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Abstract

Let Q be an algebraic group with Lie algebra q and V a finite-dimensional Q-module. The index
of V , denoted ind(q,V ), is the minimal codimension of the Q-orbits in the dual space V ∗. By Vin-
berg’s inequality, ind(q,V ∗) � ind(qv, (V/q · v)∗) for any v ∈ V . In this article, we study conditions
that guarantee equality. In case of reductive group actions, we show that it suffices to test the nilpo-
tent elements in V and all its slice representations. It was recently proved by J.-Y. Charbonnel that
the equality for indices holds for the adjoint representation of a semisimple group. Another proof for
the classical series was given by the second author. One of our goals is to understand what is going
on in the case of isotropy representations of symmetric spaces.
© 2005 Elsevier Inc. All rights reserved.
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Introduction

The ground field k is algebraically closed and of characteristic zero. For any finite-
dimensional representation ρ :q → gl(V ) of a Lie algebra q, one can define a non-negative
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integer which is called the index of (the q-module) V . Namely, if V ∗ is the dual q-module,
then

ind(q,V ) = dimV − max
ξ∈V ∗(dimq · ξ).

Here q · ξ = {s · ξ | s ∈ q} and s · ξ is shorthand for ρ∗(s)ξ . This definition goes back to
Raïs [10]. Let qv denote the stationary subalgebra of v ∈ V . For any v ∈ V , we can form
the qv-module V/q · v. It was noticed by Vinberg that one always has the inequality

ind(q,V ∗) � ind
(
qv, (V/q · v)∗

)
. (0.1)

The goal of this paper is to study conditions that guarantee equality. If V is the coadjoint
representation of q, then the above index is equal to the index of q in the sense of Dixmier.
Here Vinberg’s inequality reads

indq � indqξ for any ξ ∈ q∗.

It is not always true that indq = indqξ , see Example 1.1 below. However, it was conjec-
tured by Elashvili that if q = g is semisimple, then this equality always holds. It is easily
seen that it suffices to prove the equality indg = indgξ only for the nilpotent elements
ξ ∈ g � g∗. The conjecture was recently proved by Charbonnel [2]. A proof for the clas-
sical Lie algebras, with weaker assumptions on the ground field, was found independently
by the second author [13].

One can consider two types of problems connected with Eq. (0.1). First, to find proper-
ties of v that guarantee the equality of the indices. Second, to describe representations such
that (0.1) turns into equality for each v ∈ V .

We begin with pointing out two simple sufficient conditions. If either qv is reductive or
dimqv · v is maximal, then Eq. (0.1) becomes an equality. Let Q be a connected algebraic
group with Lie algebra q. Given a representation ρ :Q → GL(V ) (or (Q : V ) for short),
we say that (Q : V ) has good index behaviour (GIB), if ind(q,V ∗) = ind(qv, (V/q · v)∗)
for each v ∈ V . We prove that most sufficiently large reducible representations have GIB.
Namely, if V is any (finite-dimensional rational) Q-module, then mV has GIB for any
m � dimV . Another result of this sort asserts that if V is a Q-module having GIB and
there is ξ ∈ V ∗ such that qξ = 0, then V ⊕ W has GIB for any Q-module W . It is also
easily seen that any representation of an algebraic torus has GIB.

Then we restrict ourselves to the case of reductive Lie algebras. Here one can use the
rich machinery and various tools of Invariant Theory. Let G be a connected reductive
group with Lie algebra g. Given a representation ρ :G → GL(V ) (or (G : V ) for short), we
say that (G : V ) has good nilpotent index behaviour (GNIB), if the equality ind(g,V ∗) =
ind(gv, (V/g · v)∗) holds for any nilpotent element v ∈ V . Using Luna’s slice theorem, we
prove that GIB is equivalent to that GNIB holds for any slice representation of (G : V ).
Furthermore, we prove that if (G : V ) is observable (i.e., the number of nilpotent orbits
is finite), then GNIB implies GIB. As is well known, the adjoint representation of G is
observable.
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A related class of representations, with nice invariant-theoretic properties, consists of
the isotropy representations of symmetric pairs. Since these representations are observable,
it suffices to consider the property of having GNIB for them. Let (G,G0) be a symmetric
pair with the associated Z2-grading g = g0 ⊕ g1 and the isotropy representation (G0 : g1).
Abusing notation, we will say that (G,G0) has GNIB whenever the isotropy representation
has. A down-to-earth description of GNIB in the context of isotropy representations is as
follows. Let e ∈ g1 be a nilpotent element, and ge = ge,0 ⊕ ge,1. Then the GNIB property
for e means that the codimension of generic Ge,0-orbits in (ge,1)

∗ equals the codimension
of generic G0-orbits in g1, that is, the rank of the symmetric variety G/G0. (By Vinberg’s
inequality, the first codimension cannot be less than the second one.) It turns out that the
analogue of the Elashvili conjecture (= Charbonnel’s theorem) does not always holds here,
so that it is of interest to explicitly describe the isotropy representations having GNIB.

In Sections 3–5, we prove, using explicit matrix models, that the symmetric pairs
(SLn,SOn), (SL2n,Sp2n), (Sp2n,GLn), and (SO2n,GLn) have GNIB. It is also shown that
each symmetric pair of rank 1 has GNIB, see Section 7. On the other hand, we present a
method of constructing isotropy representations without GNIB, which makes use of even
nilpotent orbits of height 4. Combining this method with the slice method, we are able to
prove that most of the remaining isotropy representations do not have GNIB, see Section 6.
As a result of our analysis and explicit calculations for small rank cases, we get a complete
answer for the isotropy representations related to the classical simple Lie algebras. The
answer for sln is given below.

Theorem 0.1. Let (SLn,G0) be a symmetric pair. Then it has GNIB if and only if g0 belong
to the following list:

(i) son,
(ii) sp2m for n = 2m,

(iii) slm × sln−m × t1 with m = 1,2,
(iv) sl3 × sl3 × t1 for n = 6.

(Here t1 stands for the Lie algebra of a one-dimensional torus.)

1. The index of a representation

Let q be a Lie algebra and ρ :q → gl(V ) a finite-dimensional representation of q, i.e.,
V is a q-module. Abusing notation, we write s · v in place of ρ(s)v, if s ∈ q and v ∈ V .
An element v ∈ V is called regular or q-regular whenever its stationary subalgebra qv =
{s ∈ q | s · v = 0} has minimal dimension. Because the function v �→ dimqv (v ∈ V ) is
upper semicontinuous, the set of all q-regular elements is open and dense in V .

Definition 1. The non-negative integer

dimV − max
ξ∈V ∗(dimq · ξ) = dimV − dimq + min

ξ∈V ∗(dimqξ )

is called the index of (the q-module) V . It will be denoted by ind(q,V ).
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Notice that in order to define the index of V we used elements of the dual q-module V ∗.
This really makes a difference, since ind(q,V ) is not necessarily equal to ind(q,V ∗) unless
q is reductive.

In case q is an algebraic Lie algebra, a more geometric description is available. Let Q

be an algebraic group with Lie algebra q. Then indq = dimq − maxξ∈q∗ dimQ · ξ . By
the Rosenlicht theorem [11], this number is also equal to trdegk(V ∗)Q. Below, we always
assume that q is algebraic, and consider Q whenever it is convenient.

If v ∈ V , then q · v is a qv-submodule of V . Geometrically, it is the tangent space of
the orbit Q · v at v. Then Vv := V/q · v is a qv-module as well. By Vinberg’s Lemma (see
[8, 1.6]), we have

max
x∈V

dim(Q · x) � max
η∈Vv

dim(Qv · η) + dim(Q · v) (1.1)

for any v ∈ V . It can be rewritten in equivalent forms:

trdegk(V )Q � trdegk(V/q · v)Qv or (1.2)

min
x∈V

dim(Qx) � min
η∈Vv

dim
(
(Qv)η

)
or (1.3)

ind
(
q,V ∗) � ind

(
qv, (V/q · v)∗

)
. (1.4)

It is then natural to look for conditions that guarantee us the equality. This article is devoted
to several aspects of the following problem.

Problem. When does the equality hold in Eqs. (1.1)–(1.4)?

