF, than in LF, due to a loss
of accuracy and precision in the responses. The mean
perceived tilt lies between the stimulus tilt and frontal
translation in small field, and near the stimulus tilt in
large field.
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(3) The absolute tilt error increases with W. This effect is
strong in small field, and due to a decrease in the
accuracy and precision of the responses. In large field,
this effect is weak and due only to a slight decrease of
the precision as W increases.

(4) In SF, for W = 90�, the mean reported tilt peaks at
the stimulus tilt and at the frontal translation for
grouped responses. This trend is not always verified
at the individual level. Such ambiguity is not
observed for lower W values, or in LF.

(5) The effect of slant is not significant, except in LF,
where the performance improve slightly as slant
increases. By contrast, tilt estimates improve signifi-
cantly as dot speed increases; the response distribu-
tions show a higher accuracy and precision in SF,
and a gain of precision in LF. This improvement is
partly due to the increase of 3D rotation amplitude,
which covaries with dot speed in our experiment.

4. Computational interpretation

Here, we examine the optic flow equations for a plane
moving in the 3D space, under different hypotheses, and
we characterize the corresponding solutions for 3D
motion and structure. We then compare these solutions
with the subjects’ psychophysical responses described
above.

4.1. The optic flow equations and their solutions in the planar
case

Retinal images get formed through a perspective projec-
tion centred on the eye. Simplifications of the 3D structure
from motion problem have been proposed in the literature
by using either the orthographic projection, or the affine
optic flow, neglecting the second-order derivatives of the
optic flow. Therefore, we consider here 3 possible frame-
works, (1) full flow in perspective projection, (2) affine flow
in perspective projection, and (3) orthographic projection.

4.1.1. Perspective projection and full flow

We use the notations defined in Section 2. It is conve-
nient here to introduce the proximity function p ¼ 1

Z as

p ¼ px � xþ py � y þ p0; ð3Þ

where

p0 ¼ 1=Z0; x ¼ X=Z; y ¼ Y =Z;

px ¼ �ZX � p0; py ¼ �ZY � p0; ð4Þ

s and r are related to px and py by

px ¼ �p0 � s � cos s:

py ¼ �p0 � s � sin s
ð5Þ

The coordinates of vector N can be written as �1/p0.(px,
py, p0)
If the component of frontoparallel translation Tf is not
zero, it is possible to detect that the optic flow field is
due to a planar surface. For instance Droulez and Cornil-
leau-Pérès (1990) have shown that, in this case only, the
spin variation (one of the second-order derivatives of the
optic flow) is zero in all directions. Then, the optic flow
field is related to the plane orientation and 3D motion
through the equations (Longuet-Higgins, 1984):

u ¼ a1 þ a2 � xþ a3 � y þ A � x2 þ B � x � y;
v ¼ a4 þ a5 � xþ a6 � y þ A � x � y þ B � y2

ð6Þ

where

a1 ¼ T X � p0 þ XY ;

a2 ¼ T X � px � T Z � p0;

a3 ¼ T X � py � XZ ;

a4 ¼ T Y � p0 � XX ;

a5 ¼ T Y � px þ XZ ;

a6 ¼ T Y � py � T Z � p0;

A ¼ XY � T Z � px;

B ¼ �XX � T Z � py

ð7Þ

If the coefficients a1 to a6, A, and B are estimated from
the optic flow, 3D motion and structure can be recovered
from (7). However, solving these non-linear equations
leads to a twofold ambiguity, with an interchangeable role
of vectors n and t (Longuet-Higgins, 1984), which are the
unitary vectors of the normal N, and translation T,
respectively. Therefore the computed orientation n 0

corresponds either to the true orientation n, or to the
‘spurious’ solution t.

4.1.2. Perspective projection and affine flow

In some cases, the optic flow can be approximated by its
affine part, i.e.,

u � a1 þ a2 � xþ a3 � y;
v � a4 þ a5 � xþ a6 � y

ð8Þ

This affine approximation would not hold for a curved
surface, which can induce large second-order flows even
in small field (Cornilleau-Pérès & Droulez, 1989). The
affine flow is characterized by the six coefficients (a1 to
a6) of the optic flow equations. Recovering the 3D motion
and structure from a1 to a6 yields an infinite number of
solutions, because there are 6 equations, and 8 unknowns,
which are px and py (or, alternatively, the tilt and slant),
and the 6 coordinates of T and X (p0 is the unrecoverable
scale factor).

First, let us note that the directions of the tilt and of the
frontal translation can shifted by 180� simultaneously,
without incidence on the affine problem. Indeed, the vec-
tors (�px, �py) and (TX, TY) can be changed to their oppo-
sites (px, py) and (�TX, �TY) without affecting system (7).
Hence, the tilt can only be recovered up to a 180� reflection
with the affine flow.



Table 3
Number of solutions for the computation of tilt from optic flow

Projection type Number of solutions for s
(W = 0�,0� < W < 90�, W = 90�)

Perspective full flow (1, 2, 2) Tf

Perspective affine (1, 1, 1)
Orthographic (2, 2, 2)-s

The numbers in each triplet indicate the numbers of solutions for s when
W = 0�, 0� < W < 90�, and W = 90�, respectively. The spurious solution
among the 2 solutions is indicated in bold. For the perspective full flow
approach, the 2 solutions merge as one for W = 0�, because s = Tf in this
case.
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Denoting tZ = TZÆp0, and from the equations in
a2,a3,a5,a6, in (7), we obtain

tZ þ ða2 þ a6Þ=2 ¼ðT X � px þ T Y � pyÞ=2; ð9Þ
XZ � ða5 � a3Þ=2 ¼ðT X � py � T Y � pxÞ=2; ð10Þ

which leads to

ðtZ � CT Þ2 þ ðXZ � CXÞ2 ¼ R2; ð11Þ
where

CT ¼� ða2 þ a6Þ=2; CX ¼ ða5 � a3Þ=2; ð12Þ
R2 ¼½ða2 � a6Þ2 þ ða5 þ a3Þ2�=4: ð13Þ

Thus, the solution to the affine problem (six initial equa-
tions in system (7)) is such that the couple (tZ, XZ) belongs
to the circle C of Eq. (11) and of radius R (positive) within
the plane (tZXZ). Reciprocally, any couple (tZ, XZ) of the
circle C defines one solution to the affine problem, yielding
the tilt direction, and the direction of frontal translation
(Annex A).

