
Optimizing Code Generation from SSA Form:

A Comparison Between Two Formal

Correctness Proofs in Isabelle/HOL

Jan Olaf Blech Sabine Glesner Johannes Leitner
Steffen Mülling

Institute for Program Structures and Data Organization
University of Karlsruhe, 76128 Karlsruhe, Germany

Abstract

Correctness of compilers is a vital precondition for the correctness of the software translated by
them. In this paper, we present two approaches for the formalization of static single assignment
(SSA) form together with two corresponding formal proofs in the Isabelle/HOL system, each show-
ing the correctness of code generation. Our comparison between the two proofs shows that it is
very important to find adequate formalizations in formal proofs since they can simplify the ver-
ification task considerably. Our formal correctness proofs do not only verify the correctness of a
certain class of code generation algorithms but also give us sufficient, easily checkable correctness
criteria characterizing correct compilation results obtained from implementations (compilers) of
these algorithms. These correctness criteria can be used in a compiler result checker.

Keywords: formal compiler correctness, SSA representation, optimizing code generation,
compiler result checker, Isabelle/HOL.

1 Introduction

Compiler correctness is a necessary prerequisite to ensure software correctness
and reliability as most modern software is written in higher programming lan-
guages and needs to be translated into native machine code. In this paper,
we address the problem of verifying compiler correctness formally within the
theorem prover Isabelle/HOL [20]. Starting from intermediate representations
in static single assignment (SSA) form, we consider optimizing machine code
generation based on bottom-up rewrite systems. To prove the correctness of

Electronic Notes in Theoretical Computer Science 141 (2005) 33–51

1571-0661 © 2005 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.02.042

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82387842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


such program transformations, a formal semantics of the involved program-
ming languages, i.e. of the SSA intermediate representation form as well as
of the target processor language, is necessary. Furthermore, a formal proof 1

is required that shows that the transformations preserve the semantics of the
compiled programs. Such proofs only deal with transformation algorithms
themselves but not with a given compiler implementing them. To bridge this
gap, we require the formal proofs to deliver sufficient, easily checkable correct-
ness conditions that classify if a compilation result is correct.

Our solution is based on the observation that SSA programs specify im-
perative, i.e. state-based computations. In a previous work [11], we have
shown that SSA semantics can be captured elegantly and adequately with
abstract state machines [12]. In this paper, we show that this semantics can
be expressed within the theorem prover Isabelle/HOL and that correctness of
code generation can be formally shown based on it, also within Isabelle/HOL.
The formalization of SSA in Isabelle/HOL offers many degrees of freedom,
in particular the formalization of the data-flow driven computations within
SSA basic blocks. In a previous work [2] (which we summarize here), we have
represented basic blocks by term graphs [5]. Term graphs represent acyclic
graphs by duplicating common subexpressions. To keep track of duplicates,
we have assigned a unique identification number to each node in the original
graph and kept these numbers when duplicating common subexpressions in
order to be able to identify identical subexpressions in the term graphs. Based
on this formalization, we have defined a formal semantics for SSA basic blocks
by stating a function that evaluates term graphs. In this paper, we present a
new approach. Basic blocks in our second approach are directly represented
as partial orders rather than as term graphs. We show that this second for-
malization cannot only be handled easier in theorem provers but also that
proofs for this second formalization can be reused in other areas of software
verification as well since it is by far more general.

This paper is organized as follows: In Section 2, we introduce SSA form.
Then we summarize our previous work on the verification of code generation
based on term graphs: Therefore, in Section 3, we explain the formal seman-
tics of SSA within Isabelle/HOL and in Section 4 the correctness proof for
a relatively simple code generation algorithm. In Section 5, we present our
novel proof approach based on partial oders. In Section 6, we compare our
two formalizations and point out why the second is much better. In Section
7 we show that the verified correctness criterion can be integrated into the
compiler checker approach. Related work is discussed in Section 8. Finally, in

1 We denote proofs in theorem provers with the term formal proofs, in contrast to “paper
and pencil-proofs”.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5134



Section 9, we conclude and discuss future work.

2 Static Single Assignment Intermediate Languages

Static single assignment (SSA) form has become the preferred intermediate
representation for handling all kinds of program analyses and optimizing trans-
formations prior to code generation [6]. Its main merits comprise the explicit
representation of def-use-chains and, based on them, the ease by which further
dataflow information can be derived.

By definition SSA-form requires that a program and in particular each ba-
sic block is represented as a directed graph of elementary operations (memory
read/write, jump/branch, arithmetic operations on data) such that each “vari-
able” is assigned exactly once in the program text. Only references to such
variables may appear as operands in operations. Thus, an operand explicitly
indicates the data dependency to its point of origin. The directed graph of
an SSA-representation is an overlay of the control and data flow graph of the
program. A control node may depend on a value which forces control to condi-
tionally follow a selected path. Each basic block has one or more such control
nodes as its predecessor. At entry to a block, φ nodes, x = φ(x1, . . . , xn),
represent the unique value assigned to variable x. This value is a selection
among the values x1, . . . , xn where xi represents the value of x defined on the
control path through the i-th predecessor of the basic block. The number of
predecessors of this block is n. Programs can easily be transformed into SSA
form [16], e.g. by a tree walk through the attributed syntax tree. The stan-
dard transformation subscripts each variable. At join points, φ nodes sort out
multiple assignments to a variable corresponding to different control flows of
the program.

