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SUMMARY

CLP1 is a RNA kinase involved in tRNA splicing.
Recently, CLP1 kinase-dead mice were shown to
display a neuromuscular disorder with loss of motor
neurons and muscle paralysis. Human genome ana-
lyses now identified a CLP1 homozygous missense
mutation (p.R140H) in five unrelated families, leading
to a loss of CLP1 interaction with the tRNA splicing
endonuclease (TSEN) complex, largely reduced pre-
tRNA cleavage activity, and accumulation of linear
tRNA introns. The affected individuals develop se-
vere motor-sensory defects, cortical dysgenesis,
and microcephaly. Mice carrying kinase-dead CLP1
also displayed microcephaly and reduced cortical
brain volume due to the enhanced cell death of
neuronal progenitors that is associated with reduced
numbers of cortical neurons. Our data elucidate a
636 Cell 157, 636–650, April 24, 2014 ª2014 Elsevier Inc.
neurological syndrome defined by CLP1 mutations
that impair tRNA splicing. Reduction of a founder
mutation to homozygosity illustrates the importance
of rare variations in disease and supports the clan
genomics hypothesis.
INTRODUCTION

In order to translate genomic information, tRNAs undergo essen-

tial posttranscriptional modifications, including chemical alter-

ations, excision of introns followed by exon ligation, removal of

50 leader and 30 trailer sequences, and CCA addition (Phizicky

and Hopper, 2010). Although tRNA synthesis and processing

are essential to all cells, mutations in genes involved in tRNA

transcription and maturation appear to preferentially affect the

function of neurons. There is an emerging class of neurological

disorders resulting from abnormal tRNA biogenesis. Mutations

in genes encoding various aminoacyl tRNA synthetases result
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in Charcot-Marie-Tooth neuropathy (GARS, KARS, YARS,

AARS, and HARS) (Antonellis et al., 2003; Jordanova et al.,

2006; Lee et al., 2006; McLaughlin et al., 2010; Vester et al.,

2013), spastic ataxia with leukoencephalopathy (MARS2) (Bayat

et al., 2012), distal spinal muscular atrophy (GARS) (Antonellis

et al., 2003), or pontocerebellar hypoplasia type 6 (PCH6)

(RARS2) (Edvardson et al., 2007). Another distinct group of dis-

orders due to abnormal tRNA maturation is pontocerebellar hy-

poplasias associated with defects in genes encoding subunits

of the tRNA-splicing TSEN complex, including mutations in

TSEN2, TSEN34, and TSEN54 (Budde et al., 2008; Cassandrini

et al., 2010).

CLP1 was the first mammalian RNA kinase to be discovered

(Weitzer and Martinez, 2007). We have recently shown that

CLP1 acts in concert with the TSEN complex to remove introns

present within the anticodon loop of numerous pre-tRNAs

(Hanada et al., 2013). Clp1 kinase-dead (Clp1K/K) mice exhibit

a progressive loss of spinal motor neurons associated with

axonal degeneration in peripheral nerves, denervation of neuro-

muscular junctions, ultimately resulting in impaired motor func-

tions, muscle weakness, paralysis, and fatal respiratory failure

(Hanada et al., 2013). Human CLP1mutations have not been re-

ported, and it is not known whether such mutations would also

affect the human nervous system. Here, we report the identifica-

tion of a humanCLP1mutation that impairs tRNA splicing in vitro

and causes a neurological syndrome involving both the central

nervous system (CNS) and peripheral nervous system (PNS).

All five families share a haplotype of common variants surround-

ing CLP1, supporting the notion that clan genomics contributed

to the molecular pathology of disease in this lineage (Lupski

et al., 2011).

RESULTS

A Neurological Syndrome Defined by CLP1 Mutations in
Humans
We studied patients with evidence of brain malformations and

microcephaly who shared similar facial characteristics and

global growth and also developmental delays, severe intellectual

disabilities, and seizures refractory to treatment (Figures 1

and S1A available online). MRI revealed brain abnormalities

of differing severities, including cortical dysgenesis marked by

a simplified gyral pattern, particularly in the anterotemporal re-

gions, mild or focal cerebellar vermian volume loss (BAB3520

and BAB4771), and thinning of the brain stem (BAB3520) (Fig-

ure 1). None of the 11 subjects studied could either ambulate

or sit without support. They all have poor (10 to 15 s) head con-

trol, whereas the youngest patient (BAB5318; 6 months old) has

not yet achieved head support. All patients had hypertonia and

increased deep tendon reflexes. Electrophysiological studies

revealed objective evidence for marked axonal sensorimotor

neuropathies (Figure 2 and Table S1). In addition to these char-

acteristic neurologic findings, careful clinical evaluation revealed

that the patients exhibit facial features that appear distinctive,

including high arched eyebrows, prominent eyes, long palpebral

fissures and eyelashes, broad nasal roots, and hypoplasic alae

nasi (Figure 1). Individual patient clinical details are provided in

the Extended Experimental Procedures.
Targeted exome capture and whole-exome sequence (WES)

of four affected individuals (BAB3401, 3402, 3421, and 3422),

two from each nuclear family (HOU1338 and HOU1333, respec-

tively) (Figures 1 and S1B), identified a homozygous c.G419A

(p.R140H) (chr11:g.57,427,367 G > A [hg19], NM_006831.2)

nonsynonymous substitution in the CLP1 gene located on

chromosome 11q12.1 (Figure 3A), in which mutations have not

been associated previously with human disease. The R140H

mutation has not been reported in the 1000 Genomes Project

(http://www.1000genomes.org) or other large-scale exome

sequencing projects, including the exome variant server, NHLBI

GO Exome Sequencing Project (ESP) in Seattle, Washington

(http://evs.gs.washington.edu/EVS/), and the ‘‘in-house’’-

generated exomes from more than 2,500 individuals at the

Baylor College of Medicine (BCM) Human Genome Sequencing

Center and BCM Whole Genome Laboratory Database (MGL;

http://www.bcm.edu/geneticlabs/; with more than 1,000 indi-

viduals tested for diagnostic purposes) and the Atherosclerosis

Risk in Communities Study (ARIC) Database (http://drupal.cscc.

unc.edu/aric/).

