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The generalized Weierstrass system inducing surfaces of constant
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Paul Bracken
Department of Mathematics, University of Texas, Edinburg, TX, 78541-2999, USA

Received 3 March 2005; received in revised form 22 June 2005

Paper based on talk delivered at Joint Mathematics Meetings, Atlanta, GA, January 8, 2005

Abstract

The generalized Weierstrass (GW) system is introduced and its correspondence with the associated two-dimensional nonlinear
sigma model is reviewed. The method of symmetry reduction is systematically applied to derive several classes of invariant solutions
for the GW system. The solutions can be used to induce constant mean curvature surfaces in Euclidean three space. Some properties
of the system for the case of nonconstant mean curvature are introduced as well.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of surfaces is an important part of many interesting phenomena in mathematics and especially in
physics. Such subjects as waves, deformation of membranes, dynamics of vortex sheets, two-dimensional gravity and
string theory to mention a few have areas of common interest that overlap with the theory of surfaces. Such dynamics
can be modeled by nonlinear partial differential equations (PDEs) that describe the evolution of surfaces in time [12].

One of the classical problems of differential geometry is the study of the connection between the geometry of sub-
manifolds and nonlinear PDEs. The Liouville and sine-Gordon equations, which describe minimal and pseudospherical
surfaces are well-known examples. These two equations were also the first nonlinear PDEs to reveal a deep connection
between differential geometry and soliton theory.

Let us consider a surface in three-dimensional Euclidean space R3 and denote local coordinates for the
surface by

Xi = xi(u1, u2), i = 1, 2, 3,

where Xi are the coordinates of the variable point of the surface and xi are scalar functions. The basic characteristics
of the surface are given by the first and second fundamental forms

I = g�� du� du�, I I = h�� du� du�,
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where �, � = 1, 2, 3 and g�� and h�� are symmetric tensors such that

g�� = �Xi

�u�

�Xi

�u�
, h�� = �2Xi

�u��u�
Ni .

Here Ni are the components of the normal vector

Ni = (det g)−1/2�ikl �Xk

�u1

�Xl

�u2 .

The matrix g�� completely defines the intrinsic properties of the surface. The Gaussian curvature K of the surface is
given by K = R1212(det g)−1, where R���� is the Riemann tensor.

Extrinsic properties of surfaces are described by the Gaussian curvature K and the mean curvature H = g��h��.
Embedding the surface into R3 is described by both g�� and h�� as governed by the Gauss–Codazzi equations

�2Xi

�u��u�
− ��

��
�Xi

�u� − h��Ni = 0,
�Ni

�u� + h��g
�� �Xi

�u�
= 0.

Here, ��
�� are the Christoffel symbols which can be determined from the first fundamental form. Among the global

characteristics of surfaces, there is the Euler characteristic

� = 1

2	

∫
S

K(det g)1/2 du1 du2,

where integration is performed over the entire surface. For compact, oriented surfaces, � = 2(1 − n), where n is the
genus of the surface.

Weierstrass and Enneper started by introducing two holomorphic functions 
(z) and �(z) and three complex-valued
functions �1, �2 and �3 which satisfy the following system of equations

��1 = i(
2 + 2), ��2 = 
2 − 2, ��3 = −2
, �̄
 = 0, �̄ = 0,

where the derivatives are abbreviated �=�/�z and �̄=�/�z̄, and the bar denotes complex conjugation. They show that
if the system of three real-valued functions Xi(z, z̄) are considered to be a coordinate system for a surface immersed
in R3 defined by

X1 = Re �1 = Re
∫

C

i(
2 + 2) dz,

X2 = Re �2 = Re
∫

C

(
2 − 2) dz,

X3 = Re �3 = −Re
∫

C

2
 dz,

where C is any contour in the domain of holomorphicity of 
 and . Then the functions Xi(z, z̄) determine a minimal
surface.

