
 Procedia Computer Science 60 (2015) 1014 – 1020

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2015.08.144

ScienceDirect
Available online at www.sciencedirect.com

19th International Conference on Knowledge Based and Intelligent Information and Engineering
Systems

A Web-based Application for Writing Novels

Shouhei Nishiharaa, Motoki Miurab

aDepartment of Applied Science for Integrated System Engineering, Kyushu Institute of Technology,
1-1 Sensui, Tobata, Kitakyushu Fukuoka, 804-8550, Japan
bFaculty of Basic Sciences, Kyushu Institute of Technology,
1-1 Sensui, Tobata, Kitakyushu Fukuoka, 804-8550, Japan

Abstract

In this paper, we propose a method for assisting amateur writers in novel writing. Amateur writers can publish their work intensively

through web infrastructures. This situation is beneficial, because it encourages amateur writers to enhance their skills by sharing

their work. However, writing a good novel is difficult for a novice, because the novel-writing task requires the management of

many character settings and maintenance of consistency throughout the novel. The length of a novel increases the difficulty of the

task and decreases motivation owing to cumbersome management tasks. To reduce the burden, we introduce automatic keyword

suggestion and highlighting techniques. Automatic keyword suggestion finds names of characters from the draft text and proposes

their addition to the character list. The character names in the list are automatically linked to the corresponding words in the

draft text. Using such functions, amateur writers can easily check the consistency of their novels while writing, similar to the use

of an integrated development environment for software development. We have implemented a web application that provides the

functions, and we consider the effectiveness of the proposed method here.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: Keyword Suggestion; Novice Writer Support; Web-based Editor;

1. Introduction

The recent rapid evolution of the Internet enables the publicizing of a person’s creative work at low cost. As a

result, various creative activities, such as writing novels, have become popular among amateurs. Amateur novelists

post their work on their personal sites, bulletin boards, or comprehensive sites, increasing the total number of novels

on the web. However, writing a novel is difficult. Novelists must simultaneously consider many factors, such as

determining details of the story, selecting suitable words, and managing settings. Moreover, novelists review their

written text frequently, because it might include mistakes or inconsistencies. As the text of the novel lengthens, the

reviews become more difficult, complicated, and time consuming. The time and effort of novelists is better used for

∗ Corresponding author. Tel.: +81-80-6446-8622.

E-mail address: nisisyou24@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82387832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.08.144&domain=pdf

1015 Shouhei Nishihara and Motoki Miura / Procedia Computer Science 60 (2015) 1014 – 1020

creative writing tasks, if possible, and not for consistency checks and character management. This applies especially

to amateur writers, who have limited time to spare for writing.

To maximize efficiency, we propose a method that assists amateur writers in writing novels. The method contains

functions of automatic keyword suggestion and highlighting derived from an integrated development environment

(IDE). By applying these functions to writing novels, amateur writers can reduce the burden of consistency checks

and character management. In addition, we have developed a web application that provides these functions. Using

the framework of the web application, amateur writers can utilize the functions immediately, without installing new

software.

The structure of the paper is as follows. In section 2, we describe the method we propose in detail. Section

3 describes the implementation of the web application that realizes the proposed method. In section 4, we review

related work regarding the use of software to write or generate novels. We conclude and discuss future work in

section 5.

2. Proposed method

In this section, we describe our proposed method to reduce the burdens of consistency checks and character man-

agement for amateur novelists. The method contains functions for (1) automatic keyword extraction, (2) keyword

highlighting, and (3) commenting. Using these functions, amateur writers can reduce the time and effort of those

tasks.

2.1. Automatic keyword extraction

First, we describe automatic keyword extraction. The purpose of automatic keyword extraction is to facilitate

writers management of characters and to highlight keywords while editing the main text. This assists writers in

maintaining consistency of character settings and preferences.

The function extracts candidates for character names as follows. Since the names of characters tend to appear

frequently in the main text of the novel and consist primarily of proper nouns, the function identifies proper nouns

appearing in the main text.

Novels typically include keywords, which are used frequently, primarily with a novel’s setting. If a name has been

used in the text, the character setting is used in the scenario. Therefore, automatically identifying keywords can reduce

the labor required for the confirmation of a novel’s setting. We expect that frequent confirmation will reduce conflicts.

To extract proper nouns, we use Mecab1 a morphological analyzer. Mecab recognizes Japanese text and outputs the

types of the words. Through the use of Mecab, proper nouns can be extracted as candidates for character names.

2.2. Character management

Candidates for character names extracted using automatic keyword extraction are shown on the display. When an

amateur writer selects a candidate, the word is registered to a character table. The character table provides functions

for managing each character, which contain the name and preferences, such as sex, year, and personality profile.