Every Lie algebra has a distinguished representation, namely, the adjoint one. The index
of the adjoint representation of q is called simply the index of q, denoted indq. That is,
ind(q,q) = indq. Let us take V = q∗. Then q∗/q · ξ � (qξ )

∗ for any ξ ∈ q∗. Therefore
inequality (1.4) in this situation reads

indq � indqξ for any ξ ∈ q∗. (1.5)

The coadjoint representation has some interesting features. For instance, the Q-orbits in q∗
are symplectic manifolds. Hence indqξ − indq is even for any ξ ∈ q∗. However, even in
this situation the inequality (1.5) and hence (1.4) can be strict.

Example 1.1. Let q be a Borel subalgebra of gl4. It is well known that indq = 2, see,
e.g., [7, 4.9]. But there is a point ξ ∈ q∗ such that qξ is a 4-dimensional commutative
subalgebra, i.e., indqξ = 4. If q is represented as the space of all upper-triangular matrices,
then q∗ � gl4/[q,q] can be identified with the space of all lower-triangular matrices. Then
we take ξ to be the following matrix

ξ =
⎛
⎜⎝

0
1 0
0 1 0

⎞
⎟⎠ .
0 0 1 0
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Since the equality in Eqs. (1.1)–(1.4) does not always holds, one has to impose some
constraints on V and Q. We begin with the following simple assertion, which is well known
to the experts.

Proposition 1.1. Suppose that Qv is reductive. Then ind(q,V ∗) = ind(qv, (V/q · v)∗).

Proof. In this case the Qv-module V is completely reducible, so that there is a Qv-stable
complement of q · v, say Nv . Let us form the associated fibre bundle Zv := Q ∗Qv Nv .
Recall that it is the (geometric) quotient of Q×Nv by the Qv-action defined by Qv ×Q×
Nv → Q×Nv , (s, q, n) �→ (qs−1, s ·n). The image of (q,n) ∈ Q×Nv in Zv is denoted by
q ∗ n. Consider the natural Q-equivariant morphism ψ :Zv → V , ψ(q ∗ n) = q · (v + n).
By construction, ψ is étale in e ∗ v ∈ Zv . It follows that the maximal dimensions of
Q-orbits in V and Zv are the same, i.e., trdegk(Zv)

Q = trdegk(V )Q. It remains to ob-
serve that

max
z∈Zv

dim(Q · z) = max
η∈Nv

dim(Qv · η) + dim(Q · v),

which is a standard property of associated fibre bundles. �
For the sake of completeness, we mention the following obvious consequence of (1.1).

Proposition 1.2. If the dimension of Q · v is maximal, then the action (Qv : V/q · v) is
trivial and equality holds in (1.1).

Definition 2. We say that the representation (Q : V ) has good index behaviour (GIB, for
short), if the equality

ind(q,V ∗) = ind
(
qv, (V/q · v)∗

)
(1.6)

holds for every v ∈ V . That is, inequality (1.1) or (1.4) always turns into equality. Another
way is to say that (Q : V ) has GIB if and only if the function v �→ trdegk(V/q · v)Qv =
ind(qv, (V/q · v)∗) is constant on V .

As an immediate consequence of Proposition 1.1, we obtain

Proposition 1.3. Let Q be an algebraic torus. Then any Q-module has GIB.

For an arbitrary Q, it is not easy to prove that V has (or has not) GIB. However, suffi-
ciently “large” reducible representations always have GIB.

Theorem 1.4. Let ρ :Q → GL(V ) be an arbitrary linear representation and dimV = n.
Then the representation (Q : mV ∗) has GIB for any m � n. In this case, ind(q,mV ∗) =
nm − dimq.
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Proof. Our plan is to prove first the assertions for q = gl(V ), and then deduce from this
the general case.

(1) Assume that q = gl(V ). It is clear that the generic stabiliser for (gl(V ) : mV ) is
trivial for m � n, whence the equality for the index.

Let ṽ = (v1, . . . , vm) be an arbitrary element of mV . The rank of ṽ, denoted rk ṽ, is the
dimension of linear span of the components vi . If rk ṽ = r � n, then without loss of gen-
erality one may assume that ṽ = (v1, . . . , vr ,0, . . . ,0), where the vectors v1, . . . , vr form
the part of the standard basis for V . (Use the action of GLm that permutes the coordinates
of ṽ.) Then GL(V )ṽ = (

Ir ∗
0 ∗

)
and mV/gl(V ) · ṽ � (m − r)V . It is easily seen that GL(V )ṽ

has an orbit with trivial stabiliser in mV/gl(V ) · ṽ. This means that

n(m − n) = trdegk(mV )GL(V ) = trdegk
(
mV/gl(V ) · ṽ)GL(V )ṽ for any ṽ,

as required.
(2) If Q ⊂ GL(V ) is arbitrary and ṽ is as above, then mV/q · ṽ ⊃ (m − r)V and qṽ ⊂

gl(V )ṽ . Hence Qṽ also has an orbit in mV/q · ṽ with trivial stabiliser. �
Theorem 1.5. Let V be a Q-module having GIB such that ind(q,V ∗) = dimV − dimq.
Then for any Q-module W , (Q : W ⊕ V ) has GIB and ind(q,V ∗ ⊕ W ∗) = dimV +
dimW − dimq.

Proof. The assumption of having GIB and the equality for ind(q,V ∗) mean that for any
v ∈ V there is v0 such that dim(qv)v0 = 0, where v0 stands for the image of v0 in V/q · v.
Our aim is to establish the similar property for W ⊕V . Let w + v ∈ W ⊕V be an arbitrary
vector. Then

(qv+w)(0,v0)
⊂ (qv)(0,v0)

⊂ (qv)v0 = {0},

where (0, v0) is the image of v0 in (W ⊕ V )/q · (w + v). Therefore

ind
(
qv+w, (W ⊕ V )/q · (w + v)∗

) = dim(W ⊕ V ) − dimq · (w + v) − dimqw+v

= dim(W ⊕ V ) − dimq.

Thus the function v + w �→ ind(qv+w, (W ⊕ V )/q · (w + v)∗) is constant, and we are
done. �

Combining the above theorems, we obtain

Corollary 1.6. If V1,V2 are arbitrary Q-modules and m � dimV1, then mV1 ⊕ V2 has
GIB.
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2. Representations of reductive groups having GIB and GNIB

Let G be a reductive algebraic group, and let ρ : G → GL(V ) be a finite-dimensional
rational representation of G. Recall that v ∈ V is called nilpotent, if the closure of the
orbit G · v contains the origin, i.e., G · v 
 0. The set of all nilpotent elements is called the
nullcone and is denoted by N(V ). Whenever we wish to stress that the nullcone depends
on the group, we write NG(V ). A vector v is said to be semisimple, if G · v = G · v. If v is
semisimple, then Gv is reductive, and therefore the tangent space g ·v ⊂ V has a Gv-stable
complement, say Nv . The natural representation (Gv : Nv) is called the slice representation
(associated with v). We also say that it is a slice representation of (G : V ). Notice that
the initial representation itself can be regarded as the slice representation associated with
0 ∈ V . In this general situation, there is an analogue of the Jordan decomposition, which is
well known for the elements of g. That is, for any v ∈ V there are a semisimple element vs

and a (nilpotent) element vn such that

• v = vs + vn;
• Gv ⊂ Gvs ;
• vn is nilpotent with respect to Gvs , i.e., Gvs · vn 
 0.

This readily follows from Luna’s slice theorem [5]. Below, we recall how such a decom-
position is constructed. But, unlike the case of the adjoint representation, a decomposition
with the above properties is not unique.

As usual, V//G := Spec k[V ]G is the categorical quotient and π : V → V//G is the
quotient mapping. Recall that NG(V ) = π−1π(0).

Definition 3. We say that the representation (G : V ) has good nilpotent index behaviour
(GNIB, for short), if equality (1.6) holds for each nilpotent element v ∈ V .

First, we demonstrate that there are irreducible representations of reductive groups not
having GNIB and hence not having GIB.

Example 2.1. Let G = SL2 × SL2 and V = R3 ⊗ R1. Here Rd stands for the simple
SL2-module of dimension d + 1. Hence V is a simple G-module of dimension 8. Let
us show that V has no GNIB. A generic stabiliser for this representation is finite, hence
ind(g,V ∗) = dimV − dimg = 2. As usual, we regard Rd as the space of binary forms
of degree d . Let (x3, x2y, xy2, y3) be a basis for R3 and (u, z) a basis for R1. Take
v = (x3 + y3) ⊗ u. It is easily seen that v is nilpotent. A direct computation shows that
the identity component of Gv is 1-dimensional and unipotent. However, the gv-module
V/g · v is trivial (and 3-dimensional). Hence equality (1.6) does not hold for v.