To summarize, the affine flow yields an infinite number
of solutions for the 3D motion and tilt, the tilt being fully
determined by the choice of the 3D motion, and vice versa.
The slant value remains totally undetermined.

4.1.3. Orthographic projection

Many authors have used the orthographic projection
as an approximation to small field perspective projection
(Domini & Braunstein, 1998; Domini & Caudek, 1999;
Todd & Perotti, 1999; Todd & Norman, 1991). Note
that this approximation does not hold for translations
in depth, even in small field, because such motion creates
no optic flow in orthographic projection, whereas it
yields an image expansion or contraction in perspective
projection.

Under orthographic projection, the coordinates (u, v) of
the image velocity are

u ¼ T X þ XY =p0 � ðXY � px=p0Þ � x� ðXY � py=p0 þ XZÞ � y;
v ¼ T Y � XX=p0 þ ðXX � px=p0 þ XZÞ � xþ ðXX � py=p0Þ � y

ð14Þ

These equations describe an affine flow which is equiva-
lent to the affine part of the perspective flow (6), character-
ized by coefficients a1 to a6, where the unknowns (TX, TY,
XX, XY) are replaced by (XY/p0, �XX/p0, �TY, TX), and
where tZ = TZÆp0 is replaced by 0. Applying the reasoning
used for the affine flow, a single point at tZ = 0 is chosen
on the circle, leading to the uniquely determined true tilt
direction, up to a 180� reflection. Note that tZ remains
actually undetermined.

4.1.4. Summary

Table 3 summarizes the number of solutions for the
plane orientation, for each projection. Each item of the
triplets corresponds to the cases W = 0�, 0� < W < 90�,
W = 90�, respectively.
4.2. Comparison of the different approaches with our results

First, we note that the second-order terms of the full
flow are of the same magnitude as the first terms in LF,
but much smaller in SF (Annex B). Fig. 11 illustrates the
patterns of optic flow for W = 0� and W = 90�, in SF
and LF. Each condition (SF or LF) is associated with a sin-
gle scale for the representations of all optic flows (first-or-
der, second-order, and full flow, for W = 0� and W = 90�).
These 2 scales are such that the first-order flow is represent-
ed by equal arrows in LF and SF (4 top graphs). Note that
the first-order flow pattern is similar in SF and LF. It is a
pure compression for W = 0�, and a pure shear for
W = 90�. Compared to the first-order flow, the magnitude
of the second-order flow is small in SF but not in LF. Note
that this second-order flow specifies in a unique way the
direction of the 3D rotation, with an elongation of the
approaching stimulus left side, and compression of the
receding stimulus right side. This pattern is independent
of W. As the sum of the first-order and second-order flows,
the full flows differ radically in SF and LF.

In order to discuss our results, we distinguish three ref-
erence directions, namely the stimulus tilt ss, the direction
of frontal translation Tf, and their bisector B. The distribu-
tions of reported tilt tend to be centered

on ss in LF,
on ss and �ss in SF when W approaches 0�,
on a vector Bs located between B and ss for

0� < W < 90� in SF, and its opposite �Bs,
on ss and Tf for W = 90� in SF, and their opposite �ss

and �Tf.

4.2.1. Large-field

In LF, the first and second-order optic flow components
are of similar magnitude. Therefore, the full set of
unknowns can be recovered from system (7), up to the
(n, t) ambiguity, which predicts that t should be an alterna-
tive solution for the perceived tilt in the case W > 0�. How-
ever, in our experiments, the plane has a 3D translation of
coordinates (TX, TY, 0) (Annex B), which implies that the
spurious perceived orientation n 0 should be frontoparallel,
and thus associated with a perceived slant of 90�. Such a
case can easily be discarded, because the plane would then
appear as a single line. In addition, a slant close to 90� is



Fig. 11. Illustration of the difference in the optic flow for the SF (left graphs) and LF (right graphs) conditions, for a plane slanted in depth, rotating about
a vertical axis. The tilt is horizontal for W = 0�, and vertical for W = 90�. Upper row: first-order component of the optic flow; middle row: second-order
component of the optic flow; bottom row: full flow (sum of the 2 previous components). A single scale value has been used for the left graphs (SF), and for
the right graphs (LF), respectively, so that the first-order flow are represented with similar arrows in the 2 conditions. The width and height of each graph
are 8� for SF, and 60� for LF.
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usually accompanied with strong texture gradients, blur
gradients, or variations in other static depth cues, in nor-
mal vision conditions. By contrast, in our stimuli, dot den-
sity and blur are uniform within the display plane, which
might lead the subjects to discard the 90� slant solution.
Indeed, the results that we obtain in large field support
the view that the subjects discard the case of a 90� slant,
and report only the true stimulus tilt. Hence, our results
in large field are well predicted by the perspective full flow
model, where the solution r = 90� is discarded

4.2.2. Small field

In SF, the presence of a large proportion of tilt reversals
support the validity of either the affine, or the orthographic
scheme. The fact that the perceived tilt departs strongly
from the stimulus tilt in certain configurations argues
against the use of the orthographic scheme.

As far as the affine scheme is concerned, its validity is
supported by the weakness of the second-order flow, rela-
tive to the first-order components (Annex B). However,
the percentage of tilt reversals is only 35% in Experiment
2, which is well below the 50% predicted by a pure affine
scheme. Therefore, we conclude that at 8� width, the sec-
ond order terms A and B are used by our trained observers
to lift partly the ambiguity on the tilt sign.

We can also observe that the magnitude of the second-
order flow increases with the speed of the 3D motion
(Annex B), but not with the slant. Since the speed of the
3D rotation is itself positively correlated with the image
dot speed (Table 1), we deduce that the reliability of the
second-order derivatives should increase with dot speed,
but not with slant, which agrees with our results. Hence,
this supports the view that the major difference between
our LF and SF stimuli is that the former contains a more
reliable second-order flow information.