Because all four subjects from the original two kindreds

undergoing exome sequencing presented with the same clin-

ical syndrome, we hypothesized that CLP1 mutations could

cause a clinically distinguishable phenotype. We therefore re-

analyzed our brain malformation cohort focusing on patients

with similar CNS and PNS abnormalities and dysmorphic fea-

tures and found three additional families with consanguinity;

these subjects were unrelated to the former two families and

had no known relation to each other. Using this phenotype-

directed approach, Sanger sequencing of CLP1 in the latter

three families revealed the same R140H mutation in the

homozygous state in all seven additional affected individuals,

heterozygous carrier states in the parents and one unaffected

male sibling, and homozygous wild-type status in one unaf-

fected female sibling (HOU1380, HOU1926, and HOU1981)

(Figures 1 and S1B), which is consistent with Mendelian reces-

sive expectations.

None of the families in our study were previously aware of a

relationship. All five families belong to the same ethnic group

and reside in the same geographic area of Eastern Turkey. We

therefore hypothesized that each family inherited the same mu-

tation from a common ancestor in which this founder mutation

occurred. To investigate this, we performed genome-wide SNP

microarray analysis on 19 individuals. Pairwise identity-by-

descent (IBD) estimation in PLINK (Purcell et al., 2007) matched

reported familial relationships exactly but did not suggest recent

common ancestry among these seemingly unrelated individuals

(pi-hat 0–0.04). Notably, all families share an 11.5 Mb haplotype

in the CLP1 region, which spans the centromere and is homozy-

gous in the affected children (Figure 3A). For the last family

(HOU1981; samples BAB4980 and BAB4981), the regions with

absence of heterozygosity were experimentally determined

from WES data that revealed homozygosity of the CLP1 region

in these two affected individuals (Figure 3A). Thus, we have iden-

tified a defined clinical syndrome with progressive central and

peripheral nervous system defects in 11 affected children from

five families, all of whom carry a homozygous CLP1 R140H

mutation.
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Figure 2. Nerve Conduction Studies of Patients with CLP1 Mutations

Left: results of sensory nerve conduction studies of the right median, right ulnar, and right sural nerves. Velocity and amplitude values are shown for individual

patients as percentages of the minimum normal value (100%, dotted line). Abnormal values are highlighted in red hues. Values that were not recordable

despite being tested are indicated as NR. Patients who did not have a given nerve tested are blank. Center: schematic showing the locations of the nerves

tested. Right: results of motor nerve conduction studies of the right median, right common peroneal, and right tibial nerves. Patient numbers are indicated. See

also Table S1.
Molecular Modeling
Analysis of the human protein-protein interaction network re-

vealed interactions between CLP1 and members of both

mRNA 30 end processing and the tRNA-splicing TSEN complex

(Figure 3B). In silico analyses suggest CLP1 is also connected

to a number of human-disease-associated genes involved in

DNA repair and cell-cycle control such as p53 and VRK1, as

well as tRNA metabolism (Figure 3B). Analysis on the molecular

evolution of the CLP1 mutation showed that the R140H amino

acid change affects an arginine residue that is highly conserved

from human to zebrafish (Figure 3C).

The CLP1 R140H mutation is predicted to be ‘‘damaging

or disease causing’’ by different bioinformatics algorithms

(PolyPhen-2, SNAP, SIFT, and Mutation Taster). Inspection of

the yeast Clp1 crystal structure provides a possible explanation

for this effect. In the yeast protein, the corresponding lysine

residue (position 149) protrudes from the middle domain toward

the N-terminal domain, determining the relative orientation of the

two domains to each other (Figure 3D). Whereas an arginine, as

seen in higher eukaryotes, may exert a similar organizing effect,

a histidine side chain is too short to mediate this interaction.
Figure 1. Clinical Features and Brain MRI Images of Patients

Pedigrees of five nuclear families and morphological features of patients showing

nasal roots. Midsagittal and axial views of cranial MRIs are also shown for each

dysgenesis marked by a simplified gyral pattern, particularly in the antero-tem

prominent in the body segment, and vertical clivus in all patients. Also note foca

volume loss with thinning of the brain stem in patient BAB3520. See also Figures
We thus speculate that the R140H mutation results in an altered

domain arrangement that is incompatible with binding poten-

tial partner proteins. We further predict that the R140H muta-

tion should not abolish the RNA kinase activity of the enzyme,

which is associated with the middle domain containing the

catalytic site.

Perturbed CLP1-TSEN Complex Integrity Impairs Pre-
tRNA Cleavage
Based on structure-prediction analysis, we investigated whether

the R140H mutation affects CLP1 function. We first assayed

RNA kinase activity of recombinant glutathione S-transferase

(GST)-tagged wild-type CLP1, kinase-dead CLP1 (K127A muta-

tion), and CLP1 with the R140H mutation expressed in E. coli

(Figures 4A and 4B) and FLAG-CLP1 complexes containing

these CLP1 versions ectopically expressed and affinity purified

from HEK293 cells (Figure 4C). Whereas kinase activity was

abolished in the K127A mutants, as previously reported (Weitzer

and Martinez, 2007), the R140H mutant protein retained kinase

activity, albeit at a reduced level when compared to the

wild-type CLP1 protein (Figures 4B and 4C). We next tested for
similar dysmorphic facial features, including high arched eyebrows and broad

patient, revealing brain abnormalities of differing severities, including cortical

poral regions, shortening and thinning of the corpus callosum that is more

l volume loss of the cerebellar vermis in patient BAB4771 and mild cerebellar

S1A and S1B.
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Figure 3. Allele Frequencies and Modeling of the CLP1 Mutation

(A) B allele frequency plots for chromosome 11 in the five families. The 11 affected individuals share a common 11.5Mb region of absence of heterozygosity (AOH)

in the proximal long arm of the chromosome, including the CLP1 gene. The location of the gene is marked with a red line. The shared region of AOH extends

across the centromere to the proximal short arm of the chromosome. AOH figure for family HOU1981 was created from whole-exome data.

(B) Interactome of CLP1 with subunits of the TSEN complex (green), components of the mRNA 30 end cleavage and polyadenylation complex (red), or genes

involved in cell-cycle control and cell death such as p53, ATM1, BRCA1, MDM1, or VRK1 (blue).

(C) Sequence alignment of human CLP1 with CLP1 in other species. R140 is a conserved residue across all vertebrates.

