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We study the stability of Einstein static Universe, with FLRW metric, by considering linear homogeneous 
perturbations in the kinetic coupled gravity. By taking linear homogeneous perturbations, we find that 
the stability of Einstein static Universe, in the kinetic coupled gravity with quadratic scalar field potential, 
for closed (K = 1) isotropic and homogeneous FLRW Universe depends on the coupling parameters κ
and ε. Specifically, for κ = L2

P and ε = 1 we find that the stability condition imposes the inequality 
a0 >

√
3L P on the initial size a0 of the closed Einstein static Universe before the inflation. Such inequality 

asserts that the initial size of the Einstein static Universe must be greater than the Planck length L P , 
in consistency with the quantum gravity and quantum cosmology requirements. In this way, we have 
determined the non-minimal coupling parameter κ in the context of Einstein static Universe. Such a very 
small parameter is favored in the inflationary models constructed in the kinetic coupled gravity. We have 
also studied the stability against the vector and tensor perturbations and discussed on the acceptable 
values of the equation of state parameter.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Inflationary scenario can address most of the problems in the 
standard cosmology, however, in spite of the interesting prosper-
ities of inflationary scenario, the existence of a big bang sin-
gularity at the beginning of Universe is the major problem of 
standard cosmology. In attempt to remove the initial singularity, 
several theories have been proposed to address this issue, such 
as the string/M-theory, the pre-big bang theory [1] and ekpy-
rotic/cyclic [2].

In the static closed Friedmann–Lemaître–Robertson–Walker 
model, the Einstein static Universe is one of the exact solutions 
of Einstein’s equations coupled to a perfect fluid and a cosmologi-
cal constant [3]. The stability conditions of Einstein static Universe 
have been widely studied in the literature indicating that this 
solution is not usually stable against the homogeneous perturba-
tions [4]. In addition, it has been shown that this solution has 
neutral stability against the adiabatic scalar inhomogeneities with 
high enough sound speed, as well as the small inhomogeneous 
vector and tensor perturbations [5]. Nevertheless, it was shown 
that the Einstein static Universe is unstable against Bianchi type-IX 
spatially homogeneous perturbations in the presence of perfect flu-
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ids with ρ+3P > 0 [6], and for various sources of matter fields [7]. 
Regardless of historical importance of the Einstein static Universe, 
the reiterated interest to this solution comes from the “Emergent 
Universe” scenario, an inflationary cosmological model in which 
Einstein static Universe plays an incisive role as an initial state.

In the context of general relativity, this model was proposed in 
2004 by Ellis et al. to solve the problem of initial singularity in the 
standard cosmological model [8]. Moreover, the Einstein static Uni-
verse has been discussed in several modified gravitational theories 
and quantum gravity models. Actually, when we are working with 
the modified cosmological equations, it is possible to find many 
new static solutions, essentially different from that of classical Ein-
stein static solution of GR, in which the stability properties depend 
on the details of the studied theory or family of theories taken into 
account. Basically, due to the existence of neutral stable solutions, 
the fine-tuning problem of cosmological constant is so improved. 
But, in fact a mechanism is needed to finish the phase of infi-
nite expansions and collapses, and to operate the expanding phase 
of the Universe [9]. Such a mechanism has been known as “infla-
tion” [10].

In the context of inflationary cosmology, the role of scalar field 
potential to establish an inflation is unavoidable. In general, the 
slowly varying potentials behave like a large effective cosmological
constant suitable for driving an inflation. The question that “Is it 
possible to recover the cosmological constant and the inflation-
ary phase “without” considering any effective potential” led some 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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authors to try for constructing an effective cosmological constant 
starting from extended gravity theories such as non-minimally 
coupled or higher order theories [11]. In [12], the author con-
sidered some types of coupling between curvature and the scalar 
field, called non-minimal derivative coupling. The authors in [13]
studied this kind of couplings and connected them with infla-
tion. Realistic cosmological scenario was introduced based on non-
minimal kinetic coupling and it was shown that at early Universe 
the domination of coupling term in the field equation predicts 
a quasi-de Sitter expansion [14]. In the background of cosmo-
logical scenarios, the non-minimal kinetic coupling gravity has 
been considered by choosing zero and constant potentials, for the 
quintessence and the phantom cases [15]. Also, in [15,16] the 
authors have considered some cosmological aspects of the non-
minimal kinetic coupling gravity such as Big Bang, an expanding 
Universe with no beginning, an eternally contracting Universe, a 
Big Crunch, a Big Rip avoidance and a cosmological bounce in 
the absence of the matter. In general, the scalar tensor theory of 
gravity with scalar field non-minimally coupled to gravity reveals 
interesting cosmological and astrophysical behaviors [17,18].

