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Abstract

At the 16th British Combinatorial Conference (1997), Cameron introduced a new concept
called 2-simultaneous edge-coloring and conjectured that every bipartite graphic sequence, with
all degrees at least 2, has a 2-simultaneous edge-colorable realization. In fact, this conjecture is
a reformulation of a conjecture of Keedwell (Graph Theory, Combinatorics, Algorithms and Ap-
plications, Proceedings of Third China–USA International Conference, Beijing, June 1–5, 1993,
World Scienti�c Publ. Co., Singapore, 1994, pp. 111–124) on the existence of critical partial latin
squares (CPLS) of a given type. In this paper, using some classical results about nowhere-zero
4-
ows and oriented cycle double covers, we prove that this conjecture is true for all bipar-
tite graphic sequences with all degrees at least 4. c© 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction

In this paper we consider �nite simple graphs. For notations not de�ned here we
refer to [1]. Our results are based on some classical results about cycle double covers
and nowhere-zero integer 
ows. In this section we discuss some necessary preliminaries
about these concepts.
A cycle double cover (CDC) C of a graph G is a collection of cycles in G such

that every edge of G belongs to exactly two cycles of C. It can be easily seen that a
necessary condition for a graph to have a CDC is that the graph be bridgeless. Seymour
[8] in 1979 conjectured that this condition is also su�cient.

∗ Corresponding author.
E-mail addresses: emahmood@vax.ipm.ac.ir (E.S. Mahmoodian), tuserk@karun.ipm.ac.ir (R. Tusserkani)

0012-365X/00/$ - see front matter c© 2000 Published by Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(99)00353 -2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82387713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


268 M.T. Hajiaghaee et al. / Discrete Mathematics 216 (2000) 267–272

Conjecture (CDC conjecture, Seymour [8]). Every bridgeless graph has a cycle double
cover.

The idea of this conjecture comes from the fact that the set of faces of a planar
graph (including the in�nite face) is a set of cycles that cover every edge exactly twice.
The CDC conjecture has some stronger forms one of them is the following which can
be found in [13].

Conjecture (Oriented CDC conjecture). Every bridgeless graph has a cycle double
cover in which every cycle can be oriented in such a way that every edge of the graph
is covered by exactly two directed cycle in two di�erent directions.

There are many relations between the concept of cycle double cover and other con-
cepts in graph theory. Perhaps the most related concept is the concept of an integer

ow. A nowhere-zero integer k-flow (or simply a k-flow) of a graph is an as-
signment to each edge a direction and a weight from {1; 2; : : : ; k}, such that for each
vertex v the sum of the weights on the edges directed into v equals the sum of the
weights on the edges directed away from v. The concept of an integer 
ow was intro-
duced by Tutte [11] as a re�nement and generalization of the face coloring problem
of planar graphs. He proposed the following conjecture as a generalization of the �ve
color theorem for planar graphs.

Conjecture (5-
ow conjecture, Tutte [12]). Every bridgeless graph admits a
5-
ow.

The best result in direction of Tutte’s conjecture is obtained by Seymour [9]. He
proved that every bridgeless graph has a 6-
ow. Also the following theorem, due
to Jaeger, shows that stronger assumptions about connectivity imply the existence of
stronger integer 
ows.

Theorem A (Jaeger [4]). Every 4-edge connected graph admits a 4-
ow.

There are many results about the relation between integer 
ows and cycle double
covers in [13]. The following theorem which follows from the results in [13] plays a
key role in this paper.

Theorem B. If a graph admits a 4-
ow then it has an orientable cycle double
cover.

In the next section we state a conjecture related to latin squares and study the relation
between this conjecture and the cycle double cover conjecture.
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2. The SE conjecture

Recently Cameron [2] stated a conjecture called simultaneous edge-coloring
(SE) conjecture which is in fact a reformulation of a conjecture by Keedwell [5]
on the existence of critical partial latin squares (CPLS) of a given type. Before stating
the conjecture, we need to de�ne the concept of a 2-simultaneous edge-coloring.

De�nition. Let G be a graph. A 2-simultaneous edge-coloring of G is a pair of proper
edge-colorings of G such that

• for each vertex, the sets of colors appearing on the edges incident to that vertex are
the same in both colorings;

• no edge receives the same color in both colorings.
If G has a 2-simultaneous edge-coloring, then G is called a 2-simultaneous edge-
colorable graph.

In fact, 2-simultaneous edge-colorable graphs for edge-coloring of graphs play a
role similar to the role of trades in block designs [10]. Therefore, this concept has
applications in the study of the de�ning sets of graph colorings and uniquely colorable
graphs. For a survey on these concepts see [7].
Let G be a bipartite graph with bipartition (X; Y ). The bipartite degree

sequence of G is the sequence (x1; x2; : : : ; xn;y1; y2; : : : ; ym), where (x1; x2; : : : ; xn)
is the degree sequence of the vertices in X and (y1; y2; : : : ; ym) is the degree se-
quence of the vertices in Y . A sequence S = (x1; x2; : : : ; xn;y1; y2; : : : ; ym) is called a
bipartite graphic sequence if there exists a bipartite graph G whose bipartite de-
gree sequence is S. It is well known that a necessary and su�cient condition for a
sequence S =(x1; x2; : : : ; xn;y1; y2; : : : ; ym), where xi’s and yj’s are two nonegative and
nondecreasing sequences to be bipartite graphic, is given by the Gale–Ryser Theorem

n∑

i=1

xi =
m∑

j=1

yi;

k∑

i=1

xi6
m∑

j=1

min{k; yj} for 16k6n:

Conjecture. SE Conjecture, Cameron [2]. Every bipartite graphic sequence, with all
degrees at least 2, has a 2-simultaneous edge-colorable realization.