(D) Crystal structure of the yeast Clp1 proteins (Noble et al., 2007) illustrating its domain architecture. The highlighted Lys149 is positioned at the interface of the

N-terminal and middle domains and is predicted to define the relative orientation of these domains. The zoomed-in image shows two glutamate residues of the

N-terminal domain interacting with Lys149 that protrudes from the middle domain.
interactions between mutant CLP1 and members of the TSEN

complex. Intriguingly, the interaction of R140H CLP1 with

TSEN2, TSEN54, or TSEN34 was markedly reduced (Figure 4D).
640 Cell 157, 636–650, April 24, 2014 ª2014 Elsevier Inc.
In line with loss of CLP1-TSEN complex integrity, pre-tRNA

cleavage activity of purified R140H CLP1 was almost abolished

(Figure 4E). Of note, the kinase-dead CLP1 K127Amutation also
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Figure 4. Biochemical Studies on Purified

CLP1 R140H and Patient Fibroblasts

(A) Coomassie blue staining of purified recombi-

nant GST-tagged wild-type CLP1, kinase-dead

K127ACLP1, and the CLP1 R140Hmutant protein.

(B) RNA kinase assay using the indicated recom-

binant CLP1 versions showing that CLP1 R140H is

still able to phosphorylate RNA. Recombinant

proteins were incubated with an RNA duplex

bearing a 50-OH group and [32P]Cp 30end label at

one strand for the indicated time points. RNA

phosphorylation results in a migration shift after

running the reaction products in a denaturing

acryamide gel. Note that RNA phosphorylation is

completely abolished by the CLP1 K127A muta-

tion. The panel is a representation of two technical

replicates.

(C) RNA kinase assay using protein complexes

containing FLAG-CLP1 wild-type, FLAG-CLP1

K127A, and FLAG-CLP1 R140H affinity purified

from stably expressing HEK293 cells. HEK293

cells without expression of any tagged proteins

served as a control. Assays were carried out with

undiluted and 1:3-diluted eluates as indicated.

(D) Western blotting for TSEN components inter-

acting with affinity-purified FLAG-CLP1 wild-type,

FLAG-CLP1 K127A, and FLAG-CLP1 R140H.

(E) Pre-tRNA cleavage assay of affinity-purified

FLAG-CLP1 wild-type, FLAG-CLP1 K127A, and

FLAG-CLP1 R140H complexes incubated with

an internally labeled intron-containing yeast pre-

tRNAPhe. Pre-tRNA processing was monitored by

denaturing gel electrophoresis. Panels (C)–(E) are

representative examples of two replicates.

(F) tRNA splicing assay of nuclear extracts

of parental (BAB3845 and 3846) and patient

(BAB3401 and 3402) fibroblasts incubated for the

indicated time points with an internally labeled

intron-containing yeast pre-tRNAPhe. Pre-tRNA

processing was monitored by denaturing gel

electrophoresis.

(G and H) RNA kinase activity assay of nuclear (G)

or cytoplasmic (H) extracts derived from parental

and patient fibroblasts. Extracts were incubated

with a 30 end-labeled 50 OH group containing RNA

duplex for the indicated time points. RNA phos-

phorylation was monitored by denaturing gel

electrophoresis. Panels (F)–(H) are representative

examples of triplicate experiments. See also Fig-

ures S2A–S2C.
showed impaired interaction with TSEN proteins (Figure 4D),

correlating with decreased pre-tRNA cleavage activity (Fig-

ure 4E) (Hanada et al., 2013).

We next isolated and established fibroblast cultures using

skin biopsies from patients (BAB3401 and BAB3402) and their

parents (BAB3845 and BAB3846) and prepared extracts equal-

izing for protein concentrations. In nuclear extracts from patient

fibroblasts, there was only a minor detectable pre-tRNA cleav-

age activity (Figure 4F), and RNA kinase activity was reduced

(Figure 4G). Because the CLP1-TSEN complex can be purified

from cytoplasmic extracts of HeLa cells (Weitzer and Martinez,

2007), we also tested RNA kinase activity in the cytoplasm of

patient fibroblasts. Here, the activity was reduced in comparison
to parental cells (Figures 4H). Another tRNA splicing-related

biochemical activity—RNA ligation activity as assessed by an

interstrand ligation assay in nuclear extracts (Popow et al.,

2011)—did not correlate with the occurrence of the CLP1

R140H mutation in fibroblasts (Figure S2A). Western blot anal-

ysis confirmed the presence of CLP1, TSEN proteins, and the

tRNA ligase HSPC117 in nuclear extracts of patient cells (Fig-

ure S2B). Although levels of CLP1 appeared reduced in nuclear

extracts, CLP1 was present at similar levels in the cytoplasm

of parental and patient cells (Figure S2C). Thus, our in vitro

assays for analyzing purified protein complexes showed that

the mutation does not abrogate kinase function but severely

affects the association of CLP1 with components of the
Cell 157, 636–650, April 24, 2014 ª2014 Elsevier Inc. 641
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Figure 5. tRNA Analysis of Patient Fibroblasts

(A–C) Northern blot analyses of RNA from parental and patient fibroblasts. A probe complementary to the 50 exon of isoleucine-TAT and tyrosine-GTA tRNAs

was used to detect mature and pre-tRNA species (top panels in [A] and [C]). Probes specifically directed against intron sequences were used to detect pre-

tRNAs and tRNA introns of isoleucine-TAT Chr.19.tRNA10 (A, middle), Chr2.tRNA5 (B), and tyrosine-GTA Chr2.tRNA2 (C, middle; human February 2009 [hg19]

genome assembly). U6 snRNA served as loading control (bottom in A and C). Asterisks denote truncated pre-tRNA species. See also Figures S2D–S2G, S3A,

and S3B.

(D) Example for an alignment of RNA-seq reads of patient (BAB3402) fibroblasts against precursor tRNA isoleucine-TAT (Chr19.tRNA10). Total RNA was sub-

jected to partial alkaline hydrolysis prior to cloning and sequencing. Reads were aligned against an in-house curated list of mature and pre-tRNAs. The mature

(legend continued on next page)
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TSEN complex, resulting in impaired pre-tRNA cleavage. This

is consistent with impaired tRNA splicing observed in nuclear

extracts from patient fibroblasts.