These preferences are to be inputted by amateur writers themselves at the time of registration, or afterward. Since the

preferences are always shown in the display, amateur writers can check them at any time while writing the main text.

2.3. Keyword highlighting

To ease the writers’ checking of registered character names, we introduce a keyword highlighting function. The

keyword highlighting function displays the registered character names in different styles of text in the main text editor.

The text style contains the text and background colors, as specified by the writers.

2.4. Comment function

To maintain miscellaneous settings and preferences of supporting role characters, we introduced a comment func-

tion. The comment function enables writers to record miscellaneous notes within the main text. Since the comment

1016 Shouhei Nishihara and Motoki Miura / Procedia Computer Science 60 (2015) 1014 – 1020

function is an important feature of an IDE, we included the function in the novel editor. Using the function can help

amateur writers remember their ideas and thoughts when writing the text.

3. Implementation

We have developed a web application to implement the proposed method and the functions described above. In this

section, we explain details of those functions through examples. Fig. 1 shows a screenshot of our prototype system.

The system consists primarily of three parts, (1) scenario outline editor, (2) setting management table, and (3) main

text editor.

Fig. 1. Prototype system.

First, the writer composes an outline of the scenarios using the scenario outline editor. Each row of the scenario

outline editor represents a scenario unit (e.g., chapter). Some rows might have sub-rows (e.g., sections). As a result,

the rows organize the outline of the novel. By selecting scenario units, writers can change the active scenario unit.

Since the main text of the novel is managed separately in the scenario unit, the main text editor displays only content

related to the active scenario unit. Settings that are highly related to the active scenario unit are displayed in a setting

management table.

3.1. Automatic keyword extraction

Writers input the text in the main text editor as usual. The inputted text is stored in the scenario units. Keyword

extraction begins, when the [auto table] button is pressed. The prototype system transfers the text to a server-side

script, which then processes the text using Mecab1.

Mecab separates the text into words by considering the types of words. The script picks up only nouns and noun

phrases, counts the occurrences, and returns the words and phrases list sorted by frequency.

Fig. 2 shows the keywords extracted from “Run, Melos!,” a famous story in Japan. The count represents the

number of occurrences in the text. In this case, the count of the hero “Melos” was 75. However, some unnecessary

words also appeared in the list. To remove the unnecessary words, we introduced some stop-words that are not to be

included in the list. Figure 3 shows the results of the modification. We consider that the stop-words can be managed

semi-automatically by introducing extra rules. For example, some unnecessary words can be detected as being single

Hiragana letters (in Fig. 2 (1)), general nouns (Fig. 2 (2)), or non-independent words (Fig. 2 (3)).

1017 Shouhei Nishihara and Motoki Miura / Procedia Computer Science 60 (2015) 1014 – 1020

Fig. 2. Extracted keywords (before modification) Fig. 3. Extracted keywords (after modification)

Fig. 4 shows the interface for registering keywords from the extracted words. The number next to a word indicates

the word’s frequency. Writers can select words by clicking the corresponding check boxes. Only the words selected

are imported into the setting management table. In Fig. 4, the writer selects four words to be imported.

Fig. 4. Interface for registering keywords

Fig. 5. Setting management table

Fig. 5 shows a snapshot of the setting management table after importing the selected words. The writer can manage

the table by inputting preferences for each character. Moreover, the writer can define aliases (i.e., alternative names)

for characters. For example, friend always represents Selinuntius, Melos’s friend. In such a case, the word friend is

an alias of Selinuntius. The setting management table provides a simple sorting function. A writer can reorder the list

of characters by clicking column headers. When writers sort the list by frequency, they can review the key characters

in that scenario.

3.2. Keyword highlighting

We have implemented a keyword highlighting function to assist writers in recognizing the appearance of characters

in the main text. When writers click on a “Search” button displayed on the setting management table (see Fig. 6),

the word is highlighted with different text and background colors (see Fig. 7). In the prototype system, the default

colors of text and background are assigned automatically. When writers change the color setting, the behavior of the

main text editor changes dynamically. The highlighting of the word is removed, when the button is clicked again.

The dynamic highlighting of the main text editor was implemented using CodeMirror2 a Javascript-based text editor.

Fig. 8 illustrates dynamic behaviors of the main text editor. Once the highlighted word in the main text editor is

1018 Shouhei Nishihara and Motoki Miura / Procedia Computer Science 60 (2015) 1014 – 1020

modified, the effect of the highlighting disappears. Conversely, when a writer inputs the word again, it is highlighted

automatically by the main text editor.

