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Predicting idiopathic toxicity of cisplatin
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Hyuk Nam Kwon'®, Mina Kim*®, He Wen'®, Sunmi Kang', Hyeji Yang', Myung-Joo Choi?,
Hee Seung Lee?, DalWoong Choi?, In Suh Park?, Young Ju Suh’, Soon-Sun Hong? and Sunghyouk Park’

'Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine,
Inha University, Shinheung-dong 3ga, Chung-gu, Incheon, Korea; *Department of Biomedical Sciences, Inha University Hospital and
Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Shinheung-dong 3ga, Chung-gu, Incheon,
Korea; >Department of Environmental Health, College of Health Sciences, Korea University, Seoul, Korea; *Department of Pathology, Inha
University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Shinheung-dong
3ga, Chung-gu, Incheon, Korea and *Department of Biostatistics, Inha University Hospital and Center for Advanced Medical Education
by BK21 project, College of Medicine, Inha University, Shinheung-dong 3ga, Chung-gu, Incheon, Korea

Cisplatin has been one of the most widely used anticancer
agents, but its nephrotoxicity remains a dose-limiting
complication. Here, we evaluated the idiopathic nature and
the predose prediction of cisplatin-induced nephrotoxicity
using a nuclear magnetic resonance (NMR)-based
pharmacometabonomic approach. Cisplatin produced
serious toxic responses in some animals (toxic group), but
had little effect in others (nontoxic group), as judged by
hematological and histological results. The individual
metabolic profiles, assessed by urine NMR spectra, showed
large differences between the post-administration profiles of
the two groups, indicating the relevance of the NMR
approach. Importantly, multivariate analysis of the NMR data
showed that the toxic and nontoxic groups can be
differentiated based on the pretreatment metabolite profiles.
Leave-one-out analysis, performed to evaluate the practical
performance of our approach, gave a 66% accuracy rate in
predicting toxic responses based on the pretreatment
metabolite profiles. Hence, we provide a working model that
can explain the idiopathic toxicity mechanism based on
marker metabolites found by NMR analysis consistent with
tissue NADH measurements. Thus, a pharmacometabonomic
approach using pretreatment metabolite profiles may help
expedite personalized chemotherapy of anticancer drugs.
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Cisplatin is a broad spectrum antineoplastic agent used
against solid tumors such as ovarian, testicular, bladder, lung,
and breast carcinomas.'™ Although it has been one of the
most widely used chemotherapeutic agents for the last three
decades, its nephrotoxicity remains a major concern.>®
Cisplatin induces cumulative impairment of renal function
manifested by decreased glomerular filtration rate with its
major target site being the renal tubule system. As much as
20% of patients on high-dose cisplatin chemotherapy
develop severe renal dysfunction.”®

The degree of drug-induced toxic responses varies among
patients, and is one of the major factors to determine therapy
success and for implementing personalized medicine. How-
ever, individualized therapy is still at its incipient stage, and
most research has focused on genetic susceptibility based on
individual variations in the DNA sequences.”® This pharma-
cogenomic approach, although useful in some cases,” has
rather narrow applicability and may not contribute signifi-
cantly to personalized medicine.'®* Pharmacogenomic
approaches to anticancer agents have also had modest results,
with less-than-expected clinical significance.'”™”

Pharmacogenomics can only measure innate genetic
variability and does not incorporate ‘post-birth’ environ-
mental and/or personal metabolic factors that could be more
important in drug-induced toxic responses. As an alternative,
pharmacometabonomics, measuring the final phenotypic
effects of both genetic and environmental factors, was rec-
ently proposed.'®™® A pioneering work by Clayton et al.'®
showed that the metabolic fate of a drug (paracetamol) and
the related toxicity can be predicted based on predose urine
metabolite profile from laboratory animals with the same
genetic backgrounds. The concept was additionally proven
for a different system'® and, ultimately, for human.'**° Other
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reports also provided high expectations for its application to
personalized drug therapy, disease diagnosis, and pharma-
ceutical research.!®**?® Therefore, pharmacometabonomics
is expected to provide holistic understanding of effects of
many more drugs and become an important discipline in the
practice of medicine.

