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Abstract

Angular particle correlations are a powerful tool to study collective effects and in-medium jet modification as well
as their interplay in the hot and dense medium produced in central heavy-ion collisions. We present measurements of
two-particle angular correlations of inclusive charged and identified particles performed with the ALICE detector. The
near-side peak in the short-range correlation region is quantitatively analyzed: while the rms of the peak in φ-direction
is independent of centrality within uncertainties, we find a significant broadening in η-direction from peripheral to
central collisions. The particle content of the near-side peak is studied finding that the p/π ratio of particles associated
to a trigger particle is much smaller than the one in the bulk of the particles and consistent with fragmentation of a
parton in vacuum.
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1. Introduction

In central heavy-ion collisions at the LHC strong jet quenching has been reported by ALICE, ATLAS and CMS.
The suppression of high-pT particles quantified by the nuclear modification factor RAA drops as far as 0.14 [1, 2].
Further, a strong di-jet energy asymmetry has been reported [3, 4], while the quenched energy reappears primarily
at low to intermediate pT (0.5-8 GeV/c) and also outside the jet cone [4]. The measurement of the yield of particles
associated to a high-pT trigger particle (8-15 GeV/c) quantified by IAA shows a suppression on the away side and a
mild enhancement on the near side indicating that medium-induced jet modifications can also be expected on the near
side [5].

It is interesting to study the low to intermediate pT region where the quenched energy reappears with the aim of
constraining jet quenching mechanisms. Further, measurements in this pT region allow one to quantify interactions of
high energetic partons and branched-off partons with the collectivity-dominated bulk.

Full jet reconstruction for jets with a transverse momentum of less than 10-20 GeV/c is very difficult due to the
large backgrounds [6]. Two-particle angular correlations are a powerful alternative in this regime. This paper presents
results from two-particle correlations which allow one to extract a small signal over a large background stemming
from collective effects and pure combinatorics.
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Figure 1: Correlation constructed from pairs of particles from the same event (left panel) and mixed events (right panel).

2. Detector & Data Sample

The ALICE detector is described in detail in [7]. The Inner Tracking System (ITS) and the Time Projection
Chamber (TPC) are used for vertex finding and tracking. The collision centrality is determined with the forward
scintillators (VZERO) at −1.7 < η < −3.7 and 2.8 < η < 5.1. The main tracking detector is the TPC which
allows reconstruction of good-quality tracks with a pseudorapidity coverage of |η| < 1.0 uniform in azimuth. The
reconstructed vertex is used to select primary track candidates and to constrain the pT of the track. For particle
identification (PID) the specific energy loss measured in the TPC as well as the time of flight measured by the TOF
system is used.

In the presented analysis about 15 million minimum-bias Pb–Pb events recorded in fall 2010 at
√

sNN = 2.76 TeV
as well as 55 million pp events from March 2011 (

√
s = 2.76 TeV) are used. These include only events where the TPC

was fully efficient to ensure uniform azimuthal acceptance. Events are accepted which have a reconstructed vertex
less than 7 cm from the nominal interaction point along the beam direction. Tracks are selected by requiring at least
70 (out of up to 159) associated clusters in the TPC, and a χ2 per space point of the momentum fit smaller than 4
(with 2 degrees of freedom per space point). In addition, tracks are required to originate from within 2.4 cm (3.2 cm)
in transverse (longitudinal) distance from the primary vertex.

The data is corrected for tracking efficiency and contamination by secondary particles using the HIJING [8] and
PYTHIA [9] event generators followed by particle transport and detector simulation based on GEANT3 [10].

3. Two-Particle Angular Correlations

The associated per trigger yield is measured as a function of the azimuthal angle difference Δϕ = φ1 − φ2 and
pseudorapidity difference Δη = η1 − η2:

d2N
dΔϕdΔη

(Δϕ,Δη) =
1

Ntrig

d2Nassoc

dΔϕdΔη
(1)

where Nassoc is the number of particles associated to a number of trigger particles Ntrig. This quantity is measured for
different ranges of trigger pT,trig and associated transverse momentum pT,assoc and in bins of centrality.