According to the above approach to the issue of inflation, it is 
interesting to study the Einstein static Universe in the inflationary 
Universe based on the non-minimal kinetic coupled gravity. We 
show that an asymptotically Einstein static Universe in such infla-
tionary Universe may result due to the terms in the field equations 
of the non-minimal kinetic coupled gravity. In fact, we find that at 
early Universe these terms could be dominating and the cosmolog-
ical evolution could have started around an Einstein static Universe 
with a size a0 >

√
3κ
ε , where κ and ε are coupling parameters 

(see below). We try to remove the initial singularity problem in 
the standard cosmological model by studying Einstein static Uni-
verse and its stability in the non-minimal kinetic coupled gravity 
theory. Actually, the stability of Einstein static state has been stud-
ied in various theories: in GR with a non-constant pressure [19], 
in brane world scenarios [20], in Einstein–Cartan gravity [21], in 
loop quantum cosmology [22], in f (R) gravity [23–25], in Gauss–
Bonnet gravity [26], in IR modified Hořava gravity [27], in massive 
gravity [28], and induced matter Brane Gravity [29].

This paper is organized as follows. In Section 2, we briefly re-
view the formalism of the kinetic coupled gravity theory, in par-
ticular the action and field equations. In Section 3, we present the 
modified Friedman equations within the kinetic coupled gravity. 
In Section 4, we consider linear homogeneous perturbations and 
study the stability of Einstein static Universe in the kinetic cou-
pled gravity. In Section 5, we study the stability against the vector 
and tensor perturbations. We summarize our results in Section 6.

2. Non-minimal kinetic coupling gravity

Let us consider a gravitational theory with non-minimal deriva-
tive coupling given by the action [30]

S =
∫

d4x
√−g

{
R

8π
− [

εgμν + κGμν

]
φ,μφ,ν − 2V (φ)

}

+ Sm, (1)

where Sm stands for the action of matter, V (φ) is a scalar field 
potential, Gμν is the Einstein tensor, ε takes the value +1 for the 
canonical field and −1 for the phantom one and κ is the coupling 
parameter with dimension of (length)2. Varying the action (1) with 
respect to gμν and φ gives the field equations, respectively:

Gμν = 8π
[
T (m)
μν + T (φ)

μν + κ�μν

]
, (2a)

[εgμν + κGμν ]∇μ∇νφ = V ′(φ), (2b)
where V ′(φ) ≡ dV (φ)/dφ, T (m)
μν is a stress-energy tensor of ordi-

nary matter, and

T (φ)
μν = ε[∇μφ∇νφ − 1

2 gμν(∇φ)2] − gμν V (φ), (3)

�μν = − 1
2 ∇μφ ∇νφ R + 2∇αφ ∇(μφRα

ν)

+ ∇αφ ∇βφ Rμανβ + ∇μ∇αφ ∇ν∇αφ

− ∇μ∇νφ�φ − 1
2 (∇φ)2Gμν

+ gμν

[ − 1
2 ∇α∇βφ ∇α∇βφ + 1

2 (�φ)2

− ∇αφ ∇βφ Rαβ
]
. (4)

By imposing the Bianchi identity ∇μGμν = 0 and the matter con-

servation law ∇μT (m)
μν = 0, Eq. (2a) reduces to

∇μ
[
T (φ)
μν + κ�μν

] = 0. (5)

Note that by inserting Eqs. (3) and (4) into (5) the differential 
equation (5) reduces to (2b). Simply, Eq. (2b) is a differential con-
sequence of Eq. (2a).