As example, the figure to the left shows the SSA form for the program
fragment:
a := a+2; if (..) {a := a+2; } b := a+2;

In the first basic block, the constant 2 is added to a. The cond node passes
control flow to the ‘then’ or to the ‘next’ block, depending on the result of the
comparison. In the ‘then’ block, the constant 2 is added to the result of the
previous add node. In the ‘next’ block, the φ node chooses which reachable
definition of variable ‘a’ to use, the one before the if statement or the one of
the ‘then’ block. The names of variables do not appear since in SSA form,
variables are identified with their value.

SSA representations describe imperative, i.e. state-based computations. A
virtual machine for SSA representations starts execution with the first basic
block of a given program. After execution of the current block, control flow

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 35



add

add

jump

add

cond

control flow

data flow

b

a

Example Program:
a:=a+2; if (...) {a:=a+2;} b:=a+2;

const 2

is transferred to the uniquely defined subsequent block. Hence, the current
state is characterized by the current basic block and by the outcomes of the
operations in the previously executed basic blocks.

3 A Formal Semantics of SSA Based on Term Graphs

In this section we describe our previous work [2] concerning the formalization
of SSA semantics within Isabelle/HOL based on term graphs. In Subsec-
tion 3.1, we present our specification of basic blocks and in Subsection 3.2 our
formalization of the global control and data flow.

Isabelle is a generic interactive theorem prover that can be instantiated
with different logics. Its instantiation Isabelle/HOL with higher-order logic
(which allows for the quantification over functions and predicates) has ade-
quate expressive power for the specification of and reasoning about program-
ming languages and also provides a series of predefined helpful theories. In
particular, Isabelle/HOL offers possibilities to define data types inductively
as well as to define functions by primitive or general terminating recursion.

3.1 Formal Semantics of Basic Blocks

Basic blocks in SSA intermediate representations can be regarded as directed
acyclic graphs (DAGs) such that the nodes represent operations (e.g. arith-
metic operators, constants, or φ nodes) and the edges represent the data flow
in between. Evaluation of basic blocks takes place in two steps: First, the
φ nodes are evaluated simultaneously. Then, the results of the remaining

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5136



ADD

ADD ADDMULT

ADD ADD

1

2 3

1 1

2 3

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . .

MULT

==>

Fig. 1. Transforming SSA DAGs into SSA Trees

consts

eval tree :: ′′SSATree ⇒ SSATree′′

primrec
′′eval tree (CONST val ident) = (CONST val ident)′′

. . . . .
′′eval tree (NODE operator tree1 tree2 val ident) =

(NODE operator (eval tree tree1 ) (eval tree tree2 )

(operator (get ssatree val (eval tree tree1)) (get ssatree val (eval tree tree2)))

ident)′′ . . .

Fig. 2. Evaluation of SSA Expressions

operations are determined. We specify the first step, evaluation of φ nodes,
together with the global control flow, cf. subsection 3.2. Therefore we can
treat φ nodes within a given basic block as constants. Hence, constants and
φ nodes (within a given basic block) are nodes with only outgoing edges.

DAGs representing SSA basic blocks contain common subexpressions only
once. In our formalization based on term graphs, we have represented such a
DAG by transforming it into an equivalent set of trees by duplicating shared
subterms, cf. Figure 1. To enable identification of equivalent subtrees, we
assign a unique number to each operation in the original DAG and duplicate
this identification number whenever duplicating a shared subexpression. We
can transform such a set of trees into a single tree by adding a root node. In
Isabelle/HOL, these trees are formalized in the following manner:

datatype SSATree = CONST value identifier | PHI phiargs value identifier |
NODE operator SSATree SSATree value identifier | · · ·

Nodes represent constants, φ-nodes with argument lists and arithmetic
operations. We have also formalized memory operations (hence the little dots),
but since these extra features are not in the focus of this paper we refer to [2,4]
for a detailed presentation. SSA basic blocks are evaluated with the evaluation
function eval tree defined inductively on SSA trees, cf. Figure 2.

Remark: Because CONST and PHI nodes behave the same when pro-
cessed by eval tree within a fixed basic block, we treat them uniformly as
LEAF in the proof in section 4.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 37



3.2 Formal Semantics for the Global Control and Data Flow

An SSA program is formalized as a list of basic blocks whereby each basic
block carries four pieces of information which integrates it into the global con-
trol and data flow:

datatype BASICBLOCK =
NEW identifier ′′identifier × nat ′′ ′′identifier × nat ′′ ′′SSATree list ′′

These four entries describe the following information:
1. identifier the value number determining the successor basic block
2. identifier × nat successor target 1 and its rank
3. identifier × nat successor target 2 and its rank
4. SSATree list list of SSATrees with the operations of the basic block

In our formalization, a basic block b can have two different successors
b′ (target 1 and target 2) specified by the third and fourth field of type
identifier × nat . identifier is the number characterizing the successor block.
nat specifies its rank which defines the selection of the arguments in the φ
nodes in b′: If the value of rank is i, then the ith argument in the argument
list of each φ node in b′ is chosen. (Remember that φ nodes have exactly as
many operands as the basic block has predecessor blocks.)