Fig. 6. Search button.

Fig. 7. Highlighted text.

3.3. Comment function

Fig. 9 shows a screenshot of the main text editor when it contains several comments. Writers can embed comments

by surrounding the text with an at sign (@). When two at signs appear in the text, the remaining line becomes a

comment. The regions of the comment are also highlighted with different colors in the main text editor.

The comment function is useful for remembering miscellaneous settings. If the story was sufficiently short, the

writer can finish writing without interruption. However, it is difficult to maintain miscellaneous settings when writing

a long story. In such a case, settings are typically written in other notebooks. However, management of the other

notebooks increases the burden and time for referring to notes.

We consider that the comment function solves the issues of referring to notes by embedding them. The comment

function can be used to improve the text by trial and error. Writers can easily switch two or more sentences by adding

or removing the at signs.

For a writer who wants to check all the comments, we have developed a function to bundle all comments through

the main text. At present, the system does not support the maintenance of consistency between the main text and the

1019 Shouhei Nishihara and Motoki Miura / Procedia Computer Science 60 (2015) 1014 – 1020

Fig. 8. Dynamic behavior of the main text editor.

contents of the comments. Consequently, writers are responsible for finding contradictions and maintaining consis-

tency.

Fig. 9. Comment function.

4. Related works

Automation of novel creation has been extensively studied. BRUTUS3 is a program that writes short stories on

pre-defined themes such as betrayal. MINSTREL4 is a case-based problem-solver that stores past cases in an episodic

memory. MEXICA5 is a computer model based on an engagement-reflection cognitive account of creative writing that

produces stories. These systems automatically produce text using their respective methods. Such automatic writing

might be of help when amateur writers begin writing prologs, one of the most difficult tasks. However, the automatic

writing approach can reduce the creativity of amateur writers. Therefore, we recommend that the use of automatic

text generation be limited.

Literate programming6 is an approach to programming introduced by Donald Knuth in which a program is given

as an explanation of the program logic in a natural language such as English. We adopted the literate programming

approach for writing novels and incorporated it into our web-based system.

Spell checking7 is a fundamental method for reducing misspelling. The result of spell checking is shown by text

with highlighting, such as underlining. For programming editors, syntax highlighting is also popular for reducing

errors and recognizing structure. Therefore, we expect that these features can be used to support novel writing.

1020 Shouhei Nishihara and Motoki Miura / Procedia Computer Science 60 (2015) 1014 – 1020

5. Conclusion and Future Work

In this paper, we proposed a method and implemented a web application to assist amateur writers in writing novels.

In particular, we introduced automatic keyword suggestion and highlighting techniques. The automatic keyword

suggestion finds names of characters from the draft text and proposes them for adding to the character list. The

selected keywords are highlighted in the main text editor. We also provided setting manager and comment functions

to enrich the novel-writing environment. Using such functions, similar to the use of an IDE, amateur writers can easily

check the consistency of their novels while writing. We hope that the web application contributes to the popularization

of novel writing by amateurs.

This system was developed for writing a single novel. However, writers sometimes create a series of novels. As

future work, we will consider how to share and apply the novels settings throughout a series of novels. We will

also improve the accuracy of automatic keyword extraction using natural language processing. Once the accuracy of

keyword extraction is improved, we will assess the performance of the system. To assess the performance, we will

ask some writers to utilize the system and provide feedback. In addition, we will evaluate the usability of the system

by reviewing tasks of existing novels.

References

1. Kudo, T.. Mecab: Yet another part-of-speech and morphological analyzer. http://mecab.sourceforge.net/; 2005.

2. Haverbeke, M.. Codemirror (version 2. x). 2011.

3. Bringsjord, S., Ferrucci, D.. Artificial intelligence and literary creativity: Inside the mind of brutus, a storytelling machine. Psychology

Press; 1999.

4. Turner, S.R.. Minstrel: a computer model of creativity and storytelling 1993;.

5. PÉrez, R.P.Ý., Sharples, M.. Mexica: A computer model of a cognitive account of creative writing. Journal of Experimental & Theoretical
Artificial Intelligence 2001;13(2):119–139.

6. Knuth, D.E.. Literate programming. The Computer Journal 1984;27(2):97–111.

7. Zhao, Y., Truemper, K.. Effective spell checking by learning user behavior. Applied Artificial Intelligence 1999;13(8):725–742.

Acknowledgements

The part of this research was supported by the fund of Telecommunication Advancement Foundation and JSPS

KAKENHI Grant-in-Aid for Scientific Research (C): Grant Number 15K00485.