Anticancer drugs are probably the most appropriate class
of drugs, for which the individual toxic responses should
be considered. They exhibit toxic responses in larger portions
of patients than other classes of drugs and the toxicity is
often life threatening or irreversible. The therapeutic indices
of these drugs are often quite small and they can exhibit
significant toxicity even at recommended therapeutic doses.
In addition, the physical condition of cancer patients often
may not be adequate for invasive biopsies for toxicity
evaluation. Therefore, predicting toxicity before anticancer
drug administration using noninvasive pharmacometabo-
nomics is highly desirable. So far, most metabonomics
studies on anticancer drugs involve toxicity markers or toxic
response assessment after drug administration.**>°

Here, we took nuclear magnetic resonance (NMR)-based
pharmacometabonomic approach to address the idiopathic
nature and the predose prediction of cisplatin-induced
nephrotoxicity. We used this particular application of
metabonomics, which has been used widely to evaluate
kidney function/toxicity in many circumstances.”’>* Our
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according to their toxic-response status based on metabolite
profiles obtained before cisplatin administration. In addition,
these predose urine metabolite profiles could predict the
outcomes of the drug toxicity with 66% accuracy rate for
the genetically homogenous animals. We also characterized
the chemical identities of the contributing metabolites
that could predispose the animals to the drug toxicity. These
noninvasive approach could be conveniently applied to other
anticancer agents and contribute to improving cancer
chemotherapy using personal metabolic profiles.

RESULTS

Individual toxic response

We performed preliminary experiments with various doses
and administration times of cisplatin in small number of
animals (typically n=4-5). During this course, we consis-
tently found that a portion of the tested animals did not
show any signs of toxicity at doses, which caused significant
damages to others (data not shown). To investigate this indi-
vidual toxicity difference more systematically, we measured
hematological markers for renal toxicity, such as serum blood
urea nitrogen (BUN) and creatinine (Cr) level in a larger
number of animals (n=15) challenged with a toxic dose
(10 mg/kg) of cisplatin (Figure 1a and b). As expected, many
of the animals (n=10) developed toxicity, with very high
BUN and Cr values. However, as many as five animals
showed little difference in these markers from the control
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Figure 1| Individual difference to cisplatin-induced toxicity assessed by hematology markers and histopathology. The control group
was given just saline, and the experimental group was given 10 mg/kg of cisplatin in saline. BUN and creatinine levels were measured
immediately after killing the animals. The experimental group (total n=15) was divided into two groups, according to the BUN values: NT
represents non-toxic group (n=5, BUN<60) and T represents toxic group (n =10, BUN >60). (a, b) Changes in BUN and creatinine levels,
respectively. Data are expressed as mean + s.d. (c) Histological evaluation of the cisplatin-induced kidney toxicity. The kidneys were
harvested and fixed in 10% formaldehyde. Histological sections of the kidney were stained with H&E. First row is for kidney cortex and
second row is for medulla. BUN, blood urea nitrogen; H&E, hematoxylin and eosin.
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group. A consistent trend was also observed in body weight
changes over a 100-h period (Supplementary Figure S1
online). The differences in the hematology markers were so
dramatic (P-values on the order of 107°, see Figure la and b)
that we were able to categorize the animals as: non-toxic
group (NT-group, n=5, BUN<60) and toxic group
(T-group, n=10, BUN>60). We then evaluated the toxic
responses in the individual group in more detail.

As toxicity markers can also be affected by damage to other
organs, we performed histopathological studies to confirm
direct kidney tissue damage. Hematoxylin and eosin staining
of the kidney cortex and medulla showed that the NT-group
had mostly intact nuclei and cell shapes, as well as normal
tubular and vascular structure, similar to those of the control
group (Figure lc and Supplementary Figure S2 online). In
contrast, the T-group showed irregular tubular and cellular
structure, suggesting significant damage. Both histopathology
and biomarkers confirm that cisplatin can manifest very
different individual toxic responses in the kidney.