Execution of SSA programs is state-based. Each single state transition
corresponds to the execution of a single basic block. We define the current
state by the values of the operations executed in previous basic blocks and by
the currently executed basic block. Therefore we specify a state as:
- a table of values formalized as function (identifier ⇒ value)

indexed by value numbers
- current basic block and its rank

The state transition function (step :: ′′BASICBLOCK list ⇒ state ⇒
state ′′) evaluates basic blocks by performing the following computations:
- it assigns each φ-node its value
- it evaluates the basic block (i.e. calculates and stores values in nodes)
- it collects all calculated values and updates the table of values
- it determines the successor basic block (from the corr. distinct value number)

We have specified the semantics of SSA intermediate languages via this
state transition function, thereby covering all major aspects of SSA based
languages. For a complete specification with all details, we refer to [4].

4 Verification of Code Generation with Term Graphs

In this section, we consider a relatively simple code generation algorithm and
prove part of its correctness by showing that it preserves the observable be-
havior of translated basic blocks. Therefore, as core of the proof, we show
that every topological sorting of a basic block is a correct code generation

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5138



order. This is the most interesting part in the overall correctness proof for
code generation as it transforms the tree or DAG structure, resp., into a lin-
ear code sequence. Furthermore, since we prove correctness of code generation
for individual basic blocks, we can treat PHI nodes as constants and, hence,
do not distinguish between PHI and CONST nodes but instead treat them
uniformly as LEAF nodes.

4.1 Semantics of the Machine Language

Machine code is formalized as a list of CodeElements which operate on values
stored in a value table which can be considered as an infinite set of registers
holding the results of all hitherto computed value numbers. The value table
is specified as a function (identifier ⇒ value) that maps identifiers to their
current values. Since we concentrate on the correct translation of individual
basic blocks, it is sufficient to work with this machine language:

datatype CodeElement = L value identifier | N operator identifier identifier identifier

The ′′L value identifier ′′-element has the following semantics: store value
at value table cell specified by identifier . The ′′N operator identifier identifier
identifier ′′-element means: get value stored at first identifier , get value stored
at second identifier , apply operator on both values and store the result at the
third identifier . The function that evaluates a machine code list updates the
value table:

eval codelist :: ′′CodeList ⇒ (identifier ⇒ value) ⇒ (identifier ⇒ value)′′

and is primitive recursive over the code list and evaluates one instruction after
the other.

4.2 Proof Prerequisites: Translation Function and Topsort Criterion

Prerequisites for our proof are twofold: First, we need to specify the trans-
lation between SSA form and the machine language. Secondly, we need to
define the predicate is topsort which describes the sequences of machine code
that preserve the partial order on the operations determined by SSA basic
blocks. Concerning the first need, the translation function, we have de-
fined a function ce ify 2 that maps an SSATree (node) to a code element
(SSATree ⇒ CodeElement). Our formalization of topological sortings, for-
mally defined by the predicate is topsort , covers the following aspects:

2 ce ify stands for CodeElementify.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 39



- Each element in the tree must have a corresponding element in the code list.
- Each element in the code list must have a corresponding element in the tree.
- If an element a in the tree is a successor of another element b, then the corres-

ponding element ce ify a must also be a successor of ce ify b in the code list.
- Each element in the code list has a unique identifier.

A detailed description of the Isabelle/HOL specification defining these re-
quirements can be found in [4]. As example, the first requirement is formalized
in Isabelle/HOL by:

(∀ a.((is in tree a tree) −→ (∃ b.((is in cl b clist) ∧ (ce ify a = b))))).

The predicate is in cl (CodeElement ⇒ CodeElement list ⇒ bool) holds
if CodeElement is contained in CodeElement list . The predicate is in tree
(SSATree ⇒ SSATree ⇒ bool) is defined analogously for the subtree relation.

4.3 The Main Theorem

We claim that if a code list is a topological sorting of an SSA tree, then each
value calculated in the tree must also be calculated in the code list and stored
under the same value number in the value table: 3

theorem main theorem:
′′(∀ clist . ((is topsort clist tree) −→

(∀ t.(is in tree t (eval tree tree)) −→
(∃ ident val .(val = (eval codelist clist(λ a.(Eps(λ a. False)))) ident)∧

(val = get ssatree val t) ∧ (ident = get ssatree id t)))))′′

Proof of main theorem: By induction over the SSATree tree:

Proof of Base Case: We show that if is topsort clist (LEAF val ident)
holds, then the result of LEAFval ident is also computed by the machine
program and is available under value number ident after execution of clist , cf.
[2] for more details.

Proof of Induction Step: Proving the induction-step is more difficult.
We have the following induction assumptions:
- ∀ list ′.is topsort list ′ kid1 =⇒

every value calculated in kid1 is calculated in list ′.

- ∀ list ′′.is topsort list ′′ kid2 =⇒
every value calculated in kid2 is calculated in list ′′.

and need to show that:

∀ list .is topsort list (NODE fun kid1 kid2 val ident) =⇒ every value calculated in
(NODE fun kid1 kid2 val ident) is also calculated in list .