Our next goal is to understand a relationship between GIB and GNIB. Clearly, if a rep-
resentation has GIB, then it has GNIB as well. As for the converse, we have the following
general criterion.
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Theorem 2.1. The representation (G : V ) has GIB if and only if every slice representation
of (G : V ) has GNIB.

Proof. Actually, we prove a more precise statement. Namely, suppose v ∈ V is semi-
simple. Then equality (1.6) is satisfied for every y ∈ π−1(π(v)) if and only if the slice
representation (Gv : Nv) has GNIB.

1. "If" part. By Luna’s slice theorem, π−1(π(v)) � G ∗Gv N(Nv). Therefore we may
assume that y = v + x, where x ∈ N(Nv). This expression is just a Jordan decomposition
for y, in the sense described above. By assumption, we know that for any x ∈ N(Nv) the
following holds:

dimGv · x + max
ξ∈Nv/gv ·x

dim (Gv)x · ξ = max
z∈Nv

dimGv · z. (2.1)

Notice that (Gv)x = Gv+x = Gy , since y = v + x is a Jordan decomposition. We want to
show that

dimG · y + max
η∈V/g·y dim (Gy) · η = max

z∈V
dimG · z. (2.2)

Again, since y = v + x is a Jordan decomposition, we have

dimG · y = dimG · v + dimGv · x.

The following assertion is one of the many consequences of Luna’s slice theorem.

Lemma 2.2. The Gy -modules Nv/gv · x and V/g · y are isomorphic.

Proof. First, we notice that both Nv and gv · x are Gy -modules, since Gy = Gv ∩ Gx .
Hence the first quotient is also a Gy -module. Consider the G-equivariant morphism

ψ :G ∗Gv Nv → V.

Recall that if g ∗ n ∈ G ∗Gv Nv is an arbitrary point, then ψ(g ∗ n) := g · (v + n). Hence
ψ(1 ∗ x) = y. Set ỹ = 1 ∗ x. It follows from the slice theorem that Gỹ = Gy and

Tỹ(G ∗Gv Nv)/Tỹ(G · ỹ) → TyV/Tv(G · y) = V/g · y

is a Gy -equivariant bijection. It remains to observe that the left-hand side is isomorphic to
Nv/gv · x. �

Thus, it follows from Lemma 2.2 and the previous argument that the left-hand side of
(2.2) can be transformed as follows
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dimG · y + max
η∈V/g·y dimGy · η

= dimG · v + (
dimGv · x + max

ξ∈Nv/gv ·x
dimGy · ξ)

(2.1)= dimG · v + max
z∈Nv

dimGv · z 1.1= max
z∈V

dimG · z,

which completes the proof of the “if" part.
2. “Only if" part. Notice that the previous argument can be reversed. �
In the light of the previous theorem, it is natural to ask the following natural

Question. Is it true that “GNIB” implies “GIB” for any representation of a reductive group?

We can give a partial answer to this question. Recall that a representation (G : V ) is said
to be observable if the number of nilpotent orbits is finite. This implies that each fibre of
π consists of finitely many orbits, see, e.g., [4].

Theorem 2.3. Suppose (G : V ) is observable. Then GNIB implies GIB.

Proof. Assume that this is not the case, i.e., (G : V ) has GNIB but there is v ∈ V such
that G · v  
 0 and Eq. (1.6) is not satisfied for v. We use the method of associated cones
developed in [1, §3]. The variety k∗(G · v)∩N(V ) is the associated cone of G ·v, denoted
C(G · v). It can be reducible, but each irreducible component is of dimension dimG · v.
Let G · u be the orbit that is dense in an irreducible component of C(G · v). Here we use
the hypothesis that (G : V ) is observable. There is a morphism τ : k → k∗(G · v) such that
τ(k \ {0}) ⊂ k

∗(G · v) and τ(0) = u. Since dimG · u = dimG · v, this implies that

lim
t→0

gτ(t) = gu and lim
t→0

g · τ(t) = g · u. (2.3)

These two limits are taken in the suitable Grassmannians. By the assumption, we have
ind(gτ(t), (V/g · τ(t))∗) > ind(g,V ∗) for any t = 0. In other words,

max
η∈V/g·τ(t)

dimGτ(t) · η < max
z∈V

dimG · z − dimG · v.

We claim that maxζ∈V/g·u dimGu · ζ � maxη∈V/g·τ(t) dimGτ(t) · η. This follows from the
upper semi-continuity of dimensions of orbits and Eq. (2.3). The inequality obtained means
that Eq. (1.6) is not satisfied for the nilpotent element u. Hence (G : V ) has no GNIB,
which contradicts the initial assumption. This completes the proof. �

We do not know if the statement of Theorem 2.3 remains true for arbitrary representa-
tions of G.

Now, we turn to considering the adjoint representation of a reductive group G. Here
the condition of having GIB means that inequality (1.5) is, in fact, equality. Because now
g � g∗, one may deal with centralisers of elements in g. As above, we write ge for the
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centraliser of e ∈ g. The following fundamental result was conjectured by Elashvili at the
end of 1980s and was recently proved by Charbonnel [2].

Theorem 2.4 (Charbonnel). The adjoint representation of a reductive group G has GNIB.
In other words, if e ∈ g is a nilpotent element, then indge = rkg.

In [13], this theorem is independently proved for the classical Lie algebras. Some partial
results for “small” orbits were obtained earlier in [8] and [9].

A remarkable fact is that, for the adjoint representation, each slice representation is
again the adjoint representation (of a centraliser). Hence Theorems 2.1 and 2.4 readily
imply that the adjoint representation has GIB. Another way to deduce GIB is to refer to
Theorems 2.3 and 2.4, and the fact that the adjoint representation is observable.

From the invariant-theoretic point of view, adjoint representations have the best possible
properties. Isotropy representations of symmetric spaces form a class with close properties.
So, it is natural to inquire whether these representations have GIB and GNIB. Recall the
necessary setup.

Let σ be an involutory automorphism of g. Then g = g0 ⊕ g1 is the direct sum of
σ -eigenspaces. Here g0 is a reductive subalgebra and g1 is a g0-module. Write G0 for the
connected subgroup of G with Lie algebra g0. With this notation, our object of study is
(G0 : g1), the isotropy representation of the symmetric pair (G,G0). By [3], these repre-
sentations are observable, so that Theorem 2.3 applies. Therefore we will not distinguish
the properties GIB and GNIB in the context of isotropy representations of symmetric pairs.
In the rest of the paper, we deal with the following

Problem. For which involutions σ does the representation (G0 : g1) have GNIB?

For future use, we record the following result.

Lemma 2.5. Let q = q0 ⊕ q1 be an arbitrary Z2-graded Lie algebra and q∗ = q∗
0 ⊕ q∗

1 the
corresponding decomposition of the dual space. For any ξ ∈ q∗

1 the stationary subalgebra
qξ possesses the induced Z2-grading and dimq0 − dimq1 = dimqξ,0 − dimqξ,1.

Proof. This claim is well known if q is reductive and one identifies q and q∗, see [3,
Proposition 5]. The general proof is essentially the same. �

Let us give an interpretation of GNIB for the isotropy representations, which is helpful
in practical applications. It is known that x ∈ g1 is nilpotent in the sense of the above
definition (i.e., as an element of the G0-module g1) if and only if it is nilpotent as an
element of g. Formally, NG0(g1) = NG(g) ∩ g1. If e ∈ N(g1), and ge = ge,0 ⊕ ge,1 is
the induced Z2-grading, then ge,0 is precisely the stationary subalgebra of e in g0. Now,
inequality (1.4) reads

ind
(
g0, (g1)

∗) � ind
(
ge,0,

(
g1/[g0, e]

)∗)
.

Using a G-invariant inner product on g, one easily shows that g1/[g0, e] � (ge,1)
∗. Recall

also that g1 is an orthogonal G0-module, i.e., G0 → SO(g1). The number ind(g0, (g1)
∗) =
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ind(g0,g1) equals the Krull dimension of the invariant ring k[g1]G0 , which in turn is equal
to the rank of G/G0 (in the sense of the theory of symmetric varieties). Thus, we obtain

Proposition 2.6.