To ensure that the observed difference in the cisplatin
toxicity are not due to different delivery of the drug to kidney
in individual animals, the cisplatin levels (as platinum) in the
kidney tissues were measured using inductively coupled
plasma mass spectrometry technique, one of the best and
most sensitive methods to measure heavy metal contents in
samples. The measured platinum levels were 22.82 £ 5.70 and
24.18£7.25 (pg/g kidney) for the T- and NT-groups,
respectively (Supplementary Figure S3 online). We per-
formed Student’s ¢-test with null hypothesis and obtained P-
value of 0.73. These results clearly demonstrate that the
kidney platinum levels are not different for the two groups,
and that the difference in the cisplatin-induced toxicity does
come from the idiopathic responses to the drug. We then
tested whether we could differentiate these two groups based
on pre-administration metabonomic parameters.

NMR spectral analysis

As all animals have the same genetic background, these
idiopathic responses most probably occur from metabolic
differences between individuals.'™'® As pre-administration
metabonomic parameters could serve as basis for predicting
drug-induced toxicity,'® we took a metabonomic approach
with pre- and post-administration urine. We used urine
metabolite profiles measured by H-NMR spectroscopy, as
they are exquisitely sensitive to kidney function and
metabolic status.’>’® The post-administration NMR spectra
were very different between the T- and NT-groups, with the
NT-group similar to the control group (Figure 2, right
column). More specifically, the post-administration spectra
showed much higher glucose peaks and much lower
hippurate, urea, and allantoin peaks in the T-group than
the NT-group. This result suggests that cisplatin affects the
metabolism of these compounds in the kidney as a result of
toxicity. These NMR metabolite profiles are consistent with
hematological data, as high BUN indicates low excretion
of urea. In addition, the pre-administration profiles of the
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NT-group were similar to its post-administration profiles,
indicating that cisplatin did not affect its kidney metabolism.
These results show that metabolic differences can be
correlated with differential toxic responses via an NMR-
based metabonomic approach.

More appropriate for the pharmacometabonomic predic-
tion of cisplatin toxicity are differences in the pre-adminis-
tration NMR spectra of T- and NT-groups (Figure 2, left
column). Casual examination of the representative spectra
did not identify high-intensity peaks whose differences are
immediately apparent, which was not surprising considering
the homogenous genetic background of the animals. There-
fore, we decided to analyze the entire NMR dataset in a more
holistic way with multivariate analysis to investigate marker
signals with smaller intensities, but high statistical signifi-
cance for pharmacometabonomic prediction.

Orthogonal projections to latent structure-discriminant
analysis (OPLS-DA) multivariate analysis and identification
of markers

Our goal was to predict post-administration toxic responses
based on the individual differences in the pre-administration
metabolic profiles. Therefore, we took multivariate approaches
to differentiate the pre-administration urine NMR spectra
according to their post-administration responses, that is, T- vs
NT-responses. We used OPLS-DA approaches, as it can classify
groups in the presence of high structured noise that can
otherwise dominate the variations between groups.””> The
OPLS-DA model on the NMR metabolite profiles was obtained
with one predictive (Pp) and one orthogonal component. Out
of the total independent input data, 34.4% were structured and
the rest were unstructured noise. Among the structured data,
16.6% was Pp, correlated to the separation of the groups, and
17.8% (Po) was uncorrelated to the separation. The relatively
small value of the Pp is not surprising, considering the genetic
homogeneity of the animals. It actually shows that the OPLS-
DA method can differentiate the groups even in the presence of
large amount of other confounding factors. The resulting score
plot shows that the T- and NT-groups can be clearly
differentiated by the first Pp component derived from the
NMR spectral variables (Figure 3).

We also used statistical total correlation spectroscopy’’
analysis to find the contributing signals for this separation
(Figure 4). The P(corr)p values of each of these signals
suggest that multiple metabolite signals, rather than one
overwhelmingly prominent marker, contribute to the differ-
entiation. It is not surprising to see these patterns, as
biological responses to drugs often involve multiple mole-
cules. With database matching and analyses of the ultra
high-field (900 MHz) two-dimensional NMR spectra, we
identified and confirmed 28 metabolites (Supplementary
Table S1 online). The representative analyses for two
important compounds (see below), oxoglutarate and succi-
nate, are shown in Supplementary Figure S4 online. Among
those identified, we picked four metabolites with relatively
high Pp and P(corr)p values (14 on Figure 4), hence more
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Figure 2| Representative urine NMR spectra of control, NT-, and T-group at pre- and post-administration points. Spectra for the
T-group is in the top, NT-group in the middle, and the control group in the bottom rows. Spectra in the left column are for pre-administration
and those in the right for post-administration spectra. Specific metabolite peaks were assigned using Chenomx (Spectral database) and ultra
high-field (900 MHz), two-dimensional NMR spectra (see text). The spectra were taken for samples in 500 pl of D,O and urine mixture
containing 200 mmol/l sodium phosphate (pH 7.4) and 0.025% trimethylsilylpropionic acid sodium salt-d, as a chemical shift reference.
NMR, nuclear magnetic resonance; NT-group, non-toxic group; T-group, toxic group.