The authors in [16], have established an inflation model with-
out scalar field potential for the kinetic coupled gravity with spa-
tially flat (K = 0) FLRW metric and a cosmological constant, where 
the cosmological evolution of Universe at the vacuum dominated 
state pv = −ρv is described by

a(t) ∝ exp(Hκ t), (6)

and

φ̇(t) ∝ exp(−3Hκ t), (7)

where

H �
√

1

9κ
, (8)

Ḣ � 0. (9)

As is seen in (8), the role of coupling parameter κ in this infla-
tionary behavior is important such that small value of κ results 
in a sufficiently large value of the Hubble parameter. Although 
the present model is different from [16], regarding the scalar field 
potential and the curvature parameter K , but it is interesting to 
study the Einstein static Universe and its stability in the context 
of kinetic coupled gravity and investigate the possible impact of 
stability requirement on the coupling parameter κ .

3. Einstein static Universe and modified Friedmann equations

3.1. Effective Friedmann equations

The cosmological studies of the non-minimal kinetic coupling 
gravity have been sufficiently investigated [14–16]. Especially, it 
was shown that the inflation and any cosmological behavior, ex-
plicitly depends on the non-minimally kinetic term of a scalar field 
φ with the curvature. However, it is important to notice that the 
non-minimally kinetic term of a scalar field φ with the curvature 
describes further degrees of freedom of the gravitational field re-
sulting from modified gravities.

We apply the Friedmann–Lemaître–Robertson–Walker (FLRW) 
line element as follows

ds2 = −dt2 + a2(t)

[
dr2

1 − Kr2
+ r2(d2θ + sin2 θd2φ)

]
, (10)

where K = +1, 0, −1 denotes a closed, flat, and open Universe, re-
spectively.
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By including the effective energy density and pressure, the 
modified Friedmann equations can be written as

3H2 = 8πρeff − 3K

a2
, (11)

Ḣ = −4π (ρeff + peff) + K

a2
, (12)

where ρeff and peff are given by

ρeff = 1

2
φ̇2

[
ε − 3κ

(
3H2 + K

a2

)]
+ V (φ) + ρm, (13)

peff = 1

2
φ̇2

[
ε + κ

(
2Ḣ + 3H2 + K

a2
+ 4Hφ̈φ̇−1

)]
− V (φ) + pm. (14)

The conservation equations for the matter component and the 
scalar field are given by

ρ̇m + 3H(ρm + pm) = 0, (15)

ε(φ̈ + 3Hφ̇) − 3κ
[(

H2 + K

a2

)
φ̈

+ 2H Ḣφ̇ + 3H3φ̇ + K Hφ̇

a2

]
= −V ′(φ). (16)

3.2. Einstein static Universe

To study the Einstein static Universe we impose a = a0 = const, 
thus H = Ḣ = 0 and also we take the matter distribution that 
obeys from the linear equation of state pm = wρm . As a result, 
the effective Friedmann equations (11) and (12) can be written as

8πρeff = 3K

a2
0

, (17)

4π (ρeff + peff) = K

a2
0

, (18)

respectively, implying the following condition which is imposed on 
the distribution of effective matter

ρeff + 3peff = 0. (19)

By assuming φ = φ0 = const, the effective matter condition (19)
will imply

1

2
ρ

(0)
m (1 + 3w) = V (φ0), (20)

K

8πa2
0

= V (φ0)(1 + w)

(1 + 3w)
, (21)

and finally for the modified Klein–Gordon equation (16) we will 
have

V ′(φ0) = 0, � = 8π V (φ0). (22)

Additionally, we can obtain a0 and ρm in terms of φ0 and V (φ0).