1. For any e ∈ N(g1), we have rk(G/G0) = ind(g0,g1) � ind(ge,0,ge,1).
2. The following conditions are equivalent:

(i) the isotropy representation (G0 : g1) has GNIB;
(ii) for any e ∈ N(g1) we have rk(G/G0) = ind(ge,0,ge,1);

(iii) for any e ∈ N(g1) there is an α ∈ g∗
e such that α(ge,0) = 0 and dim(ge,1)α =

rk(G/G0).

Proof. Part 1 and the equivalence of (i) and (ii) follow from the previous discussion. To
prove the equivalence of (ii) and (iii), we note that if α(ge,0) = 0, then α can be regarded
as an element of (ge,1)

∗. Then

codimge,0 · α = dimge,1 − dimge,0 + dim(ge,0)α
2.5= dim(ge,1)α.

Hence, ind(ge,0,ge,1) = min dim(ge,1)α , where minimum is taken over all α ∈ g∗
e such that

α(ge,0) = 0. �
Below, we show that there are isotropy representations with and without GNIB.

3. Isotropy representations for the outer involutions of gl(V )

Let V be a finite-dimensional vector space over k. If σ is an outer involution of sl(V ),
then g0 is isomorphic to either sp(V ) or so(V ). Of course, the first case is only possible
if dimV is even. It will technically be easier to deal with g = gl(V ) and assume that the
centre of gl(V ) lies in g1. Then the Sp(V )-module g1 is isomorphic to ∧2V and the SO(V )-
module g1 is isomorphic to S2V . The goal of this section is to prove that the isotropy
representations (Sp(V ) : ∧2V ) and (SO(V ) : S2V ) have GIB.

Recall the necessary set-up. Let ( , ) be a non-degenerate symmetric or skew-symmetric
form on V ; that is, (v,w) = ε(w,v), where v,w ∈ V and ε = +1 or −1. Let J denote
the matrix of ( , ) with respect to some basis of V . Then (v,w) = vtJw, where v,w are
regarded as column vectors and the symbol ( )t stands for the transpose. Since J t = ±J ,
the mapping A → σ(A) := −J−1AtJ is an involution of gl(V ). Let gl(V ) = g0 ⊕ g1 be
the corresponding Z2-grading. Here g0 consists of the linear transformations preserving the
form ( , ), i.e., satisfying the property (vA,w) = −(v,Aw) for all v,w ∈ V . The elements
of g1 multiply the form ( , ) by −1, i.e.,

(Av,w) = (v,Aw) for all A ∈ g1 and v,w ∈ V. (3.1)

Recall standard facts concerning nilpotent elements in g = gl(V ), mainly in order to fix the
notation.
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Let e ∈ g be a nilpotent element and m = dim Ker(e). By the theory of Jordan nor-
mal form, there are vectors w1, . . . ,wm ∈ V and non-negative integers d1, . . . , dm such
that edi+1 · wi = 0 and {es · wi | 1 � i � m, 0 � s � di} is a basis for V . Set Vi = 〈wi,

e · wi, . . . , e
di · wi〉 and W = 〈w1, . . . ,wm〉. Then V = ⊕m

i=1 Vi and V = W ⊕ Im(e). The
spaces {Vi} are called the Jordan (or cyclic) spaces of the nilpotent element e.

Suppose ϕ ∈ ge. Because ϕ(es · wi) = es · ϕ(wi), the linear map ϕ is determined by its
values on W . In other words, if

ϕ(wi) =
∑
j,s

c
j,s
i

(
es · wj

)
, where c

j,s
i ∈ k,

then ϕ is determined by the coefficients c
j,s
i = c

j,s
i (ϕ). In what follows, we will only indi-

cate the values of ϕ on the cyclic vectors {wi}.
A basis for ge consists of the maps {ξj,s

i } given by

ξ
j,s
i :

{
wi �→ es · wj ,

wt �→ 0, if t = i,
where 1 � i, j � m and max{dj − di,0} � s � dj .

Lemma 3.1. In the above setting, suppose that e ∈ N(g1). Then the cyclic vectors {wi} and
thereby the spaces {Vi} can be chosen such that the following conditions are satisfied:

(i) If ε = −1, then the set {1,2, . . . ,m} can be partitioned in pairs (i, i∗) such that di =
di∗ and wi is orthogonal to all basis vectors es · wj except edi · wi∗ . (Here i = i∗.)

(ii) If ε = 1, then (Vi,Vj ) = 0 for i = j and the restriction of ( , ) to each Vi is non-
degenerate.

Proof. We argue by induction on m = dim Ker(e).
It follows from Eq. (3.1) that Ker(ei) and Im(ei) are orthogonal with respect to ( , ).

In particular, Ker(e) is orthogonal to Im(e), and ( , ) induces a non-degenerate pairing
between W and Ker(e). Suppose d1 = mini{di}. There is a vector edi · wi ∈ Ker(e) for
some i such that (w1, e

di wi) = 0. Then di � d1, hence di = d1 in view of the minimality
of d1.

The rest of the argument splits.
(i) In the symplectic case (ε = −1), we have

(
w1, e

d1 · w1
) = (

ed1 · w1,w1
) = −(

w1, e
d1 · w1

) = 0.

Hence, i = 1. It is easily verified that the restriction of ( , ) to either V1 or Vi is zero, while
the restriction to V1 ⊕ Vi is non-degenerate. Therefore, we may take 1∗ = i. Then all other
wj can be chosen in (V1 ⊕ Vi)

⊥, the e-invariant orthogonal complement to V1 ⊕ Vi .
(ii) Consider the orthogonal case (ε = 1). If i = 1, then the restriction of ( , ) to V1 is

non-degenerate and we may choose the remaining cyclic vectors in V ⊥
1 . If i = 1 and ( , )

is degenerate on both V1 and Vi , then we make the following modification of w1 and wi .
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Our assumption implies that (w1, e
d1 · w1) = 0 and (wi, e

d1 · wi) = 0. Set w′
1 := w1 + wi

and w′
i := w1 − wi . Then

(
w′

1, e
d1 · w′

1

) = 2
(
w1, e

d1 · wi

) = 0 and
(
w′

i , e
d1 · w′

i

) = −2
(
w1, e

d1 · wi

) = 0.

This means that the restriction of ( , ) to the cyclic space generated by either w′
1 or w′

i is
non-degenerate. �
Theorem 3.2. The representation (SO(V ) : S2V ) has GNIB.

Proof. Here rk(G/G0) = dimV . Let e ∈ N(g1). Recall that σ induces the decomposition
ge = ge,0 ⊕ ge,1. We choose the cyclic vectors for e as described in Lemma 3.1(ii). Define
α ∈ (ge)

∗ by

α(ϕ) =
m∑

i=1

aic
i,di

i ,

where c
j,s
i are the coefficients of ϕ and {ai} are pairwise different non-zero numbers. Then

(ge)α consists of all maps in ge preserving the Jordan spaces Vi [13, Section 2], i.e.,

(ge)α = 〈
ξ

i,s
i | 1 � i � m, 0 � s � di

〉
,

where 〈. . .〉 denotes the k-linear span. Hence

dim(ge)α =
∑

i

(di + 1) = dimV.

We claim that α(ge,0) = 0. Indeed, assume the converse, i.e., ϕ = ∑
c
j,s
i ξ

j,s
i ∈ ge,0 and

α(ϕ) = 0. This means that c
i,di

i = 0 for some i. Then

(
ϕ(wi),wi

) = (
wi,ϕ(wi)

) = c
i,di

i

(
wi, e

di · wi

) = 0,

which in view of Eq. (3.1) contradicts the fact that ϕ ∈ ge,0. Hence α ∈ (ge,1)
∗ ⊂ (ge)

∗. By
Lemma 2.5, we have

dim(ge,1)α − dim(ge,0)α = dimge,1 − dimge,0 = dimg1 − dimg0 = dimV.

On the other hand,

dim(ge,1)α + dim(ge,0)α = dim(ge)α = dimV.

Hence dim(ge,1)α = dimV = rkG/G0. Thus, (SO(V ) : S2V ) has GNIB in view of Propo-
sition 2.6(2). �
Theorem 3.3. The representation (Sp(V ) : ∧2V ) has GNIB.
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Proof. Put dimV = 2n. It is well known that rk(G/G0) = dimV/2 = n.
Let e ∈ N(g1). We choose the cyclic vectors for e as described in Lemma 3.1(i). By

Eq. (3.1), we have

(
wi, e

di · wi∗
) = (

edi · wi,wi∗
) = −(

wi∗ , e
di · wi

)
.