3 Eps denotes the Hilbert ε-operator defined in Isabelle/HOL which embodies the axiom
of choice.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5140



In our proof, we have skolemized the ∀-quantified variables list ′ and list ′′

in the induction assumptions by instantiating them with proj list kid1 and
proj list kid2 . The function (proj :: ′′CodeElement list ⇒ SSATree ⇒
CodeElement list ′′) maps all elements from the input CodeElement list hav-
ing a corresponding element in the SSATree to the output code element list.
In our proof we have defined the proj function via its properties. From these
characteristics and from the induction hypotheses, we can derive that every
value that gets calculated in kid1 and kid2 will be calculated in the CodeEle-
ment list list .

To complete the proof, for every subtree t of tree, we show that its values
are calculated in the code list. We prove this by the following case distinction:
t is subtree of kid1 , or t is subtree of kid2 , or t is the root node: tree.

The first two cases can be derived from the induction hypotheses and the
characteristics of the proj function. For the third case, we show that for
every topologically sorted list of a tree the last element corresponds to the
root. Since every child node is correctly evaluated in the CodeElement list,
we derive that the root node is also evaluated correctly. �

Summary of Achievements:

In total, our proof in Isabelle/HOL has required 885 lines of proof code with
45 lemmas and the main theorem. This is already a large proof, in particular
if one takes into account that proofs in HOL need to be done interactively
by hand. Moreover, at certain points during the proof, we noticed that proof
steps were unnaturally complicated. These difficulties arose because we have
different induction principles in the SSA trees and in the machine code lists
which do not correspond directly with each other. For this reason, we have
developed an alternative formulation of SSA basic blocks in which we repre-
sent them directly as partial orders. In this formalization, code generation is
correct if the order in the generated code is contained in the original partial
order of the basic blocks. While the proof based on term graphs, which we
have presented in this section, captures the operational character of SSA basic
blocks more intuitively, the formalization with partial orders allows for a cor-
rectness proof which is based on simpler mathematical concepts. We describe
the proof based on partial orders in the following section.

5 A Formal Semantics for SSA Based on Partial Orders

In the previous section, we have presented our proof for the correctness of code
generation from SSA form based on the formalization of SSA basic blocks as
term graphs. While this formalization captures the operational character of

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 41



SSA blocks very well, it does not reflect their data flow driven nature equally
clearly. In our proof, this deficiency has shown up in many surprisingly compli-
cated proof details resulting from the fact that we have had different induction
principles in the SSA blocks (induction on trees) and the generated sequences
of machine code (induction on lists). However, data flow driven computations
are characterized simply by the fact that operations can be performed as soon
as their operands are available. In this view, SSA basic blocks turn out to be
equivalent to partial orders. Input values and constant functions of a block
make up the elements of the partial order which do not have predecessors. An
operation taking results of other operations as input is an element that has
predecessors in the partial order, namely all those operations whose outcome
is directly or transitively necessary for its evaluation.

We have taken this intuition as basis for an alternative formalization of
SSA basic blocks based on partial orders. We refer to [3] for our complete
collection of definitions and proofs which we have formalized in Isabelle/HOL.
In the rest of this section, we summarize the most interesting parts of it.

5.1 Definition and Basic Properties of Partial Orders

We formalize partial orders based on the notion of relational sets. A relational
set RelSet is defined as a tuple consisting of a carrier set and of a set of tuples
containing all elements of the carrier set that are in relation to each other:

types ′a RelSet = ′a set × (′a ×′ a) set

A relation RelSet is sane if all elements occurring in the tuples of the
relation are also contained in the carrier set of the relation (fst and snd denote
the first and second entry in a tuple):

constdefs

sane :: ′a RelSet ⇒ bool

sane RS ≡ ∀ a b. (a, b) ∈ snd RS −→ a ∈ fst RS ∧ b ∈ fst RS

In the following, basic properties (antireflexivity, being a strict partial
order, being a strict finite partial order) of relational sets are formalized:

constdefs

antirefl :: (′a ×′ a ) set ⇒ bool

antirefl r ≡ ∀ x. (x, x) 	∈ r

spo :: ′a RelSet ⇒ bool

spo RS ≡ trans ( snd RS ) ∧ antirefl ( snd RS ) ∧ sane RS

sfpo :: ′a RelSet ⇒ bool

sfpo RS ≡ finite ( fst RS ) ∧ spo RS

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5142



The minus operator � deletes an element from a relational set by removing
it from its carrier set and by furthermore removing all tuples containing this
element. With the infixr declaration we have defined � as an infix abbrevia-
tion for sfpo minus with an appropriate priority:

constdefs

sfpo minus :: ′a RelSet ⇒ ′a ⇒ ′a RelSet (infixr 
 65)

RS 
 x ≡ ( ( fst RS ) − {x} , ( snd RS ) − {(a, b) . (a, b) ∈ ( snd RS) ∧
( ( a = x ) ∨ ( b = x ) )})

The function sfpo union adds additional dependencies into a relational set
(where ˆ+ denotes the transitive closure):

constdefs

sfpo union :: [ ′a RelSet , ( ′a × ′a ) set ] ⇒ ′a RelSet ( infixr ∪ 999 )

sfpo union rs r ≡ ( fst rs , ( snd rs ∪ r )̂ + )