relevant to the differentiation, as markers for differentiation
of the groups (1: allantoin, 2: creatinine, 3: succinate, 4:
oxoglutarate). To confirm the validity of the markers found
by this multivariate analysis, we also carried out Mann—
Whitney U-test.!® Allantoin, succinate, and Cr levels are
statistically higher in the NT-group, whereas oxoglutarate
level is higher in the T-group even before cisplatin
administration (Supplementary Figure S5 online). We also
addressed the biological and statistical significance of these
markers by measuring the nicotinamide adenine dinucleotide
(NADH) levels in kidney tissues (see the Discussion section)
and performing false discovery rate and Bonferroni analysis
(Supplementary Table S2 online). Our data confirm that
metabolic differences exist in these animals despite the
identical genetic backgrounds and that NMR-based metabo-
nomics approach can characterize the markers responsible
for the idiopathic toxic responses.

Prediction of toxicity

With the successful pre-administration distinction between
the T- and NT-groups, we further validated the approach by
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performing a leave-one-out analysis on the OPLS-DA model.
Although not usually performed in the metabonomics
literature, this is an important step to evaluate the practical
quantitative performance of the approach. We left out one
sample at a time and predicted the toxicity from the model
established with the rest of the dataset. This approach,
therefore, serves as a blind test for an unknown sample and
provides real-life cross-validation for the established model.
Our OPLS-DA model could correctly classify the unknown
samples with 66% accuracy rate for toxicity response
(Figure 5).

DISCUSSION

Cisplatin, along with other related ‘platins) is an important
anticancer agent with broad indications in solid tumor
chemotherapy.**** However, its prominent nephrotoxicity
often leads to treatment cessation.” There has been much
research on how to evaluate or reduce its kidney toxicity
during or after the treatment.>***>** However, most relevant
for cisplatin toxicity evaluation would be to predict its toxic
responses at the individual level before administration, but

Kidney International (2011) 79, 529-537
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Figure 3 | Differentiation of T- and NT-groups based on pre-

administration metabonomic profiles. Orthogonal projections
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triangle, NT-group samples. The model was established using one
predictive and one orthogonal component. NT-group, non-toxic
group; Pp, predictive; T-group, toxic group.

STOCSY
P(corr)p
031 inh i .
High in non-toxic group ) 3 I
= TONE
02f 1 // 0.6
0.1} 0.4
0 " i 0.2
n_‘l -01r | ! 0
-02f [ 02
-0.3} A ~0.4
4
—04r ~06
High in toxic group \ :
-05 T —

0 9 8 7 6 5 4 3 2 1 0

H (p.p.m.)
Figure 4 |Variable contributions from 1D projection of the
statistical total correlation spectroscopy (STOCSY). The Pp
represents modeled covariation and P(corr)p represents modeled
correlation, which is shown in the color scale on the right.
Prominent signals for metabolites that are unequally distributed
between the T- and NT-groups are indicated with numbers
(1: allantoin, 2: creatinine, 3: succinate, 4: oxoglutarate).
NT-group, non-toxic group; Pp, predictive; T-group, toxic group.

little has been reported on this. Here, we applied the NMR-
based pharmacometabonomic approach to cisplatin-asso-
ciated kidney toxicity, and were able to predict individual
toxicity with predose metabolic profiles. In addition, our data
showed that some metabolite levels are quite different among
individuals, suggesting idiopathic metabolic differences even
for genetically homogenous animals.
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Figure 5 | Prediction of idiopathic toxic responses for
unknown samples. Prediction was performed based on the
OPLS-DA model using leave-one-out analysis. One sample
(unknown) was left out at a time and toxicity was predicted until
all the samples were left out once. The class membership of the
left-out samples was predicted using an a priori cutoff value of 0.5
(dashed line).®® NT-group, filled circle; T-group, filled box. The

y axis values of the filled symbols are from the analysis using the
entire data set. In the case of misclassified samples, the predicted
y axis values from the leave-one-out analysis are also shown as
open boxes (T-group) and open circles (NT-group). NT-group,
non-toxic group; OPLS-DA, orthogonal projections to latent
structure-discriminant analysis; T-group, toxic group.