This implies that ξ
i,di

i + ξ
i∗,di

i∗ ∈ ge,1 and ξ
i,di

i − ξ
i∗,di

i∗ ∈ ge,0 for each i.
Define α ∈ (ge)

∗ by

α(ϕ) =
m∑

i=1

aic
i,di

i ,

where c
j,s
i are the coefficients of ϕ and {ai} are non-zero numbers such that ai = aj if

and only if i = j∗. A direct computation shows that (ge)α consists of all elements of ge

preserving the subspaces Vi ⊕Vi∗ for each pair (i, i∗), cf. [13, Section 2]. More concretely,

(ge)α = 〈
ξ

i,s
i | 1 � i � m, 0 � s � di

〉 ⊕ 〈
ξ

i∗,s
i | 1 � i � m, 0 � s � di

〉
.

Hence, dim(ge)α = 2 dimV = 4n. As in the proof of Theorem 3.2, one can show
that α|ge,0 = 0. Therefore α can be regarded as an element of (ge,1)

∗ ⊂ (ge)
∗. Using

Lemma 2.5, we obtain

dim(ge,0)α − dim(ge,1)α = dimge,0 − dimge,1 = dimg0 − dimg1 = 2n.

It follows that dim(ge,0)α = 3n. and dim(ge,1)α = n. By Proposition 2.6(2), we conclude
that (Sp(V ) : ∧2V ) has GNIB. �

In Section 6, we show that most of the isotropy representations associated with inner
involutions of gl(V ) do not have GNIB.

4. The isotropy representation of (sp2n,gln)

In this section, dimV = 2n, g = sp(V ), and ( , ) is a g-invariant skew-symmetric form
on V . Let σ be an involution of g such that g0 � gln. This can explicitly be described
as follows. Let V = V+ ⊕ V− be a Lagrangian decomposition of V . Then G0 can be
taken as the subgroup of G = Sp(V ) preserving this decomposition. Here G0 � GL(V+),
V− � (V+)∗ as G0-module, and the G0-module g1 is isomorphic to S2V+ ⊕ (S2V+)∗.

Keep the notation introduced in the previous section. In particular, Vi , i = 1, . . . ,m, are
the Jordan spaces of e ∈ N(gl(V )), dimVi = di + 1, and wi ∈ Vi is a cyclic vector.

Lemma 4.1. Let e ∈ N(g1). Then the cyclic vectors {wi}mi=1 and hence the {Vi}’s can be
chosen such that the following properties are satisfied:
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(i) there is an involution i �→ i∗ on the set {1, . . . ,m} such that
◦ di = di∗ ,
◦ i = i∗ if and only if di is odd,
◦ (Vi,Vj ) = 0 if i = j, j∗;

(ii) σ(wi) = ±wi .

The proof is left to the reader (cf. the proof of Lemma 3.1). Actually, part (i) is a stan-
dard property of nilpotent orbits in sp(V ). Then part (ii) says that in the presence of the
involution σ the cyclic vectors for e ∈ N(g1) can be chosen to be σ -eigenvectors.

Theorem 4.2. The representation (GL(V+) : S2V+ ⊕ (S2V+)∗) has GNIB.

Proof. Recall that sp(V ) is a symmetric subalgebra of g̃ := gl(V ). Let g̃ = sp(V ) ⊕ g̃1 be
the corresponding Z2-grading. Then we have a hierarchy of involutions:

g̃ = g̃0 ⊕ g̃1 and g̃0 = g = g0 ⊕ g1.

Let e ∈ N(g1). In this case, we have rk(G/G0) = n. Hence, by Proposition 2.6 our goal
is to find an element α ∈ (ge,1)

∗ such that dim(ge,1)α = n. Let g̃e and g̃e,1 denote the
centraliser of e in g̃ and g̃1, respectively. In view of the above hierarchy, we have

g̃e = ge ⊕ g̃e,1 = ge,0 ⊕ ge,1 ⊕ g̃e,1.

Choose the cyclic vectors for e as prescribed by Lemma 4.1. We normalise these vectors
such that (wi, e

di · wi) = 1 if i = i∗; and (wi, e
di · wi∗) = −(wi∗ , edi · wi) = ±1 if i = i∗.

Then ge has a basis ξ
j,dj −s

i + ε(i, j, s)ξ
i∗,di−s
j∗ , where ε(i, j, s) = ±1 depending on i, j

and s; and ξ
j,dj −s

i − ε(i, j, s)ξ
i∗,di−s
j∗ form a basis for g̃e,1.

Define α ∈ (g̃e)
∗ by

α(ϕ) =
( ∑

i, i=i∗
aic

i,di

i

)
+

∑
(i,i∗), i =i∗

ai

(
c
i∗,di

i + c
i,di

i∗
)
,

where c
j,s
i are coefficients of ϕ ∈ g̃e, ai = ai∗ , and ai = ±aj if i = j, j∗. The stationary

subalgebra (g̃e)α consists of all maps preserving cyclic spaces generated by wi for i = i∗
and wi + wi∗ , wi − wi∗ for i = i∗. More precisely,

(g̃e)α = 〈
ξ

i,s
i | 1 � i � m, i = i∗, 0 � s � di

〉
⊕ 〈

ξ
i,s
i + ξ

i∗,s
i∗ , ξ

i∗,s
i + ξ

i,s
i∗ | 1 � i � m, i = i∗, 0 � s � di

〉
.

First, we show that α(g̃e,1) = 0. Assume that

α
(
ξ

j,dj −s − ε(i, j, s)ξ
i∗,di−s
∗

) = 0
i j
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for some ξ
j,dj −s

i − ε(i, j, s)ξ
i∗,di−s
j∗ ∈ g̃e,1. Then j = i∗, s = 0 and ε(i, i∗,0) = −1. But

ξ
i∗,di

i ∈ g for all i, i.e., ε(i, i∗,0) = 1. Thus α(g̃e,1) = 0 and, hence, (ge)α = g ∩ (g̃e)α .

Suppose i = i∗. Then ξ
i,s
i + ξ

i∗,s
i∗ ∈ g if and only if s is odd; and ξ

i∗,s
i + ξ

i,s
i∗ ∈ g if and

only if s is even. Suppose now that i = i∗. Then ξ
i,s
i ∈ g if and only if s is odd. Summing

up, we get

dim(ge)α = 1

2

( ∑
i=i∗

di

)
+

∑
(i,i∗), i =i∗

di = n.

Next, we show that α(ge,0) = 0. Since σ(es · wi) = (−1)ses · σ(wi) = ±es · wi , all
vectors {es · wi} are eigenvectors of σ . Hence, σ(ξ

j,s
i ) = ±ξ

j,s
i . Suppose i = i∗ and

σ(wi) = wi . Then σ(edi · wi) = edi wi and, since (edi · wi,wi∗) = 0, we get σ(wi∗) =
−wi∗ , σ(edi ·wi∗) = −edi ·wi∗ . Thus ξ

i∗,di

i , ξ
i,di

i∗ ∈ ge,1. In case i = i∗, di is odd, σ(ξ
i,di

i ) =
−ξ

i,di

i , and ξ
i,di

i ∈ ge,1. Suppose ϕ = (
∑

c
j,s
i ξ

j,s
i ) ∈ g̃e,1. Then all coefficients c

i∗,di

i of ϕ

equal zero. In particular, α(ϕ) = 0. Thus α(ge,0) = 0 and indeed α is a point of g∗
e,1. Fi-

nally, notice that dim(ge,1)α � dim(ge)α = n. Hence dim(ge,1)α = n, and we are done. �
In Section 6, we show that most of the isotropy representations associated with other

involutions of sp(V ) do not have GNIB.

5. The isotropy representations of (so2n,gln)

In this section, dimV = 2n, g = so(V ), and ( , ) is a g-invariant symmetric form on V .
Let σ be an involution of g such that g0 � gln. This can explicitly be described as follows.
Let V = V+ ⊕ V− be a Lagrangian decomposition of V . Then G0 can be taken as the
subgroup of G = SO(V ) preserving this decomposition. Here G0 � GL(V+), V− � (V+)∗
as G0-module, and the G0-module g1 is isomorphic to ∧2V+ ⊕ (∧2V+)∗.

Keep the notation introduced in Section 3. In particular, Vi , i = 1, . . . ,m, are the Jordan
spaces of e ∈ N(gl(V )), dimVi = di + 1, and wi ∈ Vi is a cyclic vector.