4. Stability analysis of the Einstein static Universe

The Einstein static Universe has been renewed as the asymp-
totic inspiration of an emergent Universe, to remove the initial 
singularity problem in the inflationary cosmology [8]. Actually, 
these cosmological models contain remarkable features such as the 
absence of an initial singularity and avoidance of the quantum 
gravity intricacy. In a series of works by the present authors the 
stability analysis of the Einstein static Universe has been studied in 
different models. In [21], the existence and stability of the Einstein 
static Universe have been studied in the Einstein–Cartan gravity 
and shown that this Universe in the presence of perfect fluid with 
spin density satisfying the Weyssenhoff restriction is cyclically sta-
ble around a center equilibrium point. In [22], the stability of 
Einstein static Universe against the homogeneous scalar perturba-
tions in the context of braneworld scenario is investigated and the 
stability regions are obtained in terms of the constant geometric 
linear equation of state parameter for the case of closed, open or 
flat Universe. It is also found that a stable Einstein static Universe 
may exist in a braneworld theory of gravity against scalar, vector 
and tensor perturbations for some suitable values and ranges of 
the cosmological parameters. In [27], the stability of Einstein static 
Universe versus the linear scalar, vector and tensor perturbations is 
investigated in the context of deformed Hořava–Lifshitz (HL) cos-
mology inspired by entropic force scenario. It is shown that there 
is no stable Einstein static Universe for the case of flat Universe, 
however, for the closed Universe and large values of running pa-
rameter of HL gravity there is stability with domination of the 
quintessence and phantom matter fields, and for open Universe 
there is stability with domination of the matter fields. A neu-
tral stability against the vector perturbations is obtained and it is 
shown that for large values of the running parameter of HL grav-
ity, there is a stability against the tensor perturbations. In [29], the 
stability of Einstein static Universe against the scalar, vector and 
tensor perturbations in the context of induced matter brane grav-
ity is investigated. It is found that a stable Einstein static Universe 
against the scalar perturbations does exist provided that the vari-
ation of time dependent geometrical equation of state parameter 
is proportional to the minus of the variation of the scale factor. In 
all these works, we were motivated to find any impact of stability 
requirement of Einstein static Universe on the physical characteris-
tics of modified theories of gravity.

Following the above mentioned line of investigation in the con-
text of modified theories of gravity, in the present work, first 
we aim to study the stability analysis of Einstein static Universe 
against the homogeneous perturbations in the kinetic coupled the-
ory of gravity. Our motivation is to find the possible impact of 
imposing such stability requirement on the kinetic coupling fea-
tures of kinetic coupled theory of gravity.

To consider the stability of the Einstein static Universe in the 
present model, we take the following homogeneous perturbations

a = a0 + δa(t), (23)

φ = φ0 + δφ(t), (24)

ρm = ρ
(0)
m + δρm(t). (25)

Here, we only discuss on the adiabatic perturbations δpm(t) =
w δρm(t). By perturbing the field equations (11) and (12), and the 
evolution equations for the matter (15) and the scalar field (16), 
we only study perturbations up to linear order.

Let us start with Eq. (15). Linear order perturbations gives

˙δρm + 3(1 + w)
ρ

(0)
m

a0
δ̇a = 0, (26)

which can be integrated as

δρm = −3(1 + w)
ρ

(0)
m

a0
δa, (27)

which usefully connects the matter perturbation to the scale factor 
perturbation.

Now, we have three equations with three variables δa, δφ and 
δρm subject to Eq. (27) resulting from conservation equation. So, 
we have just two independent equations to solve, namely (12)
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and (16). We linearize Eqs. (12) and (16) using the perturbations 
and insert Eq. (27) and the background solutions (17)–(22) in the 
field equations (12) and (16). The final results have been reduced 
to the following second order ordinary differential equations.

δ̈a(t) − 4πρ
(0)
m (1 + w)(1 + 3w)δa(t) = 0, (28)(

ε − 3κ
K

a2
0

) ¨δφ(t) + V ′′(φ0)δφ(t) = 0. (29)

The solution of Eq. (28) is given by

δa(t) = d1e�t + d2e−�t, (30)

where d1 and d2 are the integration constants and � is defined by

� =
√

4πρ
(0)
m (1 + w)(1 + 3w). (31)

The solution is stable within the following ranges

w > −1/3, (32)

−1 < w < −1/3. (33)

Note that the interval (33) violates the strong energy condition 
ρ + 3p ≥ 0. To complete our study we must consider stability of 
the scalar field equation (29). Thus, we must consider stability of 
Eq. (29), for K = 0, K = 1 and K = −1. We can rewrite Eq. (29) as 
follows

¨δφ(t) − V ′′(φ0)