Among the differential metabolites, oxoglutarate is a key
intermediate in oxygen-consuming metabolism through the
tricarboxylic acid cycle. It is converted to succinate by
oxoglutarate dehydrogenase followed by succinyl-CoA
synthetase, with concomittent generation of NADH. The
higher and lower levels of oxoglutarate and succinate,
respectively, in the pre-administration samples of the
T-group suggest that the flux through this metabolic step
in the tricarboxylic acid cycle might be less efficient in that
group, which could lead to inefficient production of NADH.
To test this hypothesis directly, we measured the NADH levels
in kidney tissues using an enzymatic assay (Figure 6). The result
confirms that the NADH level is significantly lower in the
T-group than NT-group. In addition, the values were not
appreciably different between the NT and control groups.
These metabolic differences between the T- and NT-groups
can produce very different outcomes when high reducing
power is needed with the drug challenge, even though they
may not elicit clear phenotypic differences under normal
physiological conditions. It is due to the fact that NADH is
important in providing a reservoir of reducing power**®
with its quantitative conversion to NADPH by nicotinamide
nucleotide transhydrogenase.*’” In turn, NADPH is consumed
in the detoxification of reactive oxygen species (ROS) by
glutathione reductase (Figure 7). NADH can also act more
directly as a reducing agent in repairing disulfide-oxidized
proteins through protein disulfide reductase.

As the main mechanism of cisplatin toxicity is the
generation of ROS,> the above metabolic difference might
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be a risk factor for increased cisplatin toxicity. The T-group,
with the less efficient conversion of oxoglutarate to succinate,
may not produce enough NADH to help detoxify the
ROS produced by cisplatin, leading to the accumulation
of ROS-mediated cellular damages. The approximately
twofold difference in the oxoglutaratesuccinate levels
might be amplified into much larger differences in kidney
damages, as oxidative damage is cumulative. The meta-
bolic difference can also be amplified in the detoxification
enzyme chain reactions that deliver the reduction potential
to ROS (Figure 7). We believe our biological data for
NADH levels and statistical analysis with false discovery
rate and Bonferroni adjustment (Supplementary Table S2
online) give strong enough support for the significance of the
marker metabolites.
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Figure 6 | NADH levels in the kidney tissues. The NADH levels
were measured using the NAD/NADH measuring kit from Abcam
following the manufacturer’s instruction. Kidney tissues were
obtained after killing of the animals following the drug treatment.
The NT- and T-groups were divided according to the BUN values
after the cisplatin treatment: the NT-group with BUN <60 and the
T-group with BUN > 60. The control group was given only vehicle.
Data are expressed as mean + s.d. P-values from student’s t-test
are also shown. BUN, blood urea nitrogen; NADH, nicotinamide
adenine dinucleotide; NT-group, non-toxic group; T-group, toxic
group.
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The levels of allantoin and Cr in the NT group, as
estimated by NMR, were also significantly different from that
in the T group (Supplementary Figure S5 online). The
median levels of both molecules were about 1.4 times larger
in the NT group. It is interesting to note that both Cr and
allantoin are terminal metabolites eliminated by kidney.
Allantoin is produced from catabolism of purines, and Cr is
produced from creatine phosphate. The levels of these
molecules, especially Cr, have been shown to correlate with
general kidney functions. Allantoin was also proposed as a
kidney functional marker in reperfusion injury” or renal
failure cases.*® Therefore, the levels of these molecules might
represent general capacity of the kidney function and
metabolism, which, in turn, might partially contribute to
the toxicity differences between the T- and NT-groups. As in
the oxoglutarate and succinate cases, although the relatively
small differences in the levels of these metabolites between
the T- and NT-groups may be irrelevant in physiological
conditions, the cumulative nature of ROS-mediated cisplatin
toxicity may result in large differences in the final
manifestation of tissue damages by the drug.