CLP1 R140H Mutant Fibroblasts Accumulate Introns
Derived from Different tRNA Genes
We next isolated total RNA from parental and patient fibroblasts

and performed Northern blot analysis using probes detecting

tRNAs genomically encoded as intron-less versions (i.e., Met-

CAT) or intron-containing versions (Ile-TAT, Tyr-GTA, Leu-CAA,

and Arg-TCT). There was no significant difference in mature

tRNA steady-state levels as exemplified by using probes against

the exon junction and the 50 exon detecting multiple tRNAs of the

same isotype, so-called pan-probes, in parental and patient

fibroblasts (Figures 5A and 5C, top; Figures S2D and S2F). In

addition, we performed RNA deep sequencing and subjected

reads to a quantitative bioinformatics pipeline that failed

to reveal consistent differences in global mature tRNA levels

between both parental and patient cell lines (Table S2). We

also performed Northern blot analysis to assess pre-tRNA levels

using 50 exon pan-probes and intron probes detecting specific

tRNA genes. We were not able to detect consistent global differ-

ences either in steady-state levels of pre-tRNAs between both

parental and patient fibroblast cell lines or by comparing results

obtained from either approaches (Figures 5A–5C [middle],

S2D–S2E, and S2G and data not shown). Interestingly, both

by Northern blotting and deep sequencing analysis, we repro-

ducibly detected an accumulation of tRNA introns derived from

three particular tRNA genes (Ile-TAT Chr19.trna10, Ile-TAT

Chr2.tRNA5, and Tyr-GTA Chr2.tRNA2; Figures 5A and 5C

[middle], 5B, and S3A–S3C and Table S3) in patient fibroblasts.

Biochemical analysis using RNase R treatment that digests

linear, but not circular, RNA revealed that Ile-TAT (Chr19.trna10)

introns are linear (Figure S3D). Because these introns can be

ligated to a 30 hydroxy-terminating RNA linker only upon prior

50 phosphorylation, we conclude that introns display a 50 hydroxy
group (Figure S3E). Thus, our Northern analysis and deep

sequencing data indicate that theCLP1 R140Hmutation in fibro-

blasts influences processing of pre-tRNAs, resulting in the accu-

mulation of linear tRNA introns, whereas pre- and mature tRNA

levels remain largely unaffected.

Microcephaly in Clp1 Defective Mice
We recently reported progressive loss of motor neurons, axonal

motor neuropathy, and muscle paralysis leading to death in

kinase-defective CLP1 K127A (Clp1K/K) mutant mice (Hanada

et al., 2013), a phenotype consistent with the observed impair-

ment of motor functions in our patients, including features of

sensorimotor axonal neuropathy. Of note, on a B6 background,

all Clp1K/K newborn mice die due to impaired innervations of the

diaphragm, whereas, on a CBA/J background, Clp1K/K mutant

mice grow to adulthood and progressively lose spinal motor

neurons and motor functions (Hanada et al., 2013). Given the
tRNA (blue), the tRNA intron (orange), and the 50 leader and 30 trailer sequences
mapped uniquely to the identified positions. Upstream and downstream nucleotid

relative frequency of binned, normalized read counts in log2 increments. See als

(BAB3846) fibroblasts.
significant microcephaly noted in patients carrying the CLP1

R140H mutation (Figures 1 and S1A), we wondered whether

we had missed a brain phenotype in our mutant Clp1K/K mice,

also considering fundamental differences between human and

rodent brain development (Lancaster et al., 2013).

To analyze potential microcephaly in Clp1K/K mice, we first

determined the brain sizes of control and viable adult Clp1K/K

mice on the CBA/J background. In all littermate pairs analyzed,

we observed reduced brain weights in mice carrying a kinase-

dead version of Clp1 (Figures 6A and S4A). To confirm reduced

brain weights, we used 15.2 TeslaMRI imaging.MRI-3D brain re-

constructions showed significantly reduced brain volumes at 8,

12, and 28 weeks after birth, but not at 4 weeks after birth (Fig-

ures 6B and S4B). Clp1K/K mice also did not show a continuous

increase in the brain aspect ratio (Figure S4C), which describes

the elongation of the brain during normal development. More-

over, using geometric structural analysis, we observed markedly

reduced cortical thickness throughout the entire cortex (Figures

6B and S4D). This difference is particularly prominent in the fron-

tal and somatosensory-motor areas of the cortex (see red and

yellow areas in Figures 6B and S4D). The reduction of cortical

thickness was confirmed histologically (Figures S4E and S4F).

Immunohistochemical analysis with antibodies against

neuronal nuclear antigen (NeuN) to detect neurons showed

normal cortical layering (Figure S5A). Importantly, in line with

reduced brain size and reduced cortical thickness, we found

reduced numbers of NeuN+ neurons in the neocortex of adult

Clp1K/K mice as compared to their wild-type littermate controls

(Figure 6C). By contrast, microglial cells, as detected by

immunostaining for ionized calcium binding adaptor molecule

1 (Iba-1), appeared to be increased in the neocortex of Clp1K/K

mice, albeit not to significant levels (Figures S5B and S5C).

Numbers of glial fibrillary acidic protein (GFAP)-positive astro-

cytes were apparently not affected in the hippocampus (Figures

S5D and S5E) or in the cortex (data not shown) ofClp1K/Kmutant

mice. Of note, neuronal, microglial, and astrocyte numbers and

distributions were not affected in the cerebellum of Clp1K/K

mice (Figures S5F–S5J, and data not shown); the cerebellar vol-

ume was also not affected inClp1K/Kmutant mice as determined

by MRI (Figure 6B and data not shown). Thus, similar to humans

withCLP1 R140Hmutations, these data show that mice carrying

kinase-dead Clp1 mutation exhibit microcephaly, in particular

due to reduced numbers of cortical neurons.