3κ K
a2

0
− ε

δφ(t) = 0, (34)

which provides us with the solution

δφ = C1eλt + C2e−λt, (35)

where C1 and C2 are constants of integration, and λ is defined by

λ =
√√√√ V ′′(φ0)

3κ K
a2

0
− ε

. (36)

The stability condition of the scalar field for three following cases 
are given by

• Flat Universe (K = 0)

V ′′(φ0)

ε
> 0, (37)

• Closed Universe (K = 1)

V ′′(φ0)

3κ 1
a2

0
− ε

< 0, (38)

• Open Universe (K = −1)

V ′′(φ0)

3κ 1
a2

0
+ ε

> 0. (39)

To become more specific, we take a typical choice for the potential 
V (φ) and examine the stable static solutions. For instance, con-
sider the potential given by

V (φ) = 1

2
m2φ2, (40)

where m is a positive constant scalar field mass. The potential sat-
isfies V ′′(φ) = m2 and is strictly positive. Thus, from Eqs. (37), 
(38) and (39) we get ε > 0, a2 > 3κ and a2 > − 3κ for the cases 
0 ε 0 ε
K = 0, K = 1 and K = −1, respectively. It can be seen that in the 
case of K = 1, the stability condition for the scalar field results in 
a0 >

√
3κ
ε . Hence, assuming κ 
 ε accounts for a small initial size 

for the Einstein static Universe before the inflationary era. In par-
ticular, if we suppose that the non-minimal coupling is set to the 
Planck length, by quantum gravity and quantum cosmology consid-
erations, as κ = L2

P , then we find the inequality a0 >
√

3L P which 
asserts that the initial size of the Einstein static Universe must be 
greater than the Planck length.

5. Vector and tensor perturbations

In the cosmological background, the vector perturbations of a 
perfect fluid with equation of state, p = wρ , are ruled by the 
co-moving dimensionless vorticity defined as �a = a� . Thus, the 
vorticity modes obey the following propagation equation [5]

�̇k + (1 − 3c2
s )H�k = 0, (41)

where c2
s = dp/dρ is the sound speed and k denotes the co-moving 

index (see below). This equation is valid in our consideration of 
Einstein static Universe in the framework of the non-minimal ki-
netic coupled gravity through the modified Friedmann equations 
(11) and (12). For the Einstein static background, Eq. (41) reduces 
to

�̇k = 0. (42)

It can be seen that from the above equation, initial vector per-
turbations remain frozen and therefore we have neutral stability 
against vector perturbations.

Gravitational-wave perturbations, namely tensor perturbations, 
of a perfect fluid is explained by the co-moving dimensionless 
transverse-traceless shear �ab = aσab , whose modes satisfy the fol-
lowing equation

�̈k + 3H�̇k +
[k2

a2
+ 2K 2

a2
− 8π

3
(1 + 3w)ρ + 2

3
�

]
�k = 0, (43)

where use has been made of D2 → −k2/a2 in which D2 is the 
covariant spatial Laplacian. For the Einstein static background in 
our model, this equation becomes

�̈k + 4πρ0(k
2 + 2K )(1 + w)�k = 0. (44)

In order for the Einstein static Universe becomes stable against the 
tensor perturbations, and considering ρ0 > 0, we have to require

(k2 + 2K )(1 + w) > 0, (45)

which yields the following conditions

• ω > −1 for K = 0, 1,
• ω > −1 for K = −1 and k2 > 2,
• ω < −1 for K = −1 and k2 < 2.

The first two conditions show the equation of state parameter 
below the phantom divide, while the latter condition shows the 
equation of state parameter above the phantom divide. Considering 
the stability conditions (32) and (33), it turns out that the first two 
conditions for stability against the tensor perturbations are con-
sistent with the conditions for stability against the homogeneous 
scalar perturbations, except for ω = −1/3. On the other hand, the 
latter condition for stability against the tensor perturbations is in-
consistent with the stability conditions (32) and (33) against the 
homogeneous scalar perturbations. Therefore, in an open Universe 
with k2 < 2. It is not possible to have stability against both scalar 
and tensor perturbations.
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6. Summary and discussion