Two-track efficiency and acceptance are assessed by using a mixed-event technique: the differential yield defined
in Eq. (1) is also constructed for pairs of particles from different events. By definition all physical correlations are
removed while those e.g. related to the acceptance remain. The events mixed with each other are selected with similar
centralities and z-vertex positions. The angular correlation constructed from particles within the same event as well
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Figure 2: Left panel: per-trigger yield; middle panel: projection to Δϕ in |Δη| < 1 (black) and |Δη| > 1 (red); right panel: subtracted per-trigger
yield. Shown is the bin 4 GeV/c < pT,trig < 8 GeV/c, 1 GeV/c < pT,assoc < 2 GeV/c for the 10% most central Pb–Pb collisions.

as with mixed events are presented in Figure 1. A typical triangular shape is obtained in Δη originating from the
limited η-acceptance of the detector. Due to the uniform acceptance of the detector in φ, no significant structures can
be observed in Δϕ. Dividing those two distributions after proper normalization of the mixed-event distribution results
in the per-trigger yield, see e.g. the left panel in Figure 2, the quantity which is studied in the following.

To correct for efficiency losses in case of particles being spatially very close in the detector volume a cut on the
spatial separation in the active volume of the TPC is performed. Applying this cut consistently in the same and mixed
event distributions recovers the particles lost due to the detector inefficiency.

3.1. Near-Side Peak Shapes
A typical per-trigger yield is shown in the left panel of Figure 2. Visible are the near-side peak concentrated

around Δϕ = Δη = 0 sitting on top of a ridge structure around Δϕ = 0 elongated in Δη whose origin is flow. On the
away-side around Δϕ = π, a ridge mostly independent of Δη can be observed, consisting of the recoil jet peak and the
modulation from flow. The per-trigger yield has quite a large (flat) pedestal compared to the signal modulations.

We study the shape of the near-side jet peak by subtracting Δη-independent effects. Those are estimated in the
long-range correlation region at |Δη| > 1 and subtracted from the region |Δη| < 1. The center panel of Figure 2 shows
the projection to Δϕ in |Δη| > 1 (red) and |Δη| < 1 (black). The difference between the two is the signal to be studied.
By construction this procedure removes the away-side peak which is to a good approximation Δη independent. The
right panel of Figure 2 shows the subtracted per-trigger yield.

The near-side peaks are fitted with a superposition of 2 two-dimensional Gaussians which have their center at
Δϕ = Δη = 0. Such a fit function is chosen because it reproduces the features of the data in most bins (χ2/nd f ≈
1.1 − 1.4). We use the fit parameters to calculate the rms (equal to the square root of the variance, σ, for distributions
centered at 0) of the distribution. In addition, we calculate the rms directly from the distribution as well as the excess
kurtosis2 K which is a measure of the peakedness of the distribution.

Figure 3 presents the rms in Δϕ (left panel) and Δη (right panel) as a function of centrality; also shown are the
results for pp collisions (shown at a centrality of 100). The rms in Δϕ direction is rather independent of centrality
while there is a significant increase in the rms in Δη direction towards central collisions. For peripheral and pp
collisions, the rms is similar in Δϕ and Δη, e.g. about 0.4 for the lowest pT bin studied. It increases in Δη up
to about 0.6 for 0-10% centrality. A similar relative increase is seen for the other pT bins studied. Generally, the
parameters evolve smoothly from peripheral collisions to pp collisions. In [11] it was suggested that the interplay of
longitudinal flow with a fragmenting high pT parton can lead to such an asymmetric peak shape. The lines in Figure 3
are from models: for Pb–Pb AMPT (A MultiPhase Transport Code; version 2.25 with string melting) simulations
[12, 13] which describe collective effects in heavy-ion collisions at the LHC reasonably well, are shown, while for

2Excess kurtosis K = μ4/μ
2
2 − 3; μn being the nth moment.
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Figure 3: rms in Δϕ (left panel) and Δη (right panel) calculated from the fit parameters for different pT bins as function of centrality. Shown are
data (points) and AMPT and PYTHIA Monte Carlo simulations (lines).

Figure 4: Kurtosis in Δϕ (left panel) and Δη (right panel) calculated from the fit parameters for different pT bins as function of centrality. Shown
are data (points) and AMPT and PYTHIA Monte Carlo simulations (lines).

pp PYTHIA 6.4 [9] simulations with the tune Perugia-0 [14] are presented. These describe the rms in Δϕ and Δη
qualitatively and to some extent also quantitatively. AMPT models the interplay of a jet with flow with partonic and
hadronic rescattering. Figure 4 shows the Kurtosis in Δϕ and Δη direction. It increases from central to peripheral
collisions: the near-side is less peaked towards central collisions. Also the Kurtosis is well described by AMPT and
PYTHIA.