When we analyzed Clp1K/K embryos on the lethal B6 mouse

background, we did not observe significant total brain weight

differences between wild-type and Clp1K/K mice at embryonic

day 16.5 (E16.5); however, Clp1K/K mice showed significantly

decreased brain weights at E18.5 and reduced brain sizes as

determined by histology (Figures 7A and S6A–S6C). The results

were confirmed using MRI showing comparable brain volumes

at E16.5 (64.4 mm2 for Clp1+/+ versus 62.3 mm2 for Clp1K/K

embryos) and a 13.7% reduction in mutant embryos at E18.5

(95.9 mm2 for Clp1+/+ versus 84.3 mm2 for Clp1K/K embryos)
(green) are shown. The frequency of each read is presented (count). All reads

es with no sequencing evidence are shown in black. Vertical lines represent the

o Figure S3C to compare the accumulation of intron reads relative to parental

Cell 157, 636–650, April 24, 2014 ª2014 Elsevier Inc. 643



Figure 6. Microcephaly in Adult Kinase-Defective Clp1 Mice

(A) Scatterplots showing brain weights of Clp1+/+ and K127A mutant Clp1K/K mice on the viable CBA/J background. The ages of mice at the time of analysis are

indicated; matching ages correspond to littermate pairs.

(B) Surface renderings of bulbus olfactorius (dark blue), cortex (transparent green), hippocampus (yellow), and cerebellum (light blue) fromMRI data sets of adult

mice at 4-, 8-, and 28-week-oldClp1+/+ and Clp1K/K littermate mice. The right panels additionally show for 28-week-old animals a pseudo-color-coded mapping

of cortical thickness ranging from blue (0.0 mm) to increased thickness shown in red (2.5 mm).

(C) Immunohistochemical analysis with antibodies against NeuN to detect neurons in the cortex of 12-week-old littermate Clp1+/+ and Clp1K/K mice. Left panels

show representative images of NeuN+ neurons (green). Sections are also stained for neurofilament and counterstained with Hoechst 33342 to visualize nuclei

(blue). Scale bars, 50 mm. Right panel shows quantification (mean values ± SEM) of NeuN+ neuron numbers in the neocortex. n = 6 mice per genotype. *p < 0.05.

See also Figures S4 and S5.
(Figure S6D). Moreover, in 3D whole-brain reconstructions using

15 TeslaMRI imaging, we also observedmarkedly reduced brain

volumes at E18.5 but comparable brain volumes at E16.5 (Fig-

ures 7B and 7C). At E18.5, the main reduction in brain volume

was observed in the cortex of Clp1K/K mice, with additional sig-

nificant reductions in the volume of the bulbus olfactorius,

whereas the volumes of the cerebella were comparable between

control and Clp1K/K littermates (Figures 7B and S6E). Cortical

thickness was comparable between E16.5 Clp1+/+ and Clp1K/K

embryos, but it was markedly reduced in E18.5Clp1K/K embryos

as compared to their wild-type littermate controls (Figure 7B).

Shape analysis of the brain geometry by principal component

analysis (PCA) further revealed that, in the control, all three

spatial axes increased significantly from E16.5 to E18.5, but in

the Clp1K/K embryos, the third PCA (dorso-ventral direction)
644 Cell 157, 636–650, April 24, 2014 ª2014 Elsevier Inc.
had even decreased, whereas the first PCA (anterior-posterior

direction) and the second PCA (caudal-rostral direction) were

apparently normal in the Clp1K/K mice (Figure S6F), indicating

impaired dorso-ventral expansion of the cortex. The latter is

also reflected by the fact that only wild-type control brains

exhibit a significant decrease in cortical roundness due to

changes in brain geometry (Figure S6G). These data show that

mice carrying a homozygous CLP1 K127A kinase-dead muta-

tion exhibit impaired expansion of the brain cortex, resulting in

microcephaly.

Similar to adult Clp1K/K mice, mutant E18.5 embryos had

reduced numbers of Tbr1+ neurons as compared to control litter-

mates; at E16.5, the numbers of Tbr1+ neuronswere comparable

among control and Clp1K/K embryos (Figures 7D, 7E, and S6H).

Numbers and distributions of Iba-1+ microglial cells were



apparently not altered in E16.5 and E18.5 Clp1K/K embryos (Fig-

ures S7A and S7B), nor did we observe any obvious alterations

in GFAP+ astrocytes (Figure S7C). We also observed normal

numbers of Pax6+ neuronal progenitor cells in E16.5 and E18.5

Clp1K/K mice as compared to their littermate controls (Figures

S7D–S7F). Numbers of proliferating cells as determined by

Ki67 staining were also normal, albeit slightly reduced in E16.5,

as well as E18.5 Clp1K/K, embryos (Figure S7G). Importantly,

we detected a higher number of apoptotic cells throughout

the brain of E16.5 and, in particular, E18.5 Clp1K/K embryos (Fig-

ure 7F). To test whether neuronal progenitors are more sus-

ceptible to death in Clp1 mutant embryos, we prepared neural

precursor cells (NPCs) from E14.5 control and Clp1K/K embryos.

Importantly, Clp1K/K neural precursor cells exhibited enhanced

cell death in basal growth conditions (using EGF and FGF), under

oxidative stress, as well as following growth factor withdrawal;

this enhanced cell death could be blocked using the pan-

caspase inhibitor zVAD, as well as the antioxidant N-acetyl-

L-cysteine (NAC) (Figure 7G). These data indicate that Clp1K/K

embryos have normal numbers and proliferation of neuronal

progenitors, but neuronal progenitor cells undergo enhanced

cell death, resulting in reduced numbers of cortical neurons.

DISCUSSION

In this study, we provide genomic, genetic, and molecular

modeling and biochemical and animal model evidence for the

involvement of CLP1 in a complex neurological phenotype that

includes both the CNS and PNS. We identified the same homo-

zygous rare variant, R140H, of the CLP1 gene in 11 individuals

affected with this neurological syndrome from five families using

WES and candidate gene sequencing. Further genetic analysis

revealed that these families share the same haplotype block

encompassing theCLP1 region. These data support the concept

of clan genomics (Lupski et al., 2011) in that a rare variant in the

population is concentrated in a lineage that introduced the

variant, either by de novo mutation or by immigration and sub-

sequent founder effect. In the patients identified here, the rare

R140H mutation was reduced to homozygosity. Our genomic

and genetic data indicate that a rare variant allele arose in a

distant common ancestor, segregated through the generations,

and was reduced to homozygosity by apparent consanguinity.

Genomic approaches to rare variant detection in Mendelizing

disease traits may eventually provide new insights into both

the genetic and molecular basis of disease, as well as reveal

unexpected consequences of dysfunction of basic biological

processes such as RNA metabolism.