Since we want to formalize SSA blocks by partial orders, we need the
notion of the predecessors of an element (i.e. the input values of an SSA
operation). We have done this with the following definitions and lemmata.
The first definition specifies the predecessors of an element in the carrier set
of a relation in the natural way:

constdefs

predecessors :: [ ( ′a × ′a ) set , ′a ] ⇒ ′a set

predecessors rel x ≡ { y . (y, x) ∈ rel }

Besides some minor auxiliary lemmata (documented in [3]), we have veri-
fied the following theorems. They state properties about partial orders when
elements are removed from them. The two theorems say that if one removes
an element from a strict (finite) partial order, then it remains a strict (finite)
partial order:

theorem remove one : spo RS =⇒ spo ( RS 
 m )

theorem sfpo remove invariant : sfpo RS =⇒ sfpo ( RS 
 m )

5.2 Closure Operations and Reachability on Finite Partial Orders

In this subsection, we define and prove some important properties of finite
partial orders. In particular, we introduce the notion of reachability in finite
partial orders and prove some important properties of it. In Subsection 5.3,
we use the results of this section directly to prove the correctness of code
generation for SSA basic blocks.

With the notion of reachability, we classify which elements in a partial
order can be reached from a given set of basic elements. An element is reach-

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 43



theorem sfpo reachable complete :

assumes relation is sfpo : sfpo RS

shows fst RS = reachable RS

proof −
have s1 :

V
RS n. [[ sfpo RS ; card (fst RS) = n ]] =⇒ fst RS ⊆ reachable RS

proof −
fix n show

V
RS . [[ sfpo RS ; card (fst RS) = n ]] =⇒ fst RS ⊆ reachable RS

proof ( induct n )

case 0

hence fst RS = {} by ( rule sfpo zero empty )

thus ?case by auto

next

case ( Suc i )

assume is sfpo : sfpo RS and si is card : card (fst RS) = Suc i

have
V

x . x ∈ fst RS =⇒ x ∈ reachable RS

proof −
fix x assume x ∈ fst RS

hence card ( fst ( RS 
 x ) ) = i using is sfpo and si is card

by ( subgoal tac finite ( fst RS ) , simp add : sfpo minus def remove card ,

simp add : sfpo imp finite )

moreover have sfpo ( RS 
 x ) using is sfpo

by ( rule sfpo remove invariant )

ultimately have induction case : fst ( RS 
 x ) ⊆ reachable ( RS 
 x )

by ( simp add : Suc )

hence ∀ p. p ∈ predecessors (snd RS) x −→ p ∈ reachable RS

proof auto

fix p assume p is pred : p ∈ predecessors (snd RS) x

hence p ∈ fst ( RS 
 x ) using is sfpo by ( rule predecessor in remainder )

hence p ∈ reachable ( RS 
 x ) using induction case by auto

moreover have x 	∈ predecessors ( snd RS ) p using p is pred and is sfpo

by ( rule tac y = p in predecessors anti , auto )

moreover have x 	= p using p is pred and is sfpo

by ( rule tac y = p in predecessors notself , auto )

ultimately show p ∈ reachable RS using is sfpo

by ( rule tac x = p and z = x in invariant if smaller , auto )

qed

thus x ∈ reachable RS by ( rule reachable.step )

qed

thus ?case by auto

qed

qed

hence fst RS ⊆ reachable RS using relation is sfpo by ( simp add : s1 )

moreover have reachable RS ⊆ fst RS by

( simp add : reachable has only nodes )

ultimately show fst RS = reachable RS by simp

qed

Fig. 3. Proof for Theorem sfpo reachable complete in Isar Style Notation

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5144



able if all its predecessors are reachable. Applied to the context of SSA basic
blocks, this means that an operation (which is represented by an element in a
suitable partial order) can be evaluated if all its inputs (wich are predecessors
in the corresponding partial order) have been computed already. Elements
without predecessors are by default reachable; they correspond to constant
operations (constant functions or already evaluated φ nodes in an SSA block).

The function reachable computes for a relation the set of elements that
are reachable. These are all elements without any predecessors plus those
elements that can be also transitively reached from them:

consts reachable :: ′a RelSet ⇒ ′a set

inductive reachable RS

intros

step : [[ ∀ y . y ∈ predecessors ( snd RS ) x → y ∈ reachable RS ; x ∈ fst RS ]]

=⇒ x ∈ reachable RS

The following two lemmata are necessary to prove the theorem sfpo reach−
able complete about finite partial orders which we discuss directly afterwards.
The first lemma reachable has only nodes states that all reachable elements
are nodes, i.e. are contained in the carrier set of the relation. The second
lemma invariant if smaller says that if one adds an element z to a relation
which does not contain z already and if z does not become a predecessor of
another reachable element x, then x stays reachable.

lemma reachable has only nodes : reachable RS ⊆ fst RS

lemma invariant if smaller :

[[ x ∈ reachable ( RS 
 z ) ; sfpo RS ; z 	∈ predecessors ( snd RS ) x ; z 	= x ]]

=⇒ x ∈ reachable RS

With the formalization presented so far, we are ready to state and prove
one of our main statements, namely the theorem sfpo reachable complete. It
states that if a relation is a partial order, then the set of reachable elements
equals the carrier set of the relation:

theorem sfpo reachable complete : sfpo RS =⇒ reachable RS = fst RS

The proof of the above theorem is displayed in Figure 3. This proof is
central in our formalization. Speaking in terms of data flow dependencies,
this means that all operations can be computed because the operands of each
of them will eventually be available during computation.