Predicting toxic responses before drug administration
constitutes an important part of personalized drug therapy,
and is especially important for drugs those toxicities are
serious and irreversible, such as anticancer agents. Although
pharmacogenomic approaches have been tested widely for
anticancer drugs, actual clinical application is limited to
handful of cases, such as imatinib, trastuzumab, Erlotinib,
and other closely related drugs.**”' In addition, the indica-
tions of these drugs are quite limited, because they are
target-selective narrow spectrum agents. Pharmacogenomic
approaches have been possible for these drugs, because their
target proteins, such as epidermal growth factor receptor
or BCR-ABL kinase, are exactly known before the drug
development. In comparison, the pharmacometabonomic
approach is applicable to anticancer agents with wider
spectrum without previous knowledge about the targets,
because it detects more systemic variation using biofluids.
Our results indicate that the pharmacometabonomic

Oxoglutarate

. Inefficient
NADP NADH in T-group
Succinate
NADPH NAD*
Nicotinamide
nucleotide
transhydrogenase

Figure 7 | Molecular events linking the pre-administration metabonomic difference to the idiopathic cisplatin toxicity. The T-group
has lower efficiency of the oxoglutarate to succinate conversion step in the TCA cycle, which should result in lower levels of NADH.
Although this difference may not exhibit any noticeable difference under physiological conditions, cisplatin challenges can make a
difference. In the T-group, less NADH will result in less efficient disposal of ROS generated by cisplatin because of the metabolic linkage
between ROS detoxification (glutathione peroxidase) and NADH. Cumulative differences in this detoxification efficiency could produce
idiopathic toxic responses to cisplatin. NADH, nicotinamide adenine dinucleotide; ROS, reactive oxygen species; T-group, toxic group;

TCA, tricarboxylic acid cycle.
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approach may find broad application in anticancer agents
where the pharmacogenomic approach was not satisfactory.
Cisplatin is an appropriate test case for pharmacometabo-
nomic approach for anticancer agents, as it is one of the most
widely used broad-spectrum agents without narrowly defined
targets. In addition, it induces irreversible kidney damages in
a significant portion of the patients.™

Just like other biomarkers, the accuracy rate for the
prediction of the current metabonomics approach for
cisplatin is not perfect. It is still very meaningful considering
that clinical markers for early cancer diagnosis have low
to modest sensitivities: cancer antigen 27.29 with 30% for
early breast cancer,”” carcinoembryonic antigen with 25% for
early colon cancer,”” and prostate specific antigen with 75%
for organ-confined prostate cancer.”* Although the current
study does not involve a very large number of animals, our
data suggest that, with a properly built database of urine
NMR spectra, a toxic response can be predicted before
cisplatin administration with quantitative assessment of
prediction accuracy. Future research on the prediction of
efficacy, which may also be addressed using metabonomics,
can be combined with the current approach to help achieve
the ultimate goal of personalized cisplatin treatment.

METHODS

Reagents and animals

Cisplatin (CAS no. 15663-27-1; lot 059H3657) was purchased from
Sigma Chemical Company (St Louis, MO). Male Sprague-Dawley
rats (200g, 6-7 weeks of age) were purchased from Orient Bio
(Sungnam, Korea) and housed on 12h light/dark cycle before
the experiment. The animals were fed cereal-based standard chow
with free access to water. Animal care and all experimental
procedures were conducted in accordance with the guide for animal
experiments edited by the Korea Academy of Medical Science,
Declaration of Helisinki principle, and approved by the institutional
review board.

Administration of cisplatin and sampling

Rats were divided into two treatment groups, and all injections were
given intraperitoneally. The control group (n=4) was given just
saline, and the cisplatin treated group (n = 15) was given 10 mg/kg of
cisplatin in saline. Individual predose (—24-0h) and postdose
(7296 h) urine samples were collected into an ice-cooled jar with a
metabolic cage. Sodium azide was added in the urine collection bowl
(0.5ml of 100mg/ml solution) to prevent bacterial growth. The
pooled urine samples were frozen and stored at —80 °C for subsequent
analysis. All animal experiments were done at the Inha University
Medical School Animal Experiment Center (Incheon, Korea).
Individual animal data are listed in Supplementary Table S3 online.