Independently from the 180� ambiguity on the perceived
tilt, let us examine if the affine scheme accounts for our psy-
chophysical results in SF. First, let us note that, without
any additional constraint, it predicts an infinite number
of solutions, whereas the subjects’ responses clearly indi-
cate a single perceived tilt direction for W < 90�, and a two-
fold ambiguity (although not always verified at the
individual level) for W = 90�. In order to account for our
psychophysical results, we consider here the association
of the affine scheme with 3 possible constraints.

4.2.2.1. c1. The tZ/XZ constraint. A first possibility is that
the visual system uses the affine scheme in association with
a hypothesis on tZ or XZ within the circular constraint
described above. The couple (tZ, XZ) (on the circle C) asso-
ciated with the perceived tilt value would then satisfy a spe-
cific assumption. In the plane (tZ, XZ), Fig. 12 plots the
circle C for the different values of W (recall that, in our
experiment, we have tZ = XZ = 0, which means that circle
C passes through the origin). On circle C, the grey dot indi-
cates the couples (tZ

p, XZ
p) associated with the mean report-

ed tilt in Experiment 2, in small field. It appears that a
hypothesis ‘tZ minimum’ accounts for the mean perceived



Fig. 12. Representation of the mean perceived tilt within the (tZ XZ) plane, within the affine flow approach. For each value of the angle W, for our
experimental motion parameters, the grey dot indicates the position of the point of coordinates (tZ XZ) which corresponds to the mean reported tilt in the
grouped responses (corrected for the 180� ambiguity) in experiment 2 in small field.
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tilt when W = 0� to 67.5�, because the point (tZ
p, XZ

pÞ tends
to satisfy this constraint. Indeed, a perceived tilt located
exactly at the bisector of the tilt and frontal translation cor-
responds to the couple (tZ, XZ) of C, such that tZ has the
minimum (most negative) possible value on the circle.
However, when W = 90�, the 2 values of the reported tilt
(which are close to s and Tf) correspond to a split between
the 2 corresponding couples (tZ

p, XZ
pÞ. One lies at

tZ
p ¼ XZ

p ¼ 0 (the true stimulus parameters), the other at
tZ

p ¼ 0 and XZ
p > 0.

Therefore, the affine scheme associated with the hypoth-
esis ‘tZ minimum’ explains our results for W <= 67.5�, but
not for W = 90�. The sudden split of the perceived tilt into
2 distinct directions at W = 90� casts doubt on the validity
of a constraint in tZ or XZ, associated to the affine scheme.
A conclusion of this approach is also that the 3D motion
associated to the perceived tilt in SF involve non-zero val-
ues of tZ and XZ for W < 90�, and a non-zero value of XZ

for W = 90�.

4.2.2.2. c2. The stationarity hypothesis. Wexler et al. (2001)
proposed that, in presence of an ambiguity on the 3D
object shape, the visual system favors the solution that
Fig. 13. Within the affine scheme, the motion energy ES (see text) is represen
bottom superimposed curves) and 5� (upper curve). From left to right, W = 0
corresponds to the most stationary object in the 3D space.
Do our observed tilt responses in small field correspond to
the minimum 3D motion of the plane dots, among the solu-
tions of the affine problem?

For each possible solution S to the 3D affine problem
(S comprises a tilt value and a 3D motion), we call jUSj
the norm of the 3D velocity of the object points, located
on the plane PS defined by S. The motion energy is
defined as ES = R jUSj, where the summation is carried
over all image points. Annex C details the steps required
to calculate for each image point the corresponding 3D
coordinates of the object point on PS, and to deduce its
3D velocity US.

The stationarity hypothesis requires to find the solution
S corresponding to the minimum of the function ES.
Fig. 13 presents the variations of ES with the possible tilt
direction sp, for the 5 values of W used in Experiment 2.
The upper and lower curves are obtained for slant values
of 5� and 85� (continuous lines). The curves obtained for
a 25� slant are also drawn (dotted line), but are hardly dis-
criminable from the 85� slant curves. For each stimulus
configuration described by the angle W, the dashed vertical
lines indicate the stimulus tilt s (left) and the frontal
ted as a function of the possible tilt direction, for slants 25� and 85� (two
�, 22.5�, 45�, 67.5�, and 90�.
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translation Tf (right), the abscissa zero representing the
bisector B. We observe that

(1) ES(sp) tends to decrease as the slant increases from 5�
to 25�, and then is relatively stationary between slants
25� and 85�

(2) whatever the slant value, the curves present 2 relative
minima in s and Tf.

The first conclusion indicates that the variations of ES

with slant are very weak, and that a process of finding
the minimum of ES would leave slant poorly determined.
The second conclusion leads to predict a s/Tf ambiguity
in the general case, which differs from the s/Tf ambiguity
existing in the full-flow modeling. The latter approach
yields a 90� slant for the spurious solution Tf (see section
‘‘large field’’ above). On the opposite, the value of the slant
remains poorly determined for the present scheme, and the
slant values corresponding to the 2 minima of function ES

at s and Tf are similar.
Therefore, from a purely theoretical point of view, the sta-

tionarity hypothesis predicts a 2 peak (s and Tf) distribution
for the tilt responses. However, a computational process for
finding the minimum of the function ES(sp) in the presence of
noise might lead to a distribution centered on a direction Bs

close to B for W = 0 to 67.5�. Indeed, in this case, ES is small-
er inside the angular interval [s, Tf] than outside this interval.
This means that, if the probability to choose a value of the tilt
was inversely related to ES, the directions located inside [s,
Tf] would be chosen more often than those outside this inter-
val. For W = 90�, the directions located inside and outside [s,
Tf] would have the same probability to be selected. There-
fore, the stationarity hypothesis gives some qualitative
account of the fact that our observed response distributions
are centered near B for W < 90�, and present 2 peaks at s and
Tf for W = 90�.

Also, we observe that the slope of the ES curves decreas-
es as W increases. This implies that a process of finding the
minimum of the ES curves would be more sensitive to noise
for large W values, which could explain the corresponding
increased variability of the tilt responses.