5.3 SSA Basic Blocks as Partial Orders

We define values in the SSA form as being of a generic value type valueType:

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 45



datatype ′a valueType = Undefined | V ′a types nodeId = nat

Furthermore, we represent SSA basic blocks as annotated partial orders.
Each SSA basic block is a structured entity that consists of a set of node iden-
tifiers, of a function that maps each node identifier to the list of the identifiers
of its argument nodes (i.e. to its predecessor nodes), and of a function that
returns for each node an associated operation:

record ′a ssa graph =

base :: nodeId set

plist :: nodeId ⇒ nodeId list

function :: nodeId ⇒ ( ′a valueType list ⇒ ′a valueType )

This definition corresponds to the relation RelSet we defined earlier. Now
we are ready to define the evaluation of SSA graphs. This definition is for-
mulated inductively. Isabelle allows for the inductive definitions of sets by
arbitrary monotone functions. The two lemmata in the definition in Figure 4
state such monotonicity properties. The first lemma evalssa mono helper uses
the predicate list all2 which is predefined in Isabelle/HOL as follows:

list all2 P xs ys ≡ length xs = length ys ∧ ( ∀ (x, y) ∈ set ( zip xs ys ) . P x y ).

The first lemma says that if all pairs of elements contained in a certain set
(in set ( zip l1 l2 )) are elements of A, then they are also elements of B,
given that A ⊆ B; a rather trivial monotonicity property. The second lemma
states a similar monotonicity fact. By using the key word monos followed by
the names of the two lemmata, we give Isabelle the instruction to use these
lemmata when proving the validity of the inductive definition.

The inductive set evalssa is defined in Figure 4 in dependence of its two
parameters ssaG and eval order . ssaG denotes an SSA graph and eval order
a set of pairs of nodes comprising additional evaluation dependencies. The
inductive rule of the definition of evalssa states three preconditions. The first
precondition,

list all2 (λx y.(x, y) ∈ ( evalssa ssaG eval order )) ( plist ssaG x ) list of values

states that all predecessors of x must already be in evalssa by also having
appropriate values (elements of the list list of values) associated with them.
The second precondition,

∀p.(p, x) ∈ eval order −→ ( ∃v. (p, v) ∈ ( evalssa ssaG eval order ))

requires that not only the dependencies contained in the SSA graph are
respected but moreover also all dependencies expressed with the extra set
eval order . If there is a dependency (p, x) ∈ eval order , then p must already
be contained in evalssa. And finally the third precondition,

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5146



consts evalssa ::

[ ′a ssa graph , ( nodeId × nodeId ) set ] ⇒ ( nodeId × ′a valueType ) set

lemma evalssa mono helper : A ⊆ B ⇒ list all2 (λx y. (x, y) ∈ A) l1 l2 →
list all2 (λx y. (x, y) ∈ B) l1 l2

lemma evalssa mono helper2 : A ⊆ B ⇒ (λ(x, y).(y, v) ∈ A) z → (λ(x, y).(y, v) ∈ B) z

inductive evalssa ssaG eval order

intros

step :

[[list all2 (λx y.(x, y) ∈ ( evalssa ssaG eval order )) ( plist ssaG x )

list of values ; ∀p.(p, x) ∈ eval order −→
( ∃v. (p, v) ∈ ( evalssa ssaG eval order )) ; x ∈ base ssaG ]] =⇒
( x , ( ( function ssaG ) x ) list of values ) ∈ ( evalssa ssaG eval order )

monos evalssa mono helper evalssa mono helper2

Fig. 4. Specification of the Evaluation of SSA Blocks with Additional Dependencies

x ∈ base ssaG

says that x must be a node in the graph. If these three preconditions are
fulfilled, then x is included in the set evalssa. The thereby inductively de-
fined set contains all pairs consisting of an element in the SSA partial order
and of its result to which it is evaluated by applying its associated function
to the values of its predecessors (which are also elements in the inductively
defined set evalssa ssaG eval order). The order in which elements are induc-
tively included into the set evalssa corresponds to an evaluation order that
respects the order relation in the original SSA partial order ssaG as well as
the extra order dependencies contained in eval order . Hence, evalssa defines
an operational semantics for an SSA partial order and an additional set of
dependencies that are to be respected during evaluation.