Non-minimal kinetic coupled gravity is one the novel modifi-
cation to the general relativity, which includes the non-minimal 
coupling of kinetic term of a scalar field φ with the curvature ten-
sor by the coupling κ , and the minimal coupling with the metric 
tensor by the coupling ε. It has already been shown that such 
modified gravity model provides an essentially new inflationary 
mechanism. In this work, motivated by the idea of “Emergent Uni-
verse” of Ellis et al., we have assumed that the Universe might 
have been started out in an asymptotically Einstein static state 
as an initial state before the inflationary stage of the Universe. 
Then, we have studied the stability of Einstein static Universe by 
using linear homogeneous perturbations in non-minimal kinetic 
coupled gravity. By taking a linear equation of state parameter 
for the matter distribution, the stability regions of the Einstein 
static Universe are specified by the second derivatives of the scalar 
potential. We have shown that the stability of Einstein static Uni-
verse, in the non-minimal kinetic coupled gravity with quadratic 
scalar field potential, for closed isotropic and homogeneous FLRW 
(K = 1) Universe depends on the coupling parameters κ and ε, 
such that in order to have a small initial size for the Einstein 
static Universe, consistent with the quantum gravity and quan-
tum cosmology requirements (that the Planck length is the min-
imum possible length for the size of the Universe), the best choice 
is ε = 1 and κ = L2

P . Thus, the order of magnitude of the cou-
pling parameter κ has been determined in the present study of 
Einstein static Universe in the framework of kinetic coupled grav-
ity.

From the cosmological point of view, the non-minimal kinetic 
coupled gravity is used for introducing new inflation models at 
early stage of the Universe. In order for this theory is consid-
ered as an alternative theory of general relativity, the contri-
bution of the non minimal coupling should fade away for late 
times, so that both theories coincide with each other at low en-
ergy scale. The non minimal coupling includes the dominant term 
κG00 ∼ κ H2. During the inflationary period we have H  1, so 
that the role of κ H2 is considerable in the cosmic dynamics. How-
ever, after the inflation, when the Hubble parameter is smaller, 
this term should be almost vanishing in order to recover the 
general relativity. Hence, it seems the coupling parameter plays 
an important role to justify this requirement. In this paper, we 
have found that assuming κ = L2

P , the stability condition imposes 
the inequality a0 >

√
3L P on the initial size a0 of the closed 

Einstein static Universe before the inflation. Such inequality as-
serts that the initial size of the Einstein static Universe must be 
greater than the Planck length L P , in consistency with the quan-
tum gravity and quantum cosmology requirements. Therefore, it 
seems a very small κ = L2

P not only provides us with a suit-
ably small size Einstein static Universe, but also is favored in ki-
netic coupled gravity to be considered as an alternative theory 
of general relativity. This may be considered as a novel cosmo-
logical viable condition imposed on the kinetic coupled gravity 
theory.

We have considered a quadratic scalar field potential. If the 
other forms of V (φ) are taken, the qualitative results will not 
change drastically. Actually, the quadratic potential is a typical ex-
ample of those potentials which satisfy the condition V ′′(φ) > 0
at the static point φ0. So, it is expected that by choosing other 
forms of V (φ) satisfying this condition, the qualitative results do 
not change drastically.

Finally, we have studied the stability against the vector and ten-
sor perturbations. We have found the neutral stability against the 
vector perturbations, and discussed on those acceptable values of 
the equation of state parameter which yield stability against both 
homogeneous scalar perturbations and tensor perturbations.

Acknowledgement

This work has been supported financially by a grant number 
217/D/10856 from Azarbaijan Shahid Madani University.

References

[1] M. Gasperini, G. Veneziano, Phys. Rep. 373 (2003) 1, arXiv:hep-th/0207130;
J.E. Lidsey, D. Wands, E.J. Copeland, Phys. Rep. 337 (2000) 343, arXiv:hep-
th/9909061.

[2] J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, Phys. Rev. D 64 (2001) 123522, 
arXiv:hep-th/0103239;
P.J. Steinhardt, N. Turok, Science 296 (2002) 1436;
P.J. Steinhardt, N. Turok, Phys. Rev. D 65 (2002) 126003, arXiv:hep-th/0111098;
J. Khoury, P.J. Steinhardt, N. Turok, Phys. Rev. Lett. 92 (2004) 031302, arXiv:hep-
th/0307132.