This idea has been generalized by Konopelchenko, who established the connection between certain classes of constant
mean curvature surfaces and the trajectories of an infinite-dimensional Hamiltonian system [13,9]. He considered the
nonlinear Dirac-type system of equations for two complex valued functions 
1 and 
2 defined by

�
1 = p
2, �̄
2 = −p
1,

�̄
̄1 = p
̄2, �
̄2 = −p
̄1,

p = |
1|2 + |
2|2. (1.1)
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This will be referred to as the generalized Weierstrass (GW) system [8,4]. Using system (1.1), it can be verified that
the following conservation laws apply, namely,

�(
2
1) + �̄(
2

2) = 0, �̄(
̄
2
1) + �(
̄

2
2) = 0, �(
1
̄2) + �̄(
̄1
2) = 0.

Making use of these conserved quantities, there exist three real-valued quantities Xi(z, z̄) such that

X1 + iX2 = 2i
∫
�
(
̄

2
1 dz′ − 
̄

2
2 dz̄′),

X1 − iX2 = 2i
∫
�
(
2

2 dz′ − 
2
1 dz̄′), (1.2)

X3 = −2
∫
�
(
̄1
2 dz′ + 
1
̄2 dz̄′).

The functions Xi(z, z̄) can be treated as the coordinates of a surface immersed into R3. The Gaussian curvature, the
constant mean curvature and the first fundamental form for the surface are given by

K = −��̄(ln p)

p2 , H = 1, � = 4p2 dz dz̄, (1.3)

in isothermic coordinates.

2. Second order system associated with the GW system

Introduce the new variables defined in terms of the 
i as follows [8]

� = 
1


̄2

. (2.1)

Using system (1.1), it is found that

�� = �
1


̄2

− 
1


̄
2
2

�
̄2 = (1 + |�|2)
2
2. (2.2)

Solving for 
2
2, Eq. (2.2) and then (2.1) generate the following transformation from the variable � to the set of

variables 
i :


1 = ��
(�̄�̄)1/2

1 + |�|2 , 
2 = �
(��)1/2

1 + |�|2 , � = ±1. (2.3)

Proposition 1. If 
1 and 
2 are solutions of the GW system (1.1), then the function � defined by (2.1) is a solution of
the second order sigma model system

��̄� − 2�̄

1 + |�|2 �� �̄� = 0, ��̄�̄ − 2�

1 + |�|2 ��̄�̄�̄ = 0. (2.4)

Proposition 2. If � is a solution to system (2.4), then the functions 
1 and 
2 defined in terms of � by


1 = ��
(�̄�̄)1/2

1 + |�|2 , 
2 = �
(��)1/2

1 + |�|2 (2.5)

satisfy GW system (1.1).

So equivalently, given a solution to the sigma model system (2.4), a surface can be determined by calculating the 
i

using Proposition 2 and then using (1.2) to obtain the coordinates of the surface [8,4].
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3. Group invariant solutions of the sigma model

Explicit solutions of GW system (1.1) based on transformation (2.5) will be found which uses a variety of invariant
solutions of sigma model system (2.4) obtained by means of the symmetry reduction method to ODEs. In this approach,
we need to find its symmetry group G, and then classify all subgroups Gi of G having generic orbits of codimension one
in the space of independent variables. We then find the associated invariants of each of its subgroups Gi , and perform
for each of these invariants the symmetry reduction of (2.4) to a system of ODEs which are then solved [4].

Let us examine the system of real PDEs which are equivalent to the two-dimensional Euclidean sigma model (2.4).
Introduce into (2.4) a polar representation for �

� = Rei�. (3.1)

The real and imaginary parts which result from (2.4) are given by

�xx + �yy + 2(1 − R2)

R(1 + R2)
(Rx�x + Ry�y) = 0,

Rxx + Ryy − R(1 − R2)

1 + R2 (�2
2 + �2

y) − 2R

1 + R2 (R2
x + R2

y) = 0. (3.2)

Note that if we put R = 1, then (3.2(ii)) is identically satisfied and the first one reduces to the Laplace equation for the
phase �. This implies that � has to be a periodic, harmonic function with a period equal to 2	. If the period of � is not
2	, then the solution may become multivalued.