Based on these definitions, we have verified our main correctness theorem
as stated below.

theorem [[sfpo ( base ( ssaG ) , rel ssaG ) ;

sfpo ( sfpo union ( base ( ssaG ) , rel ssaG ) eval order ) ]]

=⇒ evalssa ssaG eval order = evalssa ssaG {}

This theorem says that if we are given an SSA graph that corresponds
to a strict finite partial order and if we insert the additional dependencies
eval order that do not destroy the property of the SSA graph of being par-
tially ordered, then the original evaluation order in the SSA graph and the
modified evaluation order which contains the original and the additional de-
pendencies will return the same results. Speaking in the language of compilers,
any sequence of instructions in the machine code that respects the data flow
dependencies in the SSA basic blocks is a correct serialization.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 47



6 Comparison of the Formalization Alternatives

With the theories presented in Sections 3, 4, and 5, we have formally verifed
the same results based on two different formalizations, namely on term graphs
and on partial orders. Both proofs show that code generation for SSA basic
blocks is correct if the data flow dependencies are preserved. If one is only
interested in this result, then both formalizations are equally good. However,
from a mathematical point of view, the two proofs are very different. There is
an experience behind that many mathematicians know from their work. There
are proofs which feel good because one has hit the right intuition. Even though
one cannot generally define when a proof is good, one knows nevertheless most
of the time exactly if a proof is indeed right, cf. also [1]. Let us also emphasize
that the quality of implementation and proof decisions do not need to coincide.
A certain implementation decision might be an excellent choice for obtaining
an efficient running system while a proof with a formalization based on the
same idea can be unnecessarily complicated.

We also made the experience that the choice of proof formalization is cru-
cial. The second formalization based on partial orders as presented in the
previous section fits to our intuitive proof idea and formalizes a general prin-
ciple, namely that the transformation of a program must preserve its data
dependencies. The second formalization is clearly superior to the first be-
cause it is shorter (only 600 lines of proof code, about 180 of them for the
SSA specific part) and also more general: Note that most of the formalization
in Section 5 is independent from SSA and that SSA only comes in in Subsec-
tion 5.3. By building up our proof on this general principle we will be able to
reuse our proof for the verification of further transformations involving data
flow dependencies. It is a challenge in general to find good abstractions in the
area of formal verification because only then, verification cost can be brought
down to an acceptable level.

7 Integration into Checker Approach

In recent years, program checking (also known as translation validation) has
been established as the method of choice to ensure the correctness of compiler
implementations: Instead of verifying a compiler, one only verifies its results.
The correctness results presented in Sections 4 and 5 concern only the cor-
rectness of the code generation algorithm but not of its implementation. In
this section, we show how these formally verified correctness results can be
connected with the program checking approach in order to ensure that a given
compiler implementation produces correct machine code.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5148



yes / no

source program

target program

to be verified

compiler checker

The figure on the left-
hand side demonstrates the
principle of program check-
ing. First the compiler com-
putes the translated pro-
gram. Then the indepen-
dent checker evaluates a suf-

ficient condition which classifies correct results. Our is topsort and strict-
finite-partial-order predicates defined in section 4 and 5 are such sufficient
criterions for the correctness of the generated machine code for a given ba-
sic block. Its sufficiency has been formally verified by our theorems. So to
check the correctness of the generated machine code, the checker checks if the
topsort resp. sfpo criterion holds for the SSA basic block and the generated
machine code. This check can be efficiently computed. With a checker imple-
menting this check, we are able to connect the formal proof for the algorithmic
correctness of code generation with a concrete compiler implementing it.

8 Related Work

Early work on formal correctness proofs for compilers [15] was carried out
in the Boyer-Moore theorem prover considering the translation of the pro-
gramming language Piton. Recent work has concentrated on transformations
taking place in compiler frontends. [19] describes the verification of lexical
analysis in Isabelle/HOL. The formal verification of the translation from Java
to Java byte code and formal byte code verification was investigated in [22,14].
Further related work on formal compiler verification was done in the german
Verifix project [8,9] focusing on correct compiler construction: [7] considers
the verification of a compiler for a Lisp subset in the theorem prover PVS.
The approach of proof-carrying code [17] is weaker than ours because it con-
centrates only on the verification of necessary but not sufficient correctness
criteria. The approach of program checking has been proposed by the Verifix
project [8] and has also become known as translation validation [21,18], re-
cently also for loop transformations [13]. For an overview and for results on
program checking in optimizing backend transformations cf. [10].

9 Conclusions and Future Work

We have presented a framework for the verification of code generation from
SSA form. Our framework comprises two formalization and verification ap-
proaches. Our first approach formalizes SSA basic blocks as term graphs,

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 49



whereas our second approach represents basic blocks as partial orders. Start-
ing from general mathematical notions such as partial orders, acyclic graphs,
and reachability, we have developed in our second approach a theory in Is-
abelle/HOL that formalizes data flow driven computations. In particular,
we have verified that each transformation that only inserts new dependencies
by keeping the original ones is correct. We have applied this general theory
to SSA basic blocks and machine code generation. Thereby we have shown
that each generated sequence of machine instructions is correct if the data
dependencies of the original SSA form are preserved. However our second
approach is by far more general than the first. It can and we plan to reuse
it for verification purposes in areas where semantics is determined through
partial orders, e.g. code generation and selection for parallel processors and
loop transformations.