Lemma 5.1. Let e ∈ N(g1). Then the cyclic vectors {wi} and hence the spaces {Vi} can be
chosen such that the following properties are satisfied:

(i) there is an involution i �→ i∗ on the set {1, . . . ,m} such that
◦ i∗ = i for each i;
◦ di = di∗ ;
◦ (Vi,Vj ) = 0 if i = j∗. In particular, (Vi,Vi) = 0.

(ii) σ(wi) = ±wi . More precisely, if di is even, then the signs for σ(wi) and σ(wi∗) are
the same; if di is odd, then the signs are opposite.

The proof is left to the reader (cf. the proof of Lemma 3.1).

Theorem 5.2. The representation (GL(V+) : ∧2V+ ⊕ (∧2V+)∗) has GNIB.
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Proof. In the argument below, we omit routine but tedious calculations of stabilisers and
verifications that some functions α ∈ (ge)

∗ actually belong to g∗
e,1. All this is similar to

computations already presented in Sections 3 and 4.
Recall that so(V ) is a symmetric subalgebra of g̃ := gl(V ). We follow the notation

similar to that used in the proof of Theorem 4.2. In particular, g̃ = so(V ) ⊕ g̃1 is a Z2-
grading, and there is again a hierarchy of two involutions.

Let e ∈ N(g1). In this case, rk(G/G0) = [n/2] and, by Proposition 2.6, our goal is to
find an element α ∈ (ge,1)

∗ such that dim(ge,1)α = [n/2]. Choose the cyclic vectors for e

as prescribed by Lemma 5.1. We normalise these vectors such that

(
wi, e

di · wi∗
) = −(

wi∗ , e
di · wi

) = ±1.

Then ge has a basis ξ
j,dj −s

i + ε(i, j, s)ξ
i∗,di−s
j∗ , where ε(i, j, s) = ±1 depending on i, j

and s; and ξ
j,dj −s

i − ε(i, j, s)ξ
i∗,di−s
j∗ form a basis for g̃e,1.

We argue by induction on m. Notice that by Lemma 5.1 m is even.

• Suppose first that m = 2. Then d1 = d2 and (Vi,Vi) = 0. Abusing notation, we
write σ(v)/v for the sign in the formula σ(v) = ±v. By Lemma 5.1(ii), we have
σ(w1)/w1 = σ(w2)/w2 if d1 is odd, and σ(w1)/w1 = −σ(w2)/w2 if d1 is even. The
algebra ge has a basis

{
ξ

1,s
1 + (−1)s+1ξ

2,s
2 | s = 0, . . . , d1

} ∪ {
ξ

i,d1−s
i | i = 1,2; 0 � s � d1, s is odd

}
.

Here σ(ξ
1,s
1 + (−1)s+1ξ

2,s
2 ) = (−1)s(ξ

1,s
1 + (−1)s+1ξ

2,s
2 ) and σ(ξ

i,d1−s
i ) = ξ

i,d1−s
i .

Therefore dimge,1 = d1 = [n/2]. Since dim(ge,1)α cannot be less than rk(G/G0), we
obtain dim(ge,1)α = [n/2] for any α, as required.

• Assume that m � 4 and the statement holds for all m0 < m. In the induction step, we
use the following simple fact. Suppose there is α ∈ g∗

e,1 such that ind((ge,0)α, (ge,1)α) =
[n/2]. Then

[n/2] � ind(ge,0,ge,1) � ind
(
(ge,0)α, (ge,1)α

) = [n/2].

Hence, ind(ge,0,ge,1) = [n/2].

Choose an ordering of cyclic spaces such that d1 � d2 � · · · � dm. Without loss of
generality, we may assume that i∗ = i + 1 if i is odd. Then there are four possibilities:

(1) d1 is odd;
(2) d1 is even and there is some k ∈ {3, . . . ,m − 2} such that dk is also even;
(3) d1, d2, dm−1, dm are even and all other di are odd;
(4) d1, d2 are even and all other di are odd.

Consider all these possibilities in turn. In cases (1) and (2) we argue by induction, whereas
in cases (3) and (4) we explicitly indicate a generic point in (ge,1)

∗.
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(1) Set f1 = so(V1 ⊕ V2) and f2 = so(V3 ⊕ · · · ⊕ Vm). Then e = e1 + e2, where ei ∈ fi .
Define α ∈ (ge,1)

∗ by the formula α(ϕ) = c
1,d1
1 +c

2,d2
2 , where c

1,d1
1 , c2,d2

2 are coefficients of
ϕ ∈ ge. Then (ge)α = (f1)e1 ⊕ (f2)e2 . By the inductive hypothesis, ind((ge,0)α, (ge,1)α) =
[n/2].

(2) Let k > 2 be the first (odd) number such that dk is even. We may assume that
σ(w1) = w1 and σ(wk) = wk , while σ(w2) = −w2 and σ(wk+1) = −wk+1. Define
β ∈ (ge,1)

∗ by the formula

β(ϕ) =
(

k−1∑
i=3

aic
i,di

i

)
+ b1

(
c
k+1,dk

1 − c
2,d2
k

) + b2
(
c
k,dk

2 − c
1,d1
k+1

)
,

where ai = aj if and only if i = j∗ and b1 = ±b2. One can show that (ge)β = h ⊕ (f2)e2 ,
where h is a subalgebra of f1 = so(V1 ⊕· · ·⊕Vk+1), f2 = so(Vk+2 ⊕· · ·⊕Vm), e = e1 +e2,
e1 ∈ h, and e2 ∈ f2. By the inductive hypothesis ind((f2)e2,0, (f2)e2,1) = [ rk f2

2 ].
Let p be an (f1 ⊕ f2)-invariant complement of f1 ⊕ f2 in g. Then there is a σ -invariant

decomposition ge = (f1 ⊕ f2)e ⊕ pe . If α ∈ (f1)
∗
e , then (ge)α = ((f1)e)α ⊕ (f2)e ⊕ Ker α̂,

where Ker α̂ ⊂ pe is the kernel of the symplectic form α̂ defined by α̂(ξ, η) = α([ξ, η]).
Since Ker β̂ = 0, this is also true for generic points α ∈ (f1)

∗
e such that α(ge,0) = 0. There-

fore, we can find a point α ∈ (f1)
∗
e such that α(ge,0) = 0 and (ge)α = h ⊕ (f2)e , where

ind(h0,h1) = [ rk f1
2 ]. For that point α we get

ind
(
(ge,0)α, (ge,1)α

) = ind(h0,h1) + ind
(
(f2)e2,0, (f2)e2,1

)
=

[
rk f1

2

]
+

[
rk f2

2

]
=

[
rkg

2

]
.

(3) & (4). We may assume that σ(w1) = w1 and (w1, e
d1 · w2) = 1. In case (3), we also

assume that (wm−1, e
dm · wm) = 1 and σ(wm) = −wm. Set t = m−2 in case (3) and t = m

in case (4). Take a point α ∈ (ge,1)
∗ such that

α(ϕ) = b
(
c

1,d1−1
1 + c

2,d2−1
2

) +
t∑

i=3

aic
i,di

i ,

where ai = aj if and only if i = j∗ and each ai = b. For each i odd, we set hi := so(Vi ⊕
Vi+1)∩ ge. Then there exist numbers ε(1, i), ε(2, i) ∈ {+1,−1}, depending on i, such that

(ge)α =
( ⊕

i odd

hi

)
⊕ 〈

ξ
i,di

1 + ε(1, i)ξ
2,d1
i∗ , ξ

i,di

2 + ε(2, i)ξ
1,d1
i∗ | i = 3,4, . . . ,m − 1,m

〉
.

The second summand, denoted by a, is a commutative ideal of (ge)α . Since σ(w1) = w1

and σ(w2) = −w2, one of the vectors ξ
i,di

1 + ε(1, i)ξ
2,d1
i∗ , ξ

i,di

2 + ε(2, i)ξ
1,d1
i∗ lies in g0 and

another in g1 for each pair {i, i∗} = {1,2}.
Each hi has a Levi decomposition hi = li ⊕ ni , where li := hi ∩ gl(kwi ⊕ kwi∗) is

reductive and ni is the nilpotent radical. If di is even, then li ∼= so2; and if di is odd,
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then li ∼= sl2. In any case, li ⊂ g0. Moreover, we have [ni ,a] = 0 for each odd i, and

[li , ξ j,dj

1 + ε(1, j)ξ
2,d1
j∗ ] = [li , ξ j,dj

2 + ε(2, j)ξ
1,d1
j∗ ] = 0 if i = 1, j, j∗.