[3] S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space–Time, Cambridge 
University Press, Cambridge, 1973.

[4] A.S. Eddington, Mon. Not. R. Astron. Soc. 90 (1930) 668.
[5] J.D. Barrow, G.F.R. Ellis, R. Maartens, C.G. Tsagas, Class. Quantum Gravity 20 

(2003) L155.
[6] J.D. Barrow, C.G. Tsagas, Class. Quantum Gravity 26 (2009) 195003.
[7] J.D. Barrow, K. Yamamoto, Phys. Rev. D 85 (2012) 083505.
[8] G.F.R. Ellis, R. Maartens, Class. Quantum Gravity 21 (2004) 223;

G.F.R. Ellis, J. Murugan, C.G. Tsagas, Class. Quantum Gravity 21 (2004) 233.
[9] J.E. Lidsey, D.J. Mulryne, Phys. Rev. D 73 (2006) 083508;

J.E. Lidsey, D.J. Mulryne, N.J. Nunes, R. Tavakol, Phys. Rev. D 70 (2004) 063521.
[10] V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press, 

2005;
S. Weinberg, Cosmology, Oxford University Press, 2008.

[11] S. Capozziello, R. de Ritis, Gen. Relativ. Gravit. 29 (1997) 1425;
S. Capozziello, R. de Ritis, A.A. Marino, Gen. Relativ. Gravit. 30 (1998) 1247;
S. Capozziello, G. Lambiase, Gen. Relativ. Gravit. 31 (1999) 1005, arXiv:gr-
qc/9901051.

[12] L. Amendola, Phys. Lett. B 301 (1993) 175.
[13] S. Capozziello, G. Lambiase, H.-J. Schmidt, Ann. Phys. 9 (2000) 39.
[14] S.V. Sushkov, Phys. Rev. D 80 (2009) 103505.
[15] E.N. Saridakis, S.V. Sushkov, Phys. Rev. D 81 (2010) 083510.
[16] F. Darabi, A. Parsyia, arXiv:1312.1322.
[17] C. Gao, J. Cosmol. Astropart. Phys. 06 (2010) 023;

L.N. Granda, W. Cardona, J. Cosmol. Astropart. Phys. 1007 (2010) 021;
L.N. Granda, Class. Quantum Gravity 28 (2011) 025006;
L.N. Granda, J. Cosmol. Astropart. Phys. 1104 (2011) 016;
L.N. Granda, E. Torrente-Lujan, J.J. Fernandez-Melgarejo, Eur. Phys. J. C 71 
(2011) 1704;
L.N. Granda, arXiv:1109.1371;
L.N. Granda, Mod. Phys. Lett. A 27 (2012) 1250018;
H. Mohseni Sadjadi, Phys. Rev. D 83 (2011) 107301;
A. Banijamali, B. Fazlpour, Phys. Lett. B 703 (2011) 366;
G. Gubitosi, E.V. Linder, Phys. Lett. B 703 (2011) 113.

[18] K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342 
(2012) 155.

[19] A. Ibrahim, Y. Nutku, Gen. Relativ. Gravit. 7 (1976) 949;
C.G. Böhmer, arXiv:gr-qc/0308057;
C.G. Böhmer, Gen. Relativ. Gravit. 36 (2004) 1039.

[20] L.A. Gergely, R. Maartens, Class. Quantum Gravity 19 (2002) 213;
A. Gruppuso, E. Roessl, M. Shaposhnikov, J. High Energy Phys. 0408 (2004) 011;
S.S. Seahra, C. Clarkson, R. Maartens, Class. Quantum Gravity 22 (2005) L91;
C. Clarkson, S.S. Seahra, Class. Quantum Gravity 22 (2005) 3653.

[21] C.G. Böhmer, Class. Quantum Gravity 21 (2004) 1119;
K. Atazadeh, J. Cosmol. Astropart. Phys. 06 (2014) 020, arXiv:1401.7639.