In future work, we want to prove the correctness of more elaborate code
generation algorithms. In particular, we want to extend the machine language
to include very long instruction words (VLIW), predicated instructions, and
speculative execution. This also implies that the code generation algorithm be
extended to generate machine code optimized for such instruction sets. More-
over, we want to drop the assumption that there are infinitely many registers
by considering optimizing register allocation algorithms as well. Furthermore,
we also want to prove the correctness of data flow analyses and corresponding
machine independent optimizations of SSA representations. These are opti-
mizations which transform a given SSA form into a semantically equivalent
SSA form, e.g. by eliminating dead code or common subexpressions. For all
these correctness proofs, the formal SSA semantics and the correctness proof
stated in Section 5 are supposed to serve as basis. For many of these opti-
mizations, it is necessary to move instructions between basic blocks. We are
convinced that the specification and correctness proof stated in this chapter
are a good basis to also verify such advanced algorithms.

References

[1] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer, 2004.

[2] Jan Olaf Blech and Sabine Glesner. A Formal Correctness Proof for Code Generation from
SSA Form in Isabelle/HOL. In Proc. der 3. Arbeitstagung Programmiersprachen (ATPS), 34.
Jahrestagung der Gesellschaft für Informatik. Lecture Notes in Informatics, 2004.

[3] Jan Olaf Blech, Sabine Glesner, Johannes Leitner, and Steffen Mülling. Some Theorems on
Data Dependencies using Partial Orders, 2004. Internal Report, University of Karlsruhe.

[4] Jan Olaf Blech. Eine formale Semantik für SSA-Zwischensprachen in Isabelle/HOL.
Diplomarbeit (Master’s Thesis), University of Karlsruhe, 2004.

[5] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–5150



[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently Computing
Static Single Assignment Form and the Control Dependence Graph. ACM TOPLAS,
13(4):451–490, October 1991.

[7] Axel Dold, Friedrich W. von Henke, and Wolfgang Goerigk. A Completely Verified Realistic
Bootstrap Compiler. International Journal of Foundations of Computer Science, 14(4):659–
680, 2003.

[8] W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F.W. von Henke, U. Hoffmann,
H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler Correctness and
Implementation Verification: The Verifix Approach. In P. Fritzson, editor, Poster Session
of CC’96. IDA Technical Report LiTH-IDA-R-96-12, Linkoeping, Sweden, 1996.

[9] Sabine Glesner, Gerhard Goos, and Wolf Zimmermann. Verifix: Konstruktion und Architektur

verifizierender Übersetzer (Verifix: Construction and Architecture of Verifying Compilers). it
- Information Technology, 46:265–276, 2004. Print ISSN: 1611-2776.

[10] Sabine Glesner. Using Program Checking to Ensure the Correctness of Compiler
Implementations. Journal of Universal Computer Science (J.UCS), 9(3):191–222, March 2003.

[11] Sabine Glesner. An ASM Semantics for SSA Intermediate Representations. In Proc. 11th Int’l
Workshop on Abstract State Machines, 2004. Springer, Lecture Notes in Computer Science.

[12] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In Egon Börger, ed., Specification and
Validation Methods. Oxford University Press, 1995.

[13] B. Goldberg, L. Zuck, and C. Barrett. Into the Loops: Practical Issues in Translation
Validation for Optimizing Compilers. In Proc. Workshop Compiler Optimization meets
Compiler Verification (COCV 2004), 2004. Elsevier, Electronic Notes in Theoretical Computer
Science (ENTCS).

[14] Gerwin Klein and Tobias Nipkow. Verified Bytecode Verifiers. Theoretical Computer Science,
298:583–626, 2003.

[15] J. S. Moore. A Mechanically Verified Language Implementation. Journal of Automated
Reasoning, 5(4):461–492, 1989.

[16] Steven S. Muchnick. Compiler Design and Implementation. Morgan Kaufmann Publishers,
Inc., 1997.

[17] George C. Necula. Proof-Carrying Code. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’97), pages 106–119, Paris, France,
January 1997.

[18] George C. Necula. Translation Validation for an Optimizing Compiler. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’00), 2000.

[19] Tobias Nipkow. Verified Lexical Analysis. In J. Grundy and M. Newey, editors, Theorem
Proving in Higher Order Logics. Springer, Lecture Notes in Computer Science, Vol. 1479,
1998. Invited talk.

[20] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer, Lecture Notes in Computer Science, Vol. 2283, 2002.

[21] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proc. Tools and Algorithms
for the Construction and Analysis of Systems, 1998. Springer, Lecture Notes in Computer
Science, Vol. 1384.

[22] Martin Strecker. Formal Verification of a Java Compiler in Isabelle. In Proc. Conference on
Automated Deduction (CADE), pages 63–77. Springer, Lecture Notes in Computer Science,
Vol. 2392, 2002.

J.O. Blech et al. / Electronic Notes in Theoretical Computer Science 141 (2005) 33–51 51


	Introduction
	Static Single Assignment Intermediate Languages
	A Formal Semantics of SSA Based on Term Graphs
	Formal Semantics of Basic Blocks
	Formal Semantics for the Global Control and Data Flow

	Verification of Code Generation with Term Graphs
	Semantics of the Machine Language
	Proof Prerequisites: Translation Function and Topsort Criterion
	The Main Theorem

	A Formal Semantics for SSA Based on Partial Orders
	Definition and Basic Properties of Partial Orders
	Closure Operations and Reachability on Finite Partial Orders
	SSA Basic Blocks as Partial Orders

	Comparison of the Formalization Alternatives
	Integration into Checker Approach
	Related Work
	Conclusions and Future Work
	References