Set r := (ge)α . We claim that ind(r0, r1) = [n/2]. Define β ∈ r∗ by the following rule:
If x ∈ ⊕

i hi , then β(x) = 0; if x is one of the vectors ξ
i,di

1 + ε(1, i)ξ
2,d1
i∗ , ξ

i,di

2 +
ε(2, i)ξ

1,d1
i∗ , then β(x) = 1 if x ∈ r1 and β(x) = 0 if x ∈ r0. In particular β(r0) = 0, i.e.,

β ∈ (r1)
∗. Then

(r1)β =
⊕
i odd

(hi ∩ ge,1) ⊕ kη0,

where η0 = 0 in case (4), and η0 = ξ
m,dm

1 − ξ
2,d1
m−1 + ξ

m−1,di

2 − ξ
1,d1
m in case (3). For each

hi , we have dim(hi ∩ ge,1) = [(di + 1)/2]. Therefore, in both cases (3) and (4) we obtain
dim(r1)β = [n/2], as required. �

6. Isotropy representations without GNIB

Here we describe a method for finding nilpotent orbit in isotropy representations without
equality in (1.6). There is an obvious method of constructing Z2-graded Lie algebras: take
any Z-grading and then glue it modulo 2. This will be applied in the following form. Given
e ∈ N(g), take an sl2-triple containing e, say {e,h,f }. Consider the Z-grading of g that is
determined by h:

g =
⊕
i∈Z

g(i), where g(i) = {
x ∈ g | [h,x] = ix

}
.

Here e ∈ g(2). Suppose that e is even, i.e., g(i) = 0 if i is odd. Gluing modulo 2 means
that we define g0 = ⊕

i∈Z
g(4i) and g1 = ⊕

i∈Z
g(4i + 2). Then e ∈ g1 and it is sometimes

possible to prove that, for this nilpotent element, equality (1.6) does not hold.
Our point of departure is an even nilpotent element e of height 4 (the latter means that

(ad e)5 = 0). Then the corresponding Z-grading is g = ⊕2
i=−2 g(2i). The centraliser of e

lies in the non-negative part of this grading, i.e., ge = g(0)e ⊕ g(2)e ⊕ g(4). Therefore,

ge,0 = g(0)e ⊕ g(4) and ge,1 = g(2)e.

Here dimg(2)e = dimg(2) − dimg(4) and dimg(0)e = dimg(0) − dimg(2) and hence

dimg1 − dimg0 = 2 dimg(2) − 2 dimg(4) − dimg(0)

= dimg(2)e − dimg(0)e − dimg(4).

We wish to compare ind(g0,g1) and ind(ge,0,ge,1). Let S denote the identity component
of a generic stabiliser for (G0 : g1). Then

ind(g0,g1) = dimg1 − dimg0 + dimS = dimg(2)e − dimg(0)e − dimg(4) + dimS.
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In our situation, g(4) acts trivially on g(2)e and hence on g(2)∗e . Hence the action (Ge,0 :
(ge,1)

∗) essentially reduces to a reductive group action (G(0)e : g(2)∗e ). Let S{e} denote the
identity component of a generic stabiliser for the representation (G(0)e : g(2)e). Then

ind(ge,0,ge,1) = ind
(
g(0)e,g(2)e

) = dimg(2)e − dimg(0)e + dimS{e}.

Hence

δ := ind(ge,0,ge,1) − ind(g0,g1) = dimg(4) + dimS{e} − dimS, (6.1)

and, as was shown in Proposition 2.6, this quantity is non-negative. The stabilisers S are
well known. (Actually, they can be directly read off from the Satake diagram of the invo-
lution in question.) Some work is only needed for computing dimS{e}.

Remark 6.1. The involutions obtained in this way are always inner.

Below, we provide a series of examples covered by the previous scheme.

Example 6.1. Suppose g is a simple Lie algebra such that the highest root is a fundamental
weight. Take the weighted Dynkin diagram of the minimal nilpotent orbit. Then twice
this diagram is again a weighted Dynkin diagram. This new diagram determines an even
nilpotent orbit (element) of height 4. In this situation, dimg(4) = 1 and g0 = g(0)′ ⊕ sl2.
Then straightforward calculations show that S{e} = S. Hence the quantity in (6.1) is equal
to 1. This yields the following list of symmetric pairs without GNIB:

(E8,E7 × A1), (E7,D6 × A1), (E6,A5 × A1), (F4,C3 × A1), (G2,A1 × A1),

(son, son−4 × so4), n � 7.

Remark 6.2. If g is of type G2, then this procedure leads to Example 2.1.

Example 6.2. Let e be a nilpotent element in gl3k+l corresponding to the partition (3k,1l ).
Then e is even and of height 4, and the related symmetric pair is (gl3k+l ,gl2k × glk+l ). We
have the following data for the dimension of graded pieces for the Z-grading:

i 0 2 4

dimg(i) 2k2 + (k + l)2 2k(k + l) k2

dimg(i)e k2 + l2 k2 + 2kl k2

To compute S{e}, we notice that g(0)e � glk × gll = gl(V1) × gl(V2) and the g(0)e-module
g(2)e is isomorphic to (V1 ⊗ V ∗

1 ) ⊕ (V1 ⊗ V2) ⊕ (V1 ⊗ V2)
∗. Suppose k � l. Then S{e} =

T1 × GLl−k , where Tj stands for a j -dimensional torus. The group S is isomorphic to
T2k × GLl−k . Hence the quantity δ in (6.1) is equal to k2 − 2k + 1, which is positive for
k � 2. The same type of argument shows that δ = 1 if k = 2 and l = 1. In particular, this
means that the symmetric pair (gln,gl4 × gln−4) does not have GNIB for any n � 7.
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Example 6.3. Now g = sp(V ). Let e be a nilpotent element in sp6k+2l corresponding to
the partition (32k,12l ). Then e is even and of height 4, and the related symmetric pair
is (sp6k+2l , sp4k × sp2k+2l ). Here g(0)e = sp2k × sp2l = sp(V1) × sp(V2) and g(2)e is
isomorphic to ∧2V1 ⊕ (V1 ⊗ V2). If k � l, then

S{e} =
{

Sp2(l−k), if k � 3,

SL2 × Sp2(l−k), if k � 2.

Also, S = (SL2)
2k × Sp2(l−k). Since dimg(4) = k(2k + 1), we see that δ is positive for

k � 2. Similarly to the previous example, one also verifies that δ is positive for k = 2, l = 1.
In particular, the symmetric pair (sp2n, sp8 × sp2n−8) does not have GNIB for any n � 7.

Example 6.4. Let g be of type E7 and e a nilpotent element with weighted Dynkin diagram

0 0 0 0 0 0

2

Then dimg(0) = 49, dimg(2) = 35, and dimg(4) = 7. Therefore dimg0 = 63 and
dimg1 = 70. Hence the related involution is of maximal rank. (Here g0 � gl(V ) with
dimV = 7 and g1 � ∧4V .) Therefore the group S is trivial. This already means that
dimg(4) + dimS{e} − dimS � 7.

Example 6.5. Let g be of type E8 and e a nilpotent element with weighted Dynkin diagram

0 0 0 0 0 0 2

0

Then dimg(0) = 92, dimg(2) = 64, and dimg(4) = 14. Therefore dimg0 = 120 and
dimg1 = 128. Hence the related involution is of maximal rank. (Here g0 � so16 and g1 is
a half-spinor representation of so16.) Therefore the group S is trivial. This already means
that dimg(4) + dimS{e} − dimS � 14.

One can find more isotropy representations without GNIB using the above examples
and the slice method. The following assertion readily follows from Theorems 2.1 and 2.3.

(6.6) Suppose (G : V ) is observable and (L : W) is a slice representation of (G : V ). If
(L : W) has no GNIB, then so does (G : V ).

Example 6.7. Consider the symmetric pair (E6, sp8). The corresponding Z2-grading g =
g0 ⊕ g1 is of maximal rank and the Sp8-module g1 is isomorphic to the 4th fundamental
representation. Since the rank is maximal, for any Levi subalgebra l ⊂ E6, there is x ∈ g1
whose centraliser in g is conjugate to l. The induced Z2-grading of z(x) � l is also of
maximal rank. In particular, taking x such that the semisimple part of z(x) is of type D4,
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we obtain, up to the centre of z(x), the symmetric pair (so8, so4 × so4), which does not
have GNIB. Hence the symmetric pair (E6, sp8) does not have GNIB, too.