Hematology markers, histological study, and biochemical
NADH assay

After the postdose urine collection, animals were killed and the
blood was obtained for clinical chemistry (BUN and Cr levels). The
kidneys were harvested and fixed in 10% formaldehyde. Histological
sections of the kidney were stained with hematoxylin and eosin
stains. NADH level was measured using a NAD/NADH assay
kit from Abcam following the vendor-provided instructions
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(Cambridge, MA). Statistical analysis was performed using an
unpaired Student’s t-test on SPSS software for Windows (Version
10.0; SPSS, Chicago, IL).

NMR measurement

All one-dimensional NMR spectra of the urine samples were
measured with an NMR spectrometer (Bruker Biospin, Rheinstetten,
Germany, Avance 500) operating at a proton NMR frequency of
500.13 MHz. The acquisition parameters were essentially the same as
previously reported.’”*>>® For structural analysis of the metabolites,
ultra high field, two-dimensional NMR spectra were acquired using
a 900 MHz Bruker Avance spectrometer equipped with a cryogenic
probe. For proton correlations, double quantum filtered correlation
spectroscopy data were obtained in phase sensitive mode. The data
set comprises 1024 x 192 complex points for the direct and indirect
dimensions, respectively. For proton and carbon long-range
correlation, a heteronuclear multiple-bond correlation spectrum
was measured in magnitude mode. The dataset comprises 1024
complex points for direct and 512 real points for indirect dimension.
The one-bond proton carbon correlation was measured with a
heteronuclear single-quantum coherence spectrum. The dataset
comprises 1024 x 192 complex points for the direct and indirect
dimensions, respectively. The spectra were referenced against the
trimethylsilylpropionic acid sodium salt-d, signal. All datasets were
processed with nmrPipe software (NMR Science, North Potomac,
MD) and analyzed with nmrView software (One Moon Scientific,
Westfield, NJ). We also used Chenomx (Spectral database;
Edmonton, Canada) for identification of the metabolites. This
study used the NMR facility at Korea Basic Science Institute, which
is supported by Bio-MR Research Program of the Korean Ministry
of Science and Technology (E29070).

Determination of cisplatin levels in kidney

To analyze the cisplatin concentrations in kidney, the frozen kidney
samples were pretreated with microwaves. Kidney samples
(0.5gram) were put into a Teflon vessel to which 70% nitric acid
(5ml) and distilled deionized water (5 ml) were added. After closing
the top, the samples were decomposed with the microwave digestion
system (Ethos, Millestone, Italy). For the decomposition, the
temperature was increased to 180°C for 15min in the first step
and the temperature was maintained at 180 °C for 15min in the
second step. In the third step, the vessel was cooled down to room
temperature for 120 min. The pretreated samples were diluted with
distilled deionized water. Platinum analysis was carried out with an
induced coupled plasma-mass spectrometer (7500 series, Agilent,
Santa Clara, CA). The cisplatin levels were expressed as platinum
concentrations in the kidney samples.

Multivariate data analysis

All the obtained time domain NMR data were Fourier transformed,
phase corrected, and baseline corrected manually. The resulting
frequency domain data were binned at a 0.0044 p.p.m. interval to
reduce the complexity of the NMR data for pattern recognition. The
high-resolution binned data were aligned using a correlation-
optimized warping algorithm.>” The signals were normalized against
total integration values, 0.025% trimethylsilylpropionic acid sodium
salt-d,, and then converted to an ascii text file for the next step. The
binning, normalization, and conversion were done using in-house
written Perl software. For statistical analysis, water and urea regions
were excluded. Multivariate statistical analysis was performed using
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numeric data processing software: Matlab (MathWorks, Natick,
MA), SIMCA-P version 11.0 (Umetrics, Umea, Sweden). OPLS-DA
was performed with one Pp and one orthogonal component.*>*® 1D
projection of statistical total correlation spectroscopy was built by
overlaying the color-coded correlation values on to the OPLS-DA
variable plot.>"**®! Prediction of the unknown samples was
performed by leave-one-out analysis. One sample (unknown) was
left out at a time and the OPLS-DA prediction model was obtained
until all the samples were left out once. The class membership of the
left-out samples was predicted using an a priori cutoff value of 0.5.°
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