[22] D.J. Mulryne, R. Tavakol, J.E. Lidsey, G.F.R. Ellis, Phys. Rev. D 71 (2005) 123512;
L. Parisi, M. Bruni, R. Maartens, K. Vandersloot, Class. Quantum Gravity 24 
(2007) 6243;
K. Atazadeh, Y. Heydarzade, F. Darabi, Phys. Lett. B 732 (2014) 223, 
arXiv:1401.7638.

[23] C.G. Böhmer, L. Hollenstein, F.S.N. Lobo, Phys. Rev. D 76 (2007) 084005;
C.G. Boehmer, F.S.N. Lobo, N. Tamanini, Phys. Rev. D 88 (2013) 104019.

[24] R. Goswami, N. Goheer, P.K.S. Dunsby, Phys. Rev. D 78 (2008) 044011;
N. Goheer, R. Goswami, P.K.S. Dunsby, Class. Quantum Gravity 26 (2009) 
105003, arXiv:0809.5247.

[25] S.S. Seahra, C.G. Böhmer, Phys. Rev. D 79 (2009) 064009, arXiv:0901.0892
[gr-qc].

[26] C.G. Böhmer, F.S.N. Lobo, Phys. Rev. D 79 (2009) 067504.

http://refhub.elsevier.com/S0370-2693(15)00265-8/bib31s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib31s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib31s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib32s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib32s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib32s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib32s3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib32s4
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib32s4
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib33s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib33s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib34s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib35s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib35s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib36s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib37s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib38s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib38s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib39s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib39s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib696E666C6174696F6Es1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib696E666C6174696F6Es1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib696E666C6174696F6Es2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib6361706F31s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib6361706F31s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib6361706F31s3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib6361706F31s3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib416D656E64s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib6361706F32s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib3130s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib3131s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib313131s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs4
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs5
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs5
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs6
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs7
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs8
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs9
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47616Fs10
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib6361706F7As1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib6361706F7As1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib455361s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib455361s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib455361s3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47657267656C793A32303031746Es1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47657267656C793A32303031746Es2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47657267656C793A32303031746Es3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib47657267656C793A32303031746Es4
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A323030336976s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A323030336976s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib4D756C72796E653A323030356566s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib4D756C72796E653A323030356566s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib4D756C72796E653A323030356566s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib4D756C72796E653A323030356566s3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib4D756C72796E653A323030356566s3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A323030377472s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A323030377472s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib476F7377616D693A323030386673s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib476F7377616D693A323030386673s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib476F7377616D693A323030386673s2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib5365616872613A323030396674s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib5365616872613A323030396674s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F686D65723A323030396663s1


368 K. Atazadeh, F. Darabi / Physics Letters B 744 (2015) 363–368
[27] C.G. Boehmer, F.S.N. Lobo, Eur. Phys. J. C 70 (2010) 1111;
P. Wu, H.W. Yu, Phys. Rev. D 81 (2010) 103522;
R. Canonico, L. Parisi, Phys. Rev. D 82 (2010) 064005;
Y. Heydarzade, M. Khodadi, F. Darabi, arXiv:1502.04445v1.
[28] L. Parisi, N. Radicella, G. Vilasi, Phys. Rev. D 86 (2012) 024035.
[29] Y. Heydarzade, F. Darabi, J. Cosmol. Astropart. Phys. (2015), in press, 

arXiv:1501.02624v1.
[30] S. Sushkov, Phys. Rev. D 85 (2012) 123520.

http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A32303039797As1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A32303039797As2
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A32303039797As3
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib426F65686D65723A32303039797As4
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib5061726973693A323031326367s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib496E6475636564s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib496E6475636564s1
http://refhub.elsevier.com/S0370-2693(15)00265-8/bib3232s1

	Einstein static Universe in non-minimal kinetic coupled gravity
	1 Introduction
	2 Non-minimal kinetic coupling gravity
	3 Einstein static Universe and modiﬁed Friedmann equations
	3.1 Effective Friedmann equations
	3.2 Einstein static Universe

	4 Stability analysis of the Einstein static Universe
	5 Vector and tensor perturbations
	6 Summary and discussion
	Acknowledgement
	References