Our findings reveal cortical dysgenesis with predominant

forebrain involvement byMRI and no overt evidence for midbrain

or prominent cerebellar abnormalities. Our mouse studies sup-

port predominant cortical cellular apoptosis likely responsible

for the uniform microcephaly observed during development in

mice and postnatally in all human subjects with homozygous

R140H alleles. A parallel study in this issue of Cell (Schaffer

et al., 2014) reportedCLP1mutation in association with a clinical

phenotype of pontocerebellar hypoplasia; they also report a

R140H founder mutation. In a zebrafish model organism study

of Clp1 mutation, they show TUNEL staining, revealing dramatic
increase specific to forebrain and hindbrain. Forebrain staining

supports both our mouse and human findings in which predom-

inant cortical involvement is observed.

Our data provide insights into the biology of disease, including

cortical dysgenesis. Mutations in proteins involved in RNA mod-

ifications have been associated previously with preferentially

or exclusively either CNS or PNS pathology. For instance, muta-

tions in EXOSC3, TSEN54, TSEN2, and TSEN34 are known

to cause neurological phenotypes that manifest in the brain

stem and cerebellum, causing Pontocerebellar hypoplasia

(PCH) PCH1B, PCH2A, PCH4, PCH2B, and PCH2C, but little

is known regarding potential PNS involvement, as the results

of nerve conduction studies have not been reported (Budde

et al., 2008; Renbaum et al., 2009; Wan et al., 2012). Conversely,

mutations in tRNA synthetase genes, such as GARS, KARS,

YARS, AARS, and HARS, are predominantly associated with

Charcot Marie Tooth neuropathy, distal spinal muscular atrophy,

and other PNS disorders without significant CNS involvement

(Antonellis et al., 2003; Jordanova et al., 2006; Lee et al., 2006;

McLaughlin et al., 2010; Vester et al., 2013).

Our biochemical experiments provide evidence that the

CLP1 R140H mutation impairs tRNA exon generation, most

likely due to decreased interaction between mutant CLP1 and

the TSEN complex. Together with our previous study showing

that a kinase-dead Clp1 K127A mutation results in reduced

pre-tRNA cleavage by affecting CLP1-TSEN complex integrity

(Hanada et al., 2013), we propose that an intact CLP1-TSEN

association is essential for efficient tRNA splicing. The fact

that the CLP1 R140H mutant shows RNA kinase activity but

is unable to associate with TSEN components will support

the need for future studies on modeling potential CLP1-TSEN

interaction platforms that are, in contrast to the kinase-dead

CLP1 K127A mutation, uncoupled from its ATP binding and/

or hydrolysis activity.

We further show that the global steady-state levels of mature

tRNAs in fibroblasts are not influenced by the CLP1 R140H

mutation, suggesting the existence of backup mechanisms

that ensure sufficient levels of mature tRNAs despite the unde-

tectable pre-tRNA cleavage activity observed in nuclear extracts

from patient cells. No obvious increase in general pre-tRNA

levels was observed in patient fibroblasts, and therefore, it is un-

likely that enhanced Pol III transcription of intron-containing

tRNA genes could compensate for inefficient pre-tRNA cleav-

age. Analogous to the accumulation of 50 leader-exon tRNA frag-

ments in cells and tissues of Clp1K/K mice (Hanada et al., 2013),

we detected increased levels of isoleucine and tyrosine tRNA

introns in R140H patient fibroblasts. These introns are linear

and harbor 50 OH groups, properties that are expected for a

reaction product after pre-tRNA cleavage and prior to a potential

50 phosphorylation by CLP1 (Weitzer and Martinez, 2007) or

circularization by the tRNA ligase (Popow et al., 2011). Future

work will have to address whether accumulation of linear introns

is a consequence of a defective release from a TSEN complex in

CLP1 R140H patient cells, thus being not exposed to cellular

nuclease activities. Further studies may also provide insights

into whether generation of tRNA processing intermediates is

a consequence of mutations in the CLP1 gene and potential

functions of these tRNA splicing byproducts.
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Figure 7. Microcephaly in Kinase-Defective Clp1 Embryos

(A) Brain weights and representative dorsal whole-brain views (insets) of Clp1+/+ control and Clp1K/K E16.5 and E18.5 mouse embryos on the neonatal lethal

C57BL/6 (B6) background.

(B andC) 3D brain evaluations viaMRI. (B) Representative visualizations of individual E16.5 and E18.5Clp1+/+ andClp1K/Kmouse embryos on the B6 background.

On top of an MRI slice iso-surface, 3D renderings are shown for the bulbus olfactorius (dark blue), cerebellum (light blue), and the cortex. The cortex is rainbow

(legend continued on next page)
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Wedemonstrated that mutations inCLP1 impair functioning of

neurons and lead to abnormalities of both the CNS and PNS. Our

patients present with peripheral nerve dysfunction as evidenced

by abnormal electrophysiological studies showing axonal neu-

ropathy affecting both motor and sensory nerves. These obser-

vations were universal in the eight affected individuals withCLP1

mutations for whomNCVswere assessed. Moreover, all patients

exhibit global cortical dysgenesis and microcephaly, which is

suggestive of global CNS dysfunction. Based on these human

phenotypes, we speculated that our mutant mice carrying a

kinase-inactivating CLP1 mutation might also exhibit abnormal-

ities of both the CNS and PNS. Indeed, using histological ana-

lyses and 3D reconstruction from MRI images, mice carrying a

homozygous CLP1 K127A kinase-dead mutation exhibit marked

microcephaly, in particular due to reduced numbers of cortical

neurons. Mechanistically, this phenotype appears to be progres-

sive and can be attributed to enhanced apoptosis of neuronal

progenitor cells at basal conditions and in response to oxidative

stress and growth factor withdrawal. Whether additional mecha-

nisms contribute to the observed microcephaly in mice and

whether these uncovered mechanisms also extend to humans

will need to be evaluated in future experiments. It is striking

that the clinical presentation of patients with CLP1 mutations is

nearly identical to one we observed in patients with VRK1muta-

tions (Gonzaga-Jauregui et al., 2013), especially in the neurolog-

ical presentation (progressive weakness), brain imaging studies

(cortical dysgenesis, microcephaly), and nerve conduction ve-

locity (NCV) (axonal neuropathy). From our network analysis,

CLP1 and VRK1 are molecular interactors, and it has been

reported that VRK1 can phosphorylate p53 (Valbuena et al.,

2006, 2011). We recently reported that kinase-dead CLP1 sensi-

tizes motor neurons and fibroblasts to death following oxidative

stress via a p53-mediated cell death pathway; genetic inactiva-

tion of p53 completely rescued the neonatal lethal phenotype of

Clp1K/K mice on a B6 background (Hanada et al., 2013). Thus,

based on our published genetic data in mice (ClpK/K) now com-

plemented by genomic approaches in human rare disease

studies (CLP1 and VRK1), it appears that the neurotoxic CLP1-

p53 pathway we have identified in mouse is also conserved

and operates in humans and is critical to neuron function.
EXPERIMENTAL PROCEDURES