The symmetry algebra L can be decomposed into a direct sum of two infinite-dimensional simple Lie subalgebras
with direct sum of a one-dimensional algebra generated by � = ��

L = {�+} ⊕ {�−} ⊕ {�}. (3.3)

There is only one finite-dimensional subalgebra spanned by the vector fields

P1 = �x, P2 = �y ,

D = x�x + y�y, L3 = y�x − x�y ,

C1 = (x2 − y2)�x + 2xy�y, C2 = 2xy�x − (x2 − y2)�y . (3.4)

The operators P1 and P2 generate translations in the xy directions, D and L3 correspond to dilation and rotation, C1
and C2 generate two different types of conformal transformations. The nonvanishing commutation relations for algebra
(3.4) can be calculated showing it closes and that this algebra is isomorphic to the O(3, 1) algebra. In this case, among
all nonconjugate subalgebras, the ones that have generic orbits of codimension one in the space of independent variables
and three in the space of independent and dependent variables {x, y, R, �} reduce the original system (3.2) to a system
of ODEs by means of the symmetry reduction method. The one-dimensional subalgebras are given by

P1 + b�, L3 + b�, D + b�, D + aL3 + b�, (3.5)

where a and b are real parameters. In order to find the relation associated with subalgebras (3.5), we compute for each
of them the corresponding invariants by solving the PDE

XH(x, y, R, �) = 0, (3.6)

where H is an auxiliary function of four variables (x, y, R, �), and X is one of the generators listed in (3.5). The solution
of (3.6) is found by integrating the associated characteristic system. Three invariants �, R and F are found which are
given in Table 1. The orbits of the subgroups of G can be expressed in terms of two functions R and � in the following
form:

R = R(�), � = �(x, y) + F(�), � = �(x, y), (3.7)
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Table 1
The symmetry reduction for (3.2)

Algebra and One-dimensional Coefficients of the Reduction to
symmetry orbits reduction to second order ODE
variable of subgroups ODEs (3.8)

P1 + b� R = R(�) g = g0, h = 0, s = 0 R̈ − 2R
1+R2 Ṙ2 − A2g2

0
(1−R2)(1+R2)3

R3

y � = bx + F(�) l = 1, m = 0 − R(1−R2)

1+R2 = 0

L3 + b� R = R(�)
ġ
g

= − 1
� , h = 0, s = 0 R̈ − 2R

1+R2 Ṙ2 + 1
� Ṙ

√
x2 + y2 � = b sin−1 x√

x2+y2
l = b2

�2 , m = 0 − A2C2

�2
(1−R2)(1+R2)3

R3

+F(�) − b2

�2
R(1−R2)

1+R2 = 0

D + b� R = R(�)
ġ
g

= − 2�
1+�2 , h = b

�(1+�2)
R̈ − 2R

1+R2 Ṙ2 + 2�
1+�2 Ṙ

x
y

� = b ln x + F(�) s = − b

�2(1+�2)
, l = b2

�2(1+�2)
− A(�)2C2

(1+�2)2
(1−R2)(1+R2)3

R3

m = − 4b

(1+�2)2 − R(1−R2)

(1+�2)2(1+R2)
= 0

D + aL3 + b�, R = R(�) g = g0, h = − 2b
1+a2 R̈ − 2R

1+R2 Ṙ2

ln
√

x2 + y2 � = − b
a

tan−1 x
y

l = b2

1+a2 , s = 0, m = 0 −A2g2
0

(1−R2)(1+R2)3

R3

+ 1
a

tan−1 x
y

+F(�) + R(1−R2)

1+R2 b2
(

3−a2

(1+a2)2

)
= 0

a > 0

where � and � are given functions of x and y for each subalgebra. The function � is the symmetry variable of the
invariance subgroup having generic orbits of codimension one. Substituting each specific form (3.7) into system (3.2)
leads to the coupled system of ODEs in terms of the symmetry variable �

R̈ − 2R

1 + R2 Ṙ2 − R(1 − R2)

1 + R2 �̇
2 − ġ

g
Ṙ − 2h

R(1 − R2)

1 + R2 �̇ − l
R(1 − R2)

1 + R2 = 0,

�̈ + 2
1 − R2

R(1 + R2)
Ṙ�̇ − ġ

g
�̇ + 2h

1 − R2

R(1 + R2)
Ṙ + s = 0, (3.8)

where the functions g, h, l and s are given for each of the subalgebras in Table 1, and dot means differentiation with
respect to �. The differential equations for R and � in (3.8) can be decoupled if we perform the transformation