5. Discussion

5.1. The psychophysics of tilt perception from motion

Our results confirm the strong influence of field size and
winding angle W on the ability to report the tilt of a
Table 4
Average absolute tilt error in this study, and in Cornilleau-Pérès et al. (2002)

Average absolute tilt error (deg) Small field

W1

Our results r = 35� 13.8
Cornilleau-Pérès et al. (2002) r = 30� 11

r = 45� 13

W1: W = 0�–30�, W2: W = 30�–60�, W3: W = 60�–90�.
moving plane. They are in good quantitative agreement
with a previous study (Cornilleau-Pérès et al., 2002),
despite a large difference in number of views displayed
(72 in their study, 2 in ours), in terms of the average error
in the tilt reports (Table 4).

Our results also agree with those obtained by Domini
and Caudek (1999) in spite of the difference in number of
views (5–83 in their studies). The tilt reports found by these
authors show a mean error that can be estimated at around
10�–15� from their Fig. 12. This is smaller, for similar con-
ditions (small-field, all W confounded) than the mean of
25� that we find in Experiment 2. This could be due to
the choice of the direction of the rotation, which is random
in our experiment, and fixed in theirs. In the latter case the
tilt perception might be improved by an a priori knowledge
(built up during experimental sessions) of the motion
direction.

Using dihedral angles seen under orthographic projec-
tion, Todd and Perotti (1999) find errors of a few degrees
in tilt reports, which are much lower than our observed tilt
errors. Again, the use of a single motion direction in their
experiment can be a factor, as well as he difference in the
number of views (2 in ours and 24 in theirs). Also, these
authors use a static stereoscopic view of a plane as a refer-
ence to record subjects’ responses, which can itself convey
hidden anisotropies of tilt perception (stereoscopy is equiv-
alent to a motion configuration, where one view is obtained
from the other by a global rotation in depth of the visual
scene, involving a horizontal frontoparallel translation).

As compared to these previous studies, we do not only
measure the performance in tilt reports, but we also ana-
lyze in details the shape of the response distribution. Our
previous results (Cornilleau-Pérès et al., 2002) strongly sug-
gest that our current two-view results also apply to multi-
ple-view sequences.

In our experiments, the amplitude of the tilt variation
during the motion increases with W. Could this cause the
increase in the tilt error with W? As stated in the methods,
the tilt direction is fixed for W = 0�. For W = 90�, it oscil-
lates with an amplitude of ±1.5� in Experiment 1, and
±2.62� in average in Experiment 2 (maximum ±6.64�).
For large-field stimuli, this increase is comparable to the
growing of the absolute tilt error from 8� at W = 0�, to
10–15� at W = 90� (Fig. 4). On the opposite, for small field
stimuli, the tilt error increases by 12� to 35�–45� when W

increases from 0� to 90�, which is a much larger effect than
the increase of the tilt motion during a single trial. Also, the
analysis of the response distributions indicates systematic
results

Large field

W2 W3 W1 W2 W3

23.7 40.41 10.7 14.7 14.53
19.5 45 12 17 23
19 34 9 12.5 16
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changes in the pattern of tilt reports with W in small field,
which are not simply quantitative. We conclude that the
larger tilt oscillations, which occur during trials of large
W values, do not account for the increase of the tilt error
with W in small field.

When W = 0�, the first-order optic flow is a pure com-
pression (a variation of the image velocity u along itself,
represented by the term a2 in (B3)). For W = 90�, it is a
pure shear (a variation of the image velocity u along the
orthogonal to u, represented by the term a3 in (B3)). The
visual sensitivity to compression and shear differ (e.g.,
Nakayama, Silverman, MacLeod, & Mulligan, 1985), and
the perceived slant increases with the shear component
(Domini & Caudek, 1999, fig. 18). A simple strategy for
detecting the tilt direction in our stimuli would be to indi-
cate the vector of coordinates (compression, shear). Our
results demonstrate that this strategy is not applied,
because when W = 90� in small field, the subjects report
either the true stimulus tilt parallel to the vector (compres-
sion, shear) with compression=0, but also the orthogonal
direction (shear, compression). Therefore, a simple 2D
scheme based on the detection of compression and shear
is unlikely here.

The subjects’ verbal reports indicate that the planes
tended to be perceived as slightly curved (generally convex)
surfaces, in both experiments in LF conditions. This is not
a surprise, as our study on the estimation of surface curva-
ture in LF demonstrates an offset of the reported curvature
toward convexity for motion parallax (Cornilleau-Pérès,
Tai, Cheong, & Droulez, 2005). In conditions similar to
the present LF case, a concave curvature of about 0.05 to
0.09/m was perceived as zero, corresponding to a radius
of 10 to 20 m for a surface tangent to a point located
1.2 m from the observer. Therefore this effect remains rela-
tively weak. We do not know whether it interacts with tilt
perception here, but the interesting point is that curvature
perception is likely to involve the processing of second-or-
der derivatives of the optic flow, which questions the inter-
actions between curvature and orientation in 3D space
perception. Pilot results showed similar tilt response distri-
butions for a plane and for a curved surface in small-field.
Thus, orientation and curvature could possibly be pro-
cessed separately from the optic flow, which opens new per-
spectives for adapting our theoretical interpretation to the
case of curved surfaces.

5.2. The roles of dot speed and rotation amplitude

In our experiments, the average dot speed is faster in
large field than in small field. This is due to our choice of
keeping the 3D parameters (3D rotation amplitude and
slant) identical in the SF and LF conditions. Since tilt accu-
racy improves with dot speed (within our Experiment 2),
the question arises whether this factor explains the better
accuracy observed in LF, as compared to SF.

Several arguments suggest that this is not the case. First,
the strong influence of W observed in SF but not in LF,
indicates that dot speed (which is independent of W) is
not the only key factor here. Second, our computational
analysis shows that the first-order flow conveys ambiguous
tilt information, and that the second-order flow disambig-
uates the tilt sign and direction. For a rotation in depth, the
second-order derivative of the flow is proportional to the
rotation amplitude Ra (up to a tangent transform, see
Annex B). The influence of this factor per se (i.e., indepen-
dently of dot speed) is supported by the fact that Ra, con-
tributes to the decrease of the tilt error in experiment 2, in
SF. The fact that we observe an intermediate ratio of tilt
reversals in SF (35% in Experiment 2) and no such tilt
reversals in LF indicates that the values of the second-order
flow are close to detection threshold in SF, and well above
threshold in LF. Finally, it should be noted (from Annex
B) that the maximum dot speed, as proportional to the
radius of the field of view, increases by about 10 times from
SF to LF. The corresponding factor is 68 for the second-or-
der flow, because it increases with the square of the field
radius. Taken together, these arguments support the
hypothesis that dot speed and Ra both account for the bet-
ter performance in large-field.