Patients

This study was approved by the Institutional Review Board at Baylor College

of Medicine, and informed consent was obtained from all subjects prior to
color coded to illustrate the cortical thickness from 0 mm (blue) to 1.5 mm (red, m

via MRI. n = 8.

(D) Representative images from immunohistochemical analysis with antibodies ag

E18.5 embryos on the B6 background. Scale bars, 50 mm.

(E) Quantification (mean values ± SEM) of Tbr1+ neuron numbers in the neocortex

the area of Tbr1+ cells encompasses a region from the lateral ventricle to the bra

(F) Quantification (mean values ± SEM) of cleaved Caspase 3+ cell numbers, indic

E18.5 embryos on the B6 background. n = 3 mice per genotype.

(G) Cell death of neuronal progenitors isolated from E14.5 Clp1+/+ and Clp1K/K em

challenged with H2O2 (100 mM). Death was determined by assaying for cleaved Ca

mean values ± SEM of triplicate cultures. *p < 0.05, **p < 0.01, and ***p < 0.001.

See also Figures S6 and S7.
enrollment in the project. All subjects were evaluated by one or more pediatric

neurologists and clinical geneticists experienced with brain malformation phe-

notypes. Genomic DNA was extracted from blood based on the manufac-

turer’s protocol (QIAGEN Sciences).

Whole-Exome Sequencing

Four initial affected individuals (BAB3401, BAB3402, BAB3421, and BAB3422)

underwent targeted whole-exome capture using the BCM HGSC Core design

followed by Illumina HiSeq massively parallel sequencing through the Baylor-

Hopkins Center for Mendelian Genomics (BHCMG) initiative. An average of

10 Gb of raw sequence data were produced and subsequently mapped and

aligned to the reference human genome sequence GRCh37/Hg19 using

the BWA algorithm with an average depth of coverage of 1203 (median

coverage = 913); �92% of the bases were covered at 203. Variants were

called and annotated using an in-house-developed bioinformatics pipeline.

Analysis of variants was initially performed in search for shared variants be-

tween the pairs of affected siblings under a recessive model of inheritance

and later filtered for high-frequency and commonly observed variants.

Sanger PCR Confirmation and Segregation Studies

To confirm the mutation detected by exome sequencing and to perform

segregation analysis, standard PCR was carried out as previously described

(Pehlivan et al., 2012) by using CLPF1: 50-AGAGCTGACCCGAAACAAGA-30

and CLPR1: 50-CCAGCTGAGAAAATGCAGTG-30 primers. Amplification prod-

ucts were electrophoresed on 0.8% agarose gels. PCR products were purified

using ExoSAP-IT (Affymetrix, Santa Clara) and analyzed by standard Sanger

di-deoxy nucleotide sequencing (DNA Sequencing Core Facility at Baylor

College of Medicine, Houston).

Genome-wide Genotyping

To further investigate family relationships and the haplotype structure

of variant alleles, we performed genome-wide SNP genotyping on Illumina

HumanOmniExpress (families HOU1338 and HOU1333) and HumanOmni2.5

(families HOU1926 and HOU1380) microarrays (Illumina). Whole-genome

amplification, fragmentation, hybridization, enzymatic single-base extension,

slide staining, and washing were performed according to the manufacturer’s

instructions (Illumina). Microarrays were scanned on an Illumina iScan System.

GenomeStudio software v2011.1 (Illumina) was used for SNP clustering,

genotype calling, data intensity analysis, and the generation of the B allele

frequency plots in Figure 3A. Copy number variation (CNV) partition was

used for copy number and absence of heterozygosity analyses. For the last

family (HOU1981; samples BAB4980 and BAB4981), B allele frequencies

were determined from the whole exome data, i.e., by computing the variant/

total reads ratio for each SNP. The regions with absence of heterozygosity

were identified using in-house scripts in R language (http://www.r-project.

org) and Circular Binary Segmentation algorithm implemented in DNAcopy R

package (Olshen et al., 2004).

Identity-by-Descent Estimation

PED and MAP files were exported from GenomeStudio and analyzed in

PLINK. Because two different microarrays were used in the study, merged

PED and MAP files were generated, which included only the 668,800 SNPs

that were common to both arrays. Genotyping rate for this subset
ore thick). (C) Quantification of brain volumes (mean values ± SEM) determined

ainst Tbr1 to detect neurons in the cortical plate of Clp1+/+ control and Clp1K/K

of Clp1+/+ control and Clp1K/K E18.5 embryos on the B6 background. Of note,

in surface (width of 300 pixels, �100 mm). n = 8 mice per genotype.

ative of apoptosis, in coronal sections of Clp1+/+ control and Clp1K/K E16.5 and

bryos. Cells were cultured with (+) or without (�) EGF/FGF (each 20 ng/ml) and

spase 3 and blocked using zVAD (100 mM) or NAC (10 mM). Data are shown as

N.S., not significant.
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of SNPs, after merging the data for the four families, was 0.99984. Hetero-

zygous haploid (sex chromosome) SNPs were excluded. Linkage disequi-

librium-based pruning was then performed, excluding SNP pairs with r2

values > 0.2. After LD-based pruning, the remaining 28,581 SNPs were

used to estimate pairwise identity-by-descent metrics (171 pairwise compar-

isons for 19 individuals).