The lowest pT bin shows an interesting structure for the most central collisions presented in Figure 5: in Δη
direction a departure from a Gaussian is observed. The peak shows a flat top (an indication for a double-humped
structure can be seen which is not significant, though). This feature is also reproduced in AMPT. It will be interesting
to explore the reasons for such effects in AMPT. More details about this analysis can be found in [15].

4. p/π Ratio in Jet and Bulk

Baryon over meson ratios differ significantly between central heavy-ion and pp collisions. E.g. the Λ/K0
S ratio

increases up to about 1.5 in central Pb–Pb collisions at the LHC, while it is about 0.5 in pp collisions [16]. We study
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Figure 5: Per-trigger yield for 2 GeV/c < pT,trig < 3 GeV/c, 1 GeV/c < pT,assoc < 2 GeV/c and 0-10% centrality. The left panel shows the data; the
middle panel shows projections of the data to Δϕ (black) and Δη (red) while the right panel shows the same projections from AMPT simulations.

Figure 6: Illustration of the particle identification technique. Left panel: yield of particles as function of measured minus expected time of flight
vs measured minus expected specific energy loss; middle panel: projection of the data (black) and the fit function (red) to the specific energy loss
axis; right panel: projection of the data (black) and the fit function (red) to the time of flight axis.

particle ratios in the near-side peak by performing two-particle correlations with identified particles. This allows one
to separate the bulk of the particles from those associated to a high-pT trigger particle.

The particle identification is performed by exploiting specific energy loss as well as time of flight information.
The left panel of Figure 6 shows an example for one pT bin and the pion hypothesis. The x and y axis show the
measured specific energy loss and time of flight, respectively, minus the expected one. For each abundant particle
species, pions (around (0, 0), by construction), kaons and protons, a corresponding peak is observed. The pion peak
is approximately Gaussian while the others are distorted because the incorrect (pion) mass hypothesis is used also for
those particles. These peaks are fitted to extract the particle yields. For the pion peak a Gaussian (plus an exponential
tail towards positive tTOF) is used while Monte Carlo templates are used for the other ones. The center and right panels
of Figure 6 show projections of the data and fit function to the specific energy loss and time of flight axis, respectively.
This procedure is performed for each particle species, i.e. the corresponding mass hypothesis is used, to extract the
yield for that species. These yields are corrected for tracking and PID efficiency based on Monte Carlo simulations.
No correction for feed-down from e.g. Λ has been applied.

Similarly to the previous discussed analysis the yields in the long-range correlation region are subtracted from the
yields in the near-side peak region. The left panel of Figure 7 shows the regions defined in the Δϕ-Δη plane: the bulk
I and II regions are used to estimate the background under the peak region. The remaining yield in the peak region is
the yield correlated to the trigger particle and is called jet yield in the following. More details about this analysis can
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Figure 7: Left panel: regions in the Δϕ-Δη plane where the yields for the peak and bulk are extracted (for details see text). Right panel: p/π ratio
in the bulk (squares) and peak−bulk (circles) regions compared to the PYTHIA expectation (line).

be found in [17].
The particle yields are used to calculate the p/π ratio as a function of pT,assoc for 5 GeV/c < pT,trig < 10 GeV/c,

shown in the right panel of Figure 7. The p/π ratio in the bulk region increases up to about 1 at about 3 GeV/c and
is similar to the inclusive one calculated over all particles (not shown). The p/π ratio for the particles associated
to the jet is significantly smaller (maximum at about 0.3) and consistent with the PYTHIA simulation (version 6.4
default tune) which assumes vacuum fragmentation. Hence, this observable shows no evidence for medium-induced
modification of the jet fragmentation in central Pb–Pb collisions.

5. Summary

Two-particle correlations have been used to quantify the effects of the hot and dense medium on the near-side
peak associated to a trigger particle with a transverse momentum in the range 2-10 GeV/c. The near-side peak shape
has been studied revealing that the symmetric peak in peripheral and pp collisions gets asymmetric in central Pb–Pb
collisions: the rms in Δη is significantly larger than in Δϕ. Rms and excess kurtosis for Pb–Pb collisions are well
reproduced by AMPT compatible with the interpretation that the interplay of jets with the flowing bulk is the origin
of the found feature. The p/π ratio associated to a trigger particle has been found to be much smaller than the one
in the bulk. It is compatible with simulations assuming vacuum fragmentation, i.e. no evidence for medium-induced
modification of the jet fragmentation is observed in the studied pT regime. In summary, two interesting observations
have been presented and a continuation as well as combination of these studies seems very promising to gain further
insight into the jet quenching mechanism occurring in heavy-ion collisions at the LHC.
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