The definitive quantitative comparison between the roles
of dot speed and second-order flow, as differentiating the
SF and LF tilt perception, would request the independent
manipulation of the first and second order flow compo-
nents, through the use of false perspective ratios (for
instance stimuli calculated in parallel projection involve a
zero second-order flow, and can be presented in LF). This
was out of the scope of the present study, where we use the
natural perspective projection in all conditions. Yet, the
results of some pilot experiments confirmed that the tilt
direction could be unambiguously perceived for W = 90�
in SF when the simulated viewing distance was artificially
shortened, without increasing the average dot speed.

5.3. Relationship with the modeling of optic flow

The results in large field are well predicted by the second-
order full flow modeling with an additional constraint on the
slant (the slant should not approach 90�). However, as stated
above, the increase of the variability of the responses with W

could have a theoretical origin, or could be merely the conse-
quence of the tilt oscillation during the plane motion.

In small field, the second-order image velocity is much
smaller than the first-order flow. However, the fact that
35% (rather than 50%) errors on the tilt sign occur for
the small field configuration suggests a partial use of the
second-order derivatives in this case. This is in agreement
with Dijkstra et al. (1995) who find that the curvature sign
is reported above chance level in 8� stimuli.

Hence, a major conclusion of our study is that the sec-

ond-order flow is used in all circumstances, but its low quan-
titative reliability in some cases leads to the use of the affine
flow approximation by the visual system. Using the affine
flow does not appear as an a priori hypothesis, but rather
as an approximation for the small field situation, when
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the second-order components are not reliable. This sup-
ports the view that the 3D percept depends on the robust-
ness of the input signals, such as the second-order
derivatives of the optic flow, an idea advocated by Eagle
and Blake (1995). It is also favored by studies on slant per-
ception indicating that the accuracy in slant reports
improves as the second-order flow increases in small-field
(Cornilleau-Pérès et al., 2000). Finally, a processing of
the second-order flow in SF is indicated by experiments
on the perception of surface curvature in small field (Corn-
illeau-Pérès & Droulez, 1989; Norman & Lappin, 1992).

The restriction of the optic flow analysis to its first
order terms predicts no specific direction of the per-
ceived tilt. It has to be associated to an additional con-
straint, or a priori hypothesis, to lead to a unique, or
twofold percept. Among the different constraints associ-
ated to the affine flow approximation and tested above,
the stationarity hypothesis seems to be the most prom-
ising account of the tilt response distributions in small-
field. Note that van Boxtel et al. (2003) fail to account
for the increase in tilt errors with W through the sta-
tionarity hypothesis. They find that the average 3D dis-
placement of the object points does not depend on W,
which is in agreement with our calculus (the minimum
of the curve ES at sS does not depend on W in
Fig. 13). We add to their approach the description of
the variations of ES with the possible tilt s of the plane.
These variations depend strongly on W, which is, to
some extent, compatible with the observed tilt response
distributions.

However, the analysis presented gives only a preliminary
support of the affine/stationarity scheme for the perception
of tilt in small field. A complete demonstration of its valid-
ity would first request the use of stimuli producing to a
pure affine flow (by using a smaller stimulus size, or a sim-
ulated smaller perspective angle in the stimulus genera-
tion), so as to exclude the possible use of the second-
order flow, even with a coarse precision. Also, possible pro-
cesses mediating the choice of the tilt value corresponding
to the minimum of the function ES have to be modeled and
simulated on noisy data.

In this regard, our results indicate that the previous
theoretical approaches of the computation of tilt from
motion (e.g., Longuet-Higgins, 1984) have to be quanti-
tatively simulated and studied in terms of their robust-
ness to noise, so as to gain biological relevance. In
parallel, some artificial vision studies have contributed
to this question. For instance the recovery of the motion
and structure parameters tends to have a maximal sensi-
tivity to image noise when the 3D translation is parallel
to N (Tsai & Huang, 1984; Daniilidis & Nagel, 1993),
which supports the view that tilt estimates should lose
accuracy when W increases.

It is of interest to note that different types of 3D
motion are theoretically associated with different per-
ceived tilt, for each W value in small field, within the
affine scheme. For instance, at W = 90�, a perceived tilt
equal to the true tilt corresponds to a zero sagittal rota-
tion XZ, whereas this component is not zero when the
perceived tilt is parallel to the frontal translation (parag.
c1 above). This suggests that the subjects might not per-
ceive a unique type of 3D motion throughout the exper-
imental sessions, namely a pure rotation in depth, but
that other types of motion (rotations about the sagittal
axis) can be perceived also. A further testing of our
approach could involve a measurement of the perceived
plane motion.

5.4. General conclusion

We find a strong influence of the field size and motion/ori-
entation configuration (through the angle W between the
plane normal and the frontal translation) on tilt perception.
Our results support the relevance of the full flow approach in
wide-field. In small field the second-order image velocity
seems to be used to some extent. Yet, it is quantitatively inac-
curate in that case, and the affine flow approach is relevant to
explain the observed tilt ambiguities. The examination of dif-
ferent possible constraints associated with the affine flow
analysis point to the need for further simulations of the sta-
tionarity hypothesis in small-field.

Acknowledgments

We thank TK Wong for helping in the software writing.
This study was supported by Singapore Polytechnic (Tote-
board funding), by the Singapore Eye Research Institute
(Grant pg/98-05/00012), and by NUS (grant ‘‘Dynamic Vi-
sion and the Perception of the 3D space’’). A part of our
results have been presented in conferences (Zhong, Cornil-
leau-Pérès, Cheong, & Droulez, 2000; Zhong, Cornilleau-
Pérès, Cheong, Yeow, & Droulez, 2001).

Appendix A. Relationship between the tilt direction and the

3D motion parameters in the affine scheme

We consider the case where the optic flow is approxi-
mated by its affine part as in Eq. (8). The notations of Sec-
tion 2 (TX, px etc. . .) characterize the true stimulus
parameters. The same variables carrying a’ typify the solu-
tion that is looked for. For instance, s 0 is the tilt value to be
determined among the solutions.