Bioinformatics

The functional impact of the p.R140H substitution was assessed by consid-

ering conservation scores from PhyloP (Siepel et al., 2006), GERP (Cooper

et al., 1998), and LRT (Chun and Fay, 2009) and, additionally, functional predic-

tion scores from PolyPhen-2 (Adzhubei et al., 2010), SNAP (Bromberg et al.,

2008), SIFT (Kumar et al., 2009), and MutationTaster (Schwarz et al., 2010),

which are computational algorithms that estimate the detrimental effect of

nonsynonymous substitutions based on statistical and machine learning

models. Graphical representations of molecular models were prepared with

PyMol (The PyMOL Molecular Graphics System, Schrödinger).

OFC Calculations

WHO head circumference data are only available from birth to age 5 years.

Therefore, we used head circumference data from the literature for boys and

girls starting from birth to 18 years (Roche et al., 1987). For time points that

were not available in the primary data, we interpolated the values for both

mean and SD using the R statistical programing language (R Core Develop-

ment Team).

Histology and Immunohistochemistry

Clp1K/K mutant mice were generated as described (Hanada et al., 2013) and

maintained according to institutional guidelines. Whole brains were fixed in

4% paraformaldehyde, washed in PBS, dehydrated, and paraffin embedded

according to standard protocols. For all procedures, 2- to 5-mm-thick coronal

sections of formalin-fixed paraffin-embedded mouse brains were used. For

hematoxylin and eosin staining (H&E), routine protocols were used. For immu-

nohistochemical analysis, blocking of endogenous peroxidase activity was

performed with 0.3%H2O2 for 15 min on deparaffinated sections at room tem-

perature, followed by treatment in a microwave oven (750 W) for 15 min in

10 mM citrate buffer (pH 6.0) for antigen retrieval before applying primary an-

tibodies. Then, the first antibody in blocking buffer (5% goat serum/45% Tris

buffered saline [pH 7.6] [TBS]/0.1% Triton X-100 in antibody diluent solution

[Zytomed]) was applied overnight at 4�C. The following antibodies were

used: rabbit polyclonal anti-Iba-1 (Iba-1, Wako Chemicals), mouse mono-

clonal anti-GFAP (Dako), mouse monoclonal antibody against neuronal

nuclear antigen (NeuN, Chemicon), mouse monoclonal anti-Calbindin D-28K

antibody (Sigma-Aldrich), mousemonoclonal anti-Neurofilament 200 antibody

(Sigma-Aldrich), rabbit polyclonal anti-Pax6 (Covance), rabbit polyclonal anti-

Tbr1 (Abcam), rabbit polyclonal anti-cleaved caspase 3 (Cell Signaling Tech-

nology), and anti-Ki67 (Novocastra). Histofine universal immunoperoxidase

polymer and Histofine Mouse Stain Kit (Nichirei Biosciences) were applied

after washing with TBS. The peroxidase reaction was detected using diamino-

benzidine (Sigma-Aldrich) as chromogen. Counterstaining was performed

using alum-hematoxylin. For immunofluorescence staining, Alexa Fluor 488

or 555 (Molecular Probes) was used as a secondary antibody with Hoechst

33342 for nuclear staining. Some quantifications were done using the public

NIH Image J 1.46 software on comparable sections taken at the same, defined

anterior-posterior level.

MRI

Clp1K/K mutant mice and wild-type mice were analyzed using MRI. These

data are published using an ultra-high-field 15.2 Tesla horizontal Biospec

scanner (152/11, Bruker, Ettlingen). The magnet has a free bore of 110 mm

and is equipped with actively shielded gradients (1,000 mT/m) and third-or-

der shims. All scans were performed using a whole-body transmitter/receiver

quadrature coil with an inner diameter of 35 mm. The SNR improvement of

the high field allowed us to obtain from E16.5 and E18.5 mouse embryos

3D diffusion weighted spin echo sequences (TR/TE = 500/16.5 ms, 16

averages, b factor = 650 s/mm2) with FOV 12 3 12 3 8 mm with an imaging

matrix 240 3 240 3 40 resulting in a spatial resolution of 50x50x200 mm. The
648 Cell 157, 636–650, April 24, 2014 ª2014 Elsevier Inc.
same approach was taken to scan adult mouse brains, with the modification

that the FOV (16 3 16 3 8 mm) and, consequently, the imaging matrix

(320 3 320 x 40) had to be adjusted to keep the same resolution and total

measurement time (NEX 9). For the adult brains, a b factor of 300 s/mm2 re-

sulted in better contrast of the different brain structures. For images of whole

embryos, we used a 7T whole-body scanner. These images were acquired

with a standard turbo spin echo sequence (TE 48 ms, TR 380 ms) with a

voxel resolution of 78 3 78 3 500 mm3 (J. Friske et al., 2012, ESMRMB,

conference).

MRI Image Analysis

For each 3D image data set, the bulbus olfactorius, the cortex, the cerebellum

and, for the adult brains, the hippocampus were manually segmented using

the AMIRA software (V 5.5, VSG). Based on these segmentations, surface ren-

derings of the individual segmented brain structures were displayed onto a

representative horizontal MR slice at the ventral eye position using AMIRA

visualization modules. The thickness of the cortex was determined at each

vertex by computing the distance along the vertex normal to the normal’s inter-

section with the closest triangle of the cortex. The resulting scalar field was

surface mapped onto the surface rendering of the cortex. Geometric proper-

ties (volume, principal axes, and form factors) of each segmented brain struc-

ture were calculated using MagnAn (BioCom GbR).

Preparation of NPCs

Preparation of embryonic neuroepithelial cells containing neural precursor

cells (NPCs) was performed as previously described (Shiraishi et al., 2010).

Cerebral cortices from embryonic day 14.5 pups were dissected in Hank’s

balanced salt solution and mechanically dissociated using a micropipette.

After centrifugation, cells were plated in a 60 mm culture dish coated with

poly-L-ornithine (Sigma) and recombinant human fibronectin (R&D). Cells

were cultured in a neural progenitor maintenance medium (NPMM) bullet kit

(Lonza). The medium was changed every other day. After 4 days of expansion

of NPCs, cells were replated and cultured with 100 mM H2O2 or with and

without EGF and FGF for induction of cell death. 100 mM zVAD-fmk (BD biosci-

ence) or 10 mM N-acetylcysteine (Sigma) were used as pan-caspase inhibitor

or antioxidant, respectively. After 24 hr, cell survival was evaluated with immu-

nostaining for cleaved caspase 3.

Statistics

Comparisons between groups were made by two-sided Student’s t test. A

p value less than 0.05 was considered significant.
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