Cameron [2] noted that it is not true that any bipartite graph G with �(G)¿ 1 is
2-simultaneous edge-colorable. His example is a graph which consists of two 4-cycles
with an extra edge joining them together. It is easy to verify that this graph is not
2-simultaneous edge-colorable.
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In [6] it is proved that every bipartite graph which has a cut edge does not have a
2-simultaneous edge-coloring. And it is conjectured that the converse is true.

Conjecture (Strong SE Conjecture, Mahdian et al. [6]). Every bridgeless bipartite
graph has a 2-simultaneous edge-coloring.

It is proved there that the conjecture above is equivalent to the oriented CDC
conjecture. In particular, the following theorem follows from their results.

Theorem C (Mahdian et al. [6]). Every bipartite graph has an oriented cycle double
cover if and only if it is 2-simultaneous edge-colorable.

In the next section we use this relation between oriented CDC conjecture and SE
conjecture to obtain some results about SE conjecture.

3. The results

In this section we deal with some problems on connectivity and for this we need the
following terminology and notations. Let G be a graph and S be a nonempty proper
subset of V (G). The notation [S; �S], called an edge cut (or simply a cut), speci�es
the set of edges having one endpoint in S and the other in �S. The value of a cut,
denoted by |[S; �S]|, is the number of edges in [S; �S]. In [3], Edmonds proved that
every graphic degree sequence, with all degrees at least k¿2, has a k–edge connected
realization. Here we prove a similar theorem about bipartite graphs.

Theorem 1. Every bipartite graphic sequence D; with all degrees at least 2k (k¿1);
has a 2k-edge connected realization.

Proof. For each bipartite realization G of D de�ne SG = {[S; �S]: |[S; �S]|62k − 1}.
Let d = min{|SG|: G is a bipartite realization of D}. If d = 0, then there is nothing
to prove. Suppose d¿1 and H is a bipartite realization of D such that |SH |= d and∑

[S; �S]∈SH
|[S; �S]| is a maximum. We show a contradiction.

Suppose that [X; �X ] ∈ SH . Let A⊂X and B⊂ �X be subsets, each with a minimum
size, such that [A; �A] ∈ SH and [B; �B] ∈ SH . Obviously, A and B are disjoint sets.
There are at most 2k−1 vertices in A adjacent to the vertices of �A, and since the de-

gree of each vertex is at least 2k, every vertex in A has a neighbor a1 ∈ A which is not
adjacent to any vertex of �A. Therefore, we can �nd two adjacent vertices a1 and a2 in
A (b1 and b2 in B, respectively) which are not adjacent to the vertices of �A ( �B, respec-
tively). Without loss of generality, suppose that a1 and b1 are in the same part of H .
By removing the edges a1a2 and b1b2 and inserting edges a1b2 and a2b1, we construct

a new bipartite graph H ′ with the same degree sequence, in which |[A; �A]| and |[B; �B]|
are increased. Now extremal conditions on H imply that there exists a cut [C; �C] in
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H ′ such that |[C; �C]|62k − 1 and |[C; �C]| is decreased. Clearly, in every cut [C; �C]
whose value is decreased in H ′, the vertices a1 and b2 together are in either C or in
�C, and a2 and b1 are in �C or C. Assume that a1 and b2 are in C. Consider nonempty
and mutually disjoint sets A ∩ C, A ∩ �C, B ∩ C and B ∩ �C. Since |[C; �C]|62k − 1,
there exists at most k − 1 edges from A ∩ C to A ∩ �C or from B ∩ C to B ∩ �C. By
symmetry, assume that the former is the case. By counting a1a2, there exists at most
k edges from A∩C to A∩ �C. On the other hand, |[A; �A]|62k − 1 and without loss of
generality we can assume that the number of edges from A∩C to �A is at most k − 1.
Thus, we have |[A∩C; A ∩ C]|6k−1+k=2k−1. Obviously, A∩C is a proper subset
of A and this contradicts the choice of A. Thus SH is empty and this completes the
proof.

By the theorem above for every bipartite graphic sequence, with all degrees at least
4, we can �nd a 4-edge connected realization, say G. Theorem A and Theorem B imply
that G has an oriented cycle double cover and by Theorem C, G is 2-simultaneous
edge-colorable. Thus we have proved the following theorem.

Theorem 2. Every bipartite graphic sequence; with all degrees at least 4; has a
2-simultaneous edge-colorable realization.

In fact, theorem above shows that the SE conjecture is true except possibly when
some of the degrees are 2 or 3. The following result which was stated in Cameron’s
homepage, shows that the conjecture is true if all degrees are 2 or 3.

Theorem 3. Every sequence D=(x1; x2; : : : ; xm;y1; y2; : : : ; yn); where each component is
equal to 2 or 3; min{m; n}¿3; and ∑

xi=
∑
yi; has a 2-simultaneous edge-colorable

bipartite realization.

Proof. We proceed by induction. The result for min{m; n}65 can be easily veri�ed by
checking all cases. Thus assume that min{m; n}¿6. There are at least three equal ele-
ments in each part. Therefore, one of the patterns (2; 2; 2; 2); (3; 3; 2; 2; 2); (2; 2; 2; 3; 3),
or (3; 3; 3; 3; 3; 3) can be found in D. By deleting this pattern from D, we obtain a
degree sequence D′ which again satis�es the conditions of the statement. Thus by in-
duction hypothesis, D′ has a 2-simultaneous edge-colorable bipartite realization. And
since each of these patterns are also 2-simultaneous edge-colorable, so the union of
these two realizations is a 2-simultaneous edge-colorable graph with degree sequence
D as desired.
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