�̇ = V − h (3.9)

on (3.8 (ii)). Then V must satisfy the equation

V̇ + 2Ṙ
1 − R2

R(1 + R2)
V − ġ

g
V − m = 0, (3.10)

where m = ḣ − (ġ/g)h − s. Let us consider separately two cases:

(1) When m = 0, the V equation is a homogeneous ODE in V. This corresponds to the three subalgebras P1 + b�,
L3 + b�, D + aL3 + b� and the general integral has the form

V = Ag

(
1 + R2

R2

)2

, �̇ = Ag

(
1 + R2

R2

)2

− h. (3.11)
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Eliminating �̇ from the R equation gives

R̈ − 2R

1 + R2 Ṙ2 − ġ

g
Ṙ − A2g2 (1 − R2)(1 + R2)

R3 + (h2 − l)
R(1 − R2)

1 + R2 = 0. (3.12)

(2) When m �= 0 corresponding to the subalgebra D +b�, the general solution is obtained by the method of variation
of parameters, and has the following form

V = A(�)g

(
1 + R2

R2

)2

, A(�) =
∫

mR2

g(1 + R2)2 d�′. (3.13)

These can be substituted to eliminate � to obtain an equation

R̈ − 2R

1 + R2 Ṙ2 − A2g2 (1 − R2)(1 + R2)3

R3 − ġ

g
Ṙ + (h2 − l)

R(1 − R2)

1 + R2 = 0,

which is of the same form as (3.12). This ODE has the Painlevé property, that is, no movable singularities other than
simple poles, so we can transform to the new variable U as follows:

R(�) = (−U(�))1/2,

Choosing a new variable � = ∫
g(�) d�, Eq. (3.12) is transformed into the following ODE in the � variable

Ü =
(

1

2U
− 1

1 − U

)
U̇2 + 2C2

U
(1 + U)(1 − U)3. (3.14)

If C = 0, the solution is given by

U = tanh2(K1� + K2), K1, K2 ∈ R,

and � = �0. If C �= 0, the equation can be found in Ince’s [11] classification where � = −� = 2C2 and � = � = 0 in
Ince’s notation. This equation admits a first integral given by

U̇ = −4C2U4 + 4C1U
3 − 2(B + 4C1)U

2 + 4C1U − 4C2, (3.15)

where differentiation is with respect to �. Eq. (3.15) can be written for C �= 0 in equivalent form

U̇2 = −4C2(U − U1)(U − U2)(U − U3)(U − U4), (3.16)

where Ui for i = 1, . . . , 4 denote the roots of the right-hand side of (3.15), and can be expressed in terms of B, C and
C1. The behavior of the solutions to (3.16) depends upon the relationships between the roots of the quartic polynomial
on the right-hand side of (3.16). It can be solved in terms of elliptic Jacobi functions or in terms of elementary algebraic
functions with one or two simple poles, and trigonometric and hyperbolic solutions, which have been extensively
tabulated [4], and for reasons of space will not be given here. For example, when C = C1 = 0, (3.15) can be integrated
easily to give

U = D exp
(
±√−2B�

)
.

Given U we can obtain R and � thus giving � by means of (3.1) which can be used in (2.3) to produce 
1 and 
2 thus
generating a surface by means of (1.2).
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4. Multisoliton solutions

Proposition 3. Suppose that for each i = 1, . . . , N the complex valued functions �i satisfy the sigma model system
(2.4) and the conditions |�i |2 = 1. Then the product function

� =
N∏

i=1

�i (4.1)

is also a solution of system (2.4) [4].

Let us now discuss the construction of an algebraic multi-soliton solution of system (1.1) using Proposition 3. First
we look for a particular class of rational solutions of (2.4) which admit simple poles at the points z̄ = āj ,

�j = z − aj

z̄ − āj

, aj ∈ C, j = 1, . . . , N .

By Proposition 3, a more general class of rational solution to (2.4) admitting simple poles is given by

� =
N∏

k=1

z − ak

z̄ − āk

.

In this case, the function � satisfies ��̄� �= 0 and |�|2 = 1 as well. The first derivatives of � are given by

�� =
N∑

j=1

�

z − aj

= F(z)�, �̄� = −
N∑

j=1

�

z̄ − āj

= −F̄ (z̄)�.

From these derivatives, an algebraic multi