The similar argument also works for the involutions in Examples 6.4, 6.5.

Theorem 6.3. For the following symmetric pairs, the isotropy representation does not have
GNIB:

(i) (gln,glm × gln−m) with 4 � m � n − m;
(ii) (son, som × son−m) with 4 � m � n − m;

(iii) (sp2n, sp2m × sp2n−2m) with 4 � m � n − m.

The cases with m = 3 and n−m = 4 also yield the isotropy representations without GNIB.

Proof. (i) It is easily seen that (G0 : g1) has a slice representation which is isomorphic to
the isotropy representation of the pair (gln−2,glm−1 × gln−m+1). Iterating this procedure
yields the isotropy representation of the pair (gln−2m+8,gl4 × gln−2m+4). The latter has no
GNIB by Example 6.2. Then one applies assertion (6.6).

(ii), (iii). Here one uses the similar reductions, with ‘so’ and ‘sp’ in place of ‘gl’, and
Examples 6.1 and 6.3. �

Making use of a direct computation, we strengthen the assertion of Theorem 6.3(i).

Theorem 6.4. The following symmetric pairs (g,g0) do not have GNIB:

(i) (gln,gl3 ⊕ gln−3), n � 7;
(ii) (son, so3 ⊕ son−3), n � 7;

(iii) (sp2n, sp6 ⊕ sp2n−6), n � 7.

Proof. For all these symmetric pairs, we have rk(G/G0) = 3, and the case of n = 7 is
covered by Theorem 6.3. We show that for n > 7 there is a reduction to n = 7.

(i) Let h = gl7 ⊂ gln be a regular σ -invariant subalgebra such that hσ = gl3 ⊕ gl4 ⊂
gl3 ⊕ gln−3. By Example 6.2, the nilpotent H -orbit with partition (3,3,1) meets h1 and
yields an H0-orbit without GNIB. Let e ∈ h1 be an element in this orbit. Using the em-
bedding h1 ⊂ g1, we may regard e as element of g1. Then the corresponding partition
is (3,3,1n−6). We are going to prove that ind(ge,0,ge,1) � ind(he,0,he,1). An explicit
model of e is as follows. Let w1,w2, . . . ,wn−4 be cyclic vectors for e, where e3 · wi = 0
for i = 1,2 and e · wi = 0 for i � 3. Let k

n = k
3 ⊕ k

n−3 be the g0-stable decomposi-
tion corresponding to σ . Then we assume that w3 ∈ k

3 and all other wi ’s lie in k
n−3.

(Hence k
3 = 〈e · w1, e · w2,w3〉.) Now, all information for e can be presented rather

explicitly. We have dimge,0 = (n−4)2 + 5, dimhe,0 = 9, dimhe,1 = 8. More precisely,
ge,0 = he,0 ⊕ gln−7 ⊕ a, where [gln−7,h] = 0 and

a = 〈
ξ

t,0
, ξ

t,0
, ξ

1,2
t , ξ

2,2
t | 4 � t � n − 4

〉
.
1 2
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This means in particular that a = {0} if n = 7. Next,

he,1 = 〈
ξ

j,1
i , ξ

3,0
i , ξ

i,2
3 | i, j ∈ {1,2}〉.

It is easily seen that [a,he,1] = 0. For instance, [ξ1,2
t , ξ

i,1
1 ] = −ξ

i,3
t = 0, since e3 · wi = 0.

Because also [gln−4,he,1] = 0, we get [ge,0,he,1] = [he,0,he,1] ⊂ he,1. It remains to ob-
serve that for each α ∈ (ge,1)

∗ we have

dim(ge,1)α � dim(he,1)α = dim(he,1)α̃ � 4 > rk(G/G0),

where α̃ ∈ (he,1)
∗ is the restriction of α.

(ii) The previous argument goes through mutatis mutandis in the orthogonal case. We
just consider the nilpotent element in so7 with partition (3,3,1). Using the natural embed-
ding so7 ⊂ son, n > 7, we obtain the nilpotent orbit with partition (3,3,1n−6).

(iii) This case is similar to part (i) but in a different fashion. Here we start with a nilpo-
tent element in sp14 with partition (3,3,3,3,1,1), and then embed sp14 in sp2n, n > 7. �

7. More affirmative results and open problems

We conclude with some more examples of isotropy representations having GNIB and
state several questions.

Proposition 7.1. If (G,G0) is a symmetric pair of rank 1, then (G0 : g1) has GNIB.

Proof. The symmetric pairs of rank 1 are the following:

(gln,gln−1 × gl1), (sp2n, sp2n−2 × sp2), (son, son−1), (F4, so9).

The number of nonzero nilpotent G0-orbits in N(g1) equals 3,2,1,2, respectively. By
Proposition 1.2, the orbit of maximal dimension is always “good”, so that it remains to test
the minimal orbit(s). This is done by hand.

We give some details for the last case. Here the isotropy representation is the spinor
(16-dimensional) representation of g0 = so9. The weights are 1

2 (±ε1 ± ε2 ± ε3 ± ε4). For
simplicity, weights will be represented by the set of 4 signs. For instance, the lowest weight
is (− − − −). Let v ∈ g1 be a lowest weight vector. Then dimg0 · v = 11 and (g0)v is a
semi-direct product of sl4 and a nilpotent radical. As sl4-module, the 5-dimensional space
g1/g0 · v can be identified with the subspace W of g1 whose weights are (− + + +),
(+ − + +), (+ + − +), (+ + + −), (+ + + +). Hence W is the sum of the trivial and
4-dimensional sl4-modules. This shows that already SL4, the reductive part of (G0)v , has
an orbit of codimension one in g1/g0 · v. �
Example 7.1. The symmetric pair (E6,F4) has rank two. However, its isotropy represen-
tation has only two nonzero nilpotent orbits. Here again one can easily check that the
minimal orbit Omin satisfies GNIB-condition, i.e., equality (1.6) is satisfied for v ∈ Omin.
Hence this isotropy representation has GNIB.
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Remark 7.2. Using explicit description of nilpotent G0-orbits, one can honestly verify that
the symmetric pairs (gln,gl2 ⊕gln−2) and (gl6,gl3 ⊕gl3) have GNIB. Together with results
of Sections 3 and 6, this completes the problem of classifying the isotropy representations
of gln with and without GNIB.

Remark 7.3. It is also not hard to verify that the pairs (son, so2 × son−2) and (sp2n, sp4 ×
sp2n−4) have GNIB. Furthermore, both pairs (so6, so3 × so3) and (sp12, sp6 × sp6) have
GNIB. Together with results of Sections 4–6, this completes the problem of classifying the
isotropy representations of son and sp2n with and without GNIB.

Taking into account all symmetric pairs considered so far, one may notice that there
remain only two unmentioned symmetric pairs: (E6, so10 × t1) and (E7,E6 × t1). Their
ranks are 2 and 3, respectively. It is likely that the first of them has GNIB, but we have no
assumption for the second case. We hope to consider these remaining cases in a subsequent
article.

There are many interesting open questions on GIB and GNIB. Here are some of them.

(Q1) We have shown in Corollary 1.6 that sufficiently large reducible representations have
GIB. However, no a priori results is known for irreducible representations of simple
algebraic groups. We conjecture that for any semisimple G there are finitely many
irreducible representations without GNIB.

(Q2) Let V be a simple G-module and v ∈ V a highest weight vector. Is it true that equal-
ity (1.6) holds for v?

(Q3) Suppose G has a dense orbit in V , i.e., k(V )G = k. Is it true that V has GNIB?
(Q4) Let V be a spherical G-module. Is it true that V has GNIB? (It is a special case of

(Q3).)

In connection with the last question, we mention that most spherical modules are ob-
tained by the following construction. Let p ⊂ g be a parabolic subalgebra whose nilpotent
radical, pu, is Abelian. Let p = l ⊕ pu be a Levi decomposition. Then pu is a spherical
L-module. Using the theory developed in [6], one can prove that pu has GNIB. The point
here is that, for any v ∈ pu, already the reductive part of Lv has an open orbit in pu/l · v.

Finally, we recall that most of the observable representations of reductive groups are
associated with automorphisms of finite order of simple Lie algebras, i.e., the correspond-
ing linear groups are Θ-groups in the sense of Vinberg [12]. This is a generalisation of
the situation considered in this paper. It is therefore natural to investigate when these
Θ-representations have GNIB.
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