We define h as the angle between the frontal translation
and the axis X, within the frontoparallel plane:
T X ¼ t � cos h, and T Y ¼ t � sin h,

Similarly, we have: T 0X ¼ t0 � cos h0, and T 0Y ¼ t0 � sin h0

We also write tZ = TZÆp0, and t0Z ¼ T 0Z � p00.
In the affine scheme, we solve the first 6 equations of

system (7). However, we do not consider the equations in
a1 and a4, because they are linear in the 2 unknowns X0X
and X0Y , which do not appear in the 4 other equations.
Hence, X0X and X0Y can be calculated in a final stage,
from the other variables, and from the observables a1

and a4.
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We are left with the system:

a2 ¼T 0X � p0x � t0Z ; ðA:1Þ
a3 ¼T 0X � p0y � X0Z ; ðA:2Þ

a5 ¼T 0Y � p0x þ X0Z ; ðA:3Þ
a6 ¼T 0Y � p0y � t0Z ; ðA:4Þ

which has 6 unknowns: (T 0X , T 0Y , p0X , p0Y , t0Z , X0Z). From 4.1.2,
if the couple (t0Z , X0Z) is a solution to that system, then the
point of coordinates (t0Z , X0Z) lies on the circle C of Eq. (11).

Let us show that, to each couple (t0Z , X0Z) on the circle C,
there corresponds a set of solutions (T 0X , T 0Y , p0X , p0Y ), where
s 0 and h 0 are uniquely determined.

The system above is equivalent to:

t0 � tgr0 � cosðh0 þ s0Þ ¼a6 � a2; ðA:5Þ
t0 � tgr0 � sinðh0 þ s0Þ ¼ � a3 � a5; ðA:6Þ
t0 � tgr0 � cosðh0 � s0Þ ¼ � a2 � a6 � 2 � t0Z ; ðA:7Þ
t0 � tgr0 � sinðh0 � s0Þ ¼a3 � a5 þ 2 � X0Z : ðA:8Þ

The first 2 equations imply that

t0 � tgr0 ¼ p½ða2 � a6Þ2 þ ða3 þ a5Þ2�: ðA:9Þ
Hence, tÆtgr is an invariant of the optic flow (it is fully

specified by the observables). It is also equal to 2ÆR, where
R is the radius on the circle C (see 4.1.2).

It follows that Eqs. (A5) and (A6) determine uniquely
(up to 360�) the angle h 0 + s 0 by

cosðh0 þ s0Þ ¼ � ða2 � a6Þ=ð2 � RÞ; ðA:10Þ
sinðh0 þ s0Þ ¼ � ða3 þ a5Þ=ð2 � RÞ: ðA:11Þ

Hence, the angle h 0 + s 0 is another invariant of the affine
flow.

Analogously, for a given couple (t0Z , X0Z) on circle C, Eqs.
(A7) and (A8) lead to specify uniquely the angle h 0 � s 0.
From h 0 + s 0 and h 0 � s 0, we can deduce h 0 and s 0, up to
180� each. Therefore, each couple (t0Z , X0Z) on C corre-
sponds to 2 couples (h 0, s 0), and (h 0 + 180�, s 0 + 180�), solu-
tions to the affine problem. In turn, those couples allow to
determine the 3D motion (h 0 gives T 0X and T 0Y , and equa-
tions in a1 and a4 give X0X and X0Y ) up to a scaling factor.
The unknowns t 0 and tgr 0 are undetermined, and are relat-
ed by Eq. (A9).

Reciprocally, if s 0 is known, then h 0 is known, because
the sum h 0 + s 0 can be calculated from (A5) and (A6).
Then, Eqs. (A7) and (A8) determine uniquely the couple
(t0Z , X0Z).

In conclusion, for a given affine flow, choosing the cou-
ple (t0Z , X0Z) is on the circle C is equivalent to determining
the value of the tilt (up to a 180� ambiguity), and vice versa.

Appendix B. Application of the affine perspective scheme to

our experimental parameters

We use the notations of Section 2. The 3D velocity of an
object point with coordinates (X Y Z) is
U ¼ T X þ XY � Z � XZ � Y ;
V ¼ T Y þ XZ � X � XX � Z;
W ¼ T Z þ XX � Y � XY � X :

ðB:1Þ

In our experimental conditions, the 3D motion is a rota-
tion around a frontoparallel axis, with no rotation around
the Z-axis (XZ = 0).The rotation axis passes through the
point (0 0 Z0) (see methods), which is stationary in space
(U = V = W = 0). This implies that

T X ¼ �XY � Z0;

T Y ¼ XX � Z0;

T Z ¼ 0

ðB:2Þ

We can hypothesize, with no loss of generality, that the
axis X is parallel to the translation, which implies that
TY = 0, and XX = 0. We also have XY = tan(Ra), where
Ra is the 3D rotation amplitude.

From system (7), the optic flow coefficients are then:

a1 ¼ a4 ¼ a5 ¼ a6 ¼ B ¼ 0;

a2 ¼ T X � px;

a3 ¼ T X � py ;

A ¼ �p0 � T X

ðB:3Þ

Note that the second-order coefficient A is equal to
�p0ÆTX, which in turn is equal to XY (from B2). This shows
that, in our experiment, the second-order flow is directly
proportional to tan(Ra).

In system (6), the first order flow in Y (affine part of v) is
null, and the first order flow in X is

u1 ¼ T X � ðpx � xþ py � yÞ: ðB:4Þ

From Eqs. (2) and (4), this yields

u1 ¼ �T X � p0 � tgrðcos s � xþ sin s � yÞ: ðB:5Þ
In polar image coordinates e; f, we have: x ¼ e � cos f

and y ¼ e � sin f, which leads to

u1 ¼ �p0 � T X � e � tgr � cosðs� fÞ: ðB:6Þ

Hence, the maximum absolute value of u1 over the stim-
ulus is obtained for f = s, at the maximum image eccentric-
ity e = em. This maximum value is:

u1m ¼ jp0 � T X � em � tgrj: ðB:7Þ
Let us now consider the second order flow. Its values in

the u and v components are, respectively:

u2 ¼ A � x2 þ B � x � y ¼ XY � x2 � XX � x � y ¼ �p0 � T X � e2 � cos2 f

v2 ¼ A � x � y þ B � y2 ¼ XY � x � y þ XX � y2 ¼ �p0 � T X � e2 � cos f � sin f

�

ðB:8Þ

Therefore, the maximum absolute value of the 2nd order
flow is reached by u2 and is equal to

u2m ¼ jp0 � T X � e2
mj: ðB:9Þ

It follows that if tgr� em, then u1m� u2m.
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If a is half the viewing angle, we have em = tga. Then,
comparing u1m and u2m is equivalent to comparing tgr
and tga. With our experimental parameters:

• tga is 0.07 and 0.58 in small field and large field,
respectively,
• tgr is 0.7 in experiment 1, and 0.32 to 0.7 in Experi-
ment 2.

Hence, u1m is 4.6 to 10 times higher than u2m, in our
small field stimuli, which leads us to regard the affine per-
spective scheme as valid in that case. In large-field, on the
contrary, u1m and u2m are of comparable magnitude.

Appendix C. Computation of the motion energy ES

Let us consider a solution S of the affine scheme, given
by a tilt s 0, a slant r 0, a 3D rotation (X0X , X0Y , X0Z) and a 3D
translation (t0X , t0Y , t0Z) with t0X ¼ t0 � cos h0, and t0Y ¼ t0 � sin h0,
defined up to a scale factor. We show here that the 3D
velocity US of the plane points can be written as a function
of s 0 and r 0 only.

Given the affine flow, through coefficients a1 to a6 in sys-
tem (7), we can calculate the constant R from (13), and the
angle u = h 0 + s 0 from (A10) and (A11)

R � cos u ¼ ða6 � a2Þ=2;

R � sin u ¼ �ða3 þ a5Þ=2:

Given the tilt direction s 0 and slant r 0, Eqs. (A7) and (A8)
lead to:

t0Z ¼ R � cosðu� 2 � s0Þ � ða2 þ a6Þ=2;

X0Z ¼ R � sinðu� 2 � s0Þ þ ða5 � a3Þ=2:

Because t 0Æ tgr 0 = 2ÆR (Annex A), we have t 0 = R/tgr 0. If
h 0 is the angle of the frontoparallel translation, we have

t0x ¼ t0 � cos h0 ¼ R � cosðu� s0Þ=tgr0;

t0y ¼ t0 � sin h0 ¼ R � sinðu� s0Þ=tgr0:

Finally, the equations in a1 and a4 of system (7) lead to

X0Y ¼ a1 � t0x;

X0X ¼ �a4 þ t0y :

Assuming that the distance Z0 is 1 (in any case, this dis-
tance is completely undetermined in the problem of com-
puting the 3D structure and motion from the optical
flow), the 3D translation (T 0X , T 0Y , T 0Z) is equal to the scaled
translation (t0x, t0y , t0z).

Therefore, within the affine scheme, the full 3D solution
S can be expressed as a function of s 0 and r 0.

From the tilt s 0 and slant r 0, we can also calculate the
3D coordinate (X, Y, Z) for each image point of 2D coor-
dinate (x, y) with the equations of parag. 1

Z ¼ ð1� x � tgr0 cos s0 � y � tgr0 sin s0Þ�1 and

X ¼ x � Z and Y ¼ y � Z:
The 3D motion components and the coordinates (X, Y,
Z) can then be used to compute the 3D velocity US in each
image point for the solution S:

U 0 ¼ T 0X þ X0Y � Z � X0Z � Y ;
V 0 ¼ T 0Y þ X0Z � X � X0X � Z;
W 0 ¼ T 0Z þ X0X � Y � X0Y � X ;

ðC:1Þ

which in turn determines the motion energy

ES ¼
XpðU 02 þ V 02 þ W 02Þ;

the sum being taken over all image points coordinates x

and y.

References

Beck, J., & Gibson, J. J. (1955). The relation of apparent shape to
apparent slant in the perception of objects. Journal of Experimental

Psychology, 50, 125–133.
Börjesson, E., & Lind, M. (1996). The effect of polar projection on the

perception of euclidean structure from motion. Perception & Psycho-

physics, 58, 871–882.
Braunstein, M. L. (1968). Motion and texture as sources of slant

information. Journal of Experimental Psychology, 78, 247–253.
Cornilleau-Pérès, V., & Droulez, J. (1989). Visual perception of

surface curvature: psychophysics of curvature detection
induced by motion parallax. Perception & Psychophysics, 46,
351–364.

Cornilleau-Pérès, V., & Gielen, C. C. A. M. (1996). The interactions
between self-motion and depth perception in the processing of optic
flow. Trends in Neurosciences, 19, 196–202.

Cornilleau-Pérès, V., Tai, L.C., Cheong, L.F., & Droulez, J. (2005).
Visual distortions of the 3D visual space induced by motion
parallax. Conference of the International Association for
Mathematics and Computers in Simulations (IMACS), Paris,
T4-I-88-0309.

Cornilleau-Pérès, V., Wexler, M., Droulez, J., Marin, E., Miège, C., &
Bourdoncle, B. (2002). Visual perception of planar orientation:
dominance of static depth cues over motion cues. Vision Research,

42, 1403–1412.
Cornilleau-Pérès, V., Wong, T. K., Cheong, L. F., & Droulez, J. (2000).

Visual perception of slant from optic flow under orthographic
projection and perspective projection. Investigative Ophtalmology &

Visual Sciences, 41, 3820.
Daniilidis, K., & Nagel, H.-H. (1993). The coupling of rotation and

translation in motion estimation of planar surfaces. IEEE Confer-
ence On Computer Vision and Pattern Recognition, New York,188–
193.

Dijkerman, H. C., Milner, A. D., & Carey, D. P. (1996). The
perception and prehension of objects oriented in the depth plane. I.
Effects of visual form agnosia. Experimental Brain Research, 112,
442–451.

Dijkstra, T. M. G., Cornilleau-Pérès, V., Gielen, C. C. A. M., & Droulez,
J. (1995). Perception of three-dimensional shape from ego-and object-
motion: comparison between small- and large-field stimuli. Vision

Research, 35(4), 453–462.
Domini, F., & Braunstein, M. L. (1998). Recovery of 3D structure from

motion is neither euclidean nor affine. Journal of Experimental

Psychology, 24, 1273–1295.
Domini, F., & Caudek, C. (1999). Perceiving surface slant from

deformation of optic flow. Journal of Experimental Psychology, 25,
426–444.

Droulez, J., & Cornilleau-Pérès, V. (1990). Visual perception of surface
curvature. The spin variation and its physiological implications.
Biological Cybernetics, 62, 211–224.



H. Zhong et al. / Vision Research 46 (2006) 3494–3513 3513
Eagle, R. A., & Blake, A. (1995). Two-dimensional constraints on three-
dimensional structure from motion tasks. Vision Research, 35,
2927–2941.

Freeman, R. B. (1966). Absolute threshold for visual slant: the effect of
stimulus size and retinal perspective. Journal of Experimental Psychol-

ogy, 71, 170–176.
Freeman, T. C. A., Harris, M. G., & Meese, T. S. (1996). On the

relationship between deformation and perceived surface slant. Vision

Research, 36, 317–322.
Garding, J., Porrill, J., Mayhew, J. E. W., & Frisby, J. P. (1995).

Stereopsis, vertical disparity and relief transformations. Vision

Research, 5, 703–722.
Gibson, J. J., & Carel, W. (1952). Does motion perspective independently

produce the impression of a receding surface? Journal of Experimental

Psychology, 44, 16–18.
Hoffman, D. D. (1982). Inferring local surface orientation from motion

fields. Journal of the Optical Society of America, A72, 888–892.
Koenderink, J. J., & van Doorn, A. J. (1976). Local structure of

movement parallax of the plane. Journal of the Optical Society of

America, 66, 717–723.
Koenderink, J. J., & van Doorn, A. J. (1995). Relief: pictorial and

otherwise. Image and Vision Computing, 5, 321–334.
Lappe, M. (2000). Computational mechanisms for optic flow analysis in

primate cortex. International Review of Neurobiology, 44, 235–268.
Longuet-Higgins, H. C. (1984). The visual ambiguity of a moving plane.

Proceedings of the Royal Society of London B, 223, 165–175.
Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a

moving retinal image. Proceedings of the Royal Society of London B,

208, 385–397.
Marotta, J. J., Perrot, T. S., Nicolle, D., Servos, P., & Goodale, M. A.

(1995). Adapting to monocular vision : grasping with one eye.
Experimental Brain Research, 104, 107–114.

Nakayama, K., Silverman, G., MacLeod, D. I. A., & Mulligan, J. (1985).
Sensitivity to shearing and compressive motion in random dots.
Perception, 14, 225–238.
Norman, J. F., & Lappin, J. S. (1992). The detection of surface
curvatures defined by optical motion. Perception & Psychophysics,

51, 386–396.
Norman, J. F., Todd, J. T., & Phillips, F. (1995). The perception of surface

orientation from multiple sources of optical information. Perception &

Psychophysics, 57, 629–636.
Stevens, K. A. (1983). Surface tilt (the direction of slant): a neglected

psychophysical variable. Perception & Psychophysics, 33, 241–250.
Subbarao, M. (1988). Interpretation of visual motion: a computational

study. Series: research notes in artificial intelligence. London: Pitman.
Todd, J., & Perotti, V. (1999). The visual perception of surface orientation

from optical motion. Perception & Psychophysics, 61, 1577–1589.
Todd, J., & Norman, J. F. (1991). The visual perception of smoothly

curved surfaces from minimal apparent motion sequences. Perception

& Psychophysics, 50, 509–523.
Tsai, R. Y., & Huang, T. S. (1984). Uniqueness and estimation of three-

dimensional motion parameters of rigid objects with curved surfaces.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
13–27.

van Boxtel, J. J., Wexler, M., & Droulez, J. (2003). Perception of plane
orientation from self-generated and passively observed optic flow.
Journal of Vision, 3, 318–332.

Waxman, A. M., & Ullman, S. (1985). Surface structure and three-
dimensional motion from image flow kinematics. International Journal

of Robotics Research, 4, 72–94.
Wexler, M., Panerai, F., Lamouret, I., & Droulez, J. (2001). Self-motion

and the perception of stationary objects. Nature, 409, 85–88.
Zhong, H., Cornilleau-Pérès, V., Cheong, L.F., & Droulez, J. (2000).

Visual encoding of tilt from optic flow : psychophysics and compu-
tational modelling. Lecture Notes in Computer Sciences. Springer
Verlag. p800–816.

Zhong, H., Cornilleau-Pérès, V., Cheong, L. F., Yeow, M. G., & Droulez,
J. (2001). Tilt perception from optic flow in two-view stimuli. Vision
Sciences Society Annual Meeting. Journal of Vision, 1(3), 315
(abstract).


	The visual perception of plane tilt from motion in small field  and large field: Psychophysics and theory
	Introduction
	Geometrical preliminaries
	Psychophysics
	Experiment 1
	Methods
	Subjects
	Design

	Apparatus
	Stimuli
	Procedure
	Data analysis
	Results
	Verbal reports
	Effect of the field of view (FOV) on the reported tilt sign
	Effect of the FOV and W on the absolute tilt error
	Effect of the FOV and W on the mean reported tilt
	Effect of the FOV and W on the tilt response distributions


	Experiment 2
	Methods
	Participants
	Design
	Data analysis

	Results
	Effect of the field of view (FOV) on the reported tilt sign
	Effect of the variables on the absolute tilt error
	Effect of the variables on the response distributions
	Two-peak Laplace fittings of the response distributions
	Separation of the effects of dot speed and 3D rotation amplitude


	Conclusion

	Computational interpretation
	The optic flow equations and their solutions in the planar case
	Perspective projection and full flow
	Perspective projection and affine flow
	Orthographic projection
	Summary

	Comparison of the different approaches with our results
	Large-field
	Small field
	c1. The tZ/ Omega Z constraint
	c2. The stationarity hypothesis



	Discussion
	The psychophysics of tilt perception from motion
	The roles of dot speed and rotation amplitude
	Relationship with the modeling of optic flow
	General conclusion

	Acknowledgments
	Relationship between the tilt direction and the 3D motion parameters in the affine scheme
	Application of the affine perspective scheme to our experimental parameters
	Computation of the motion energy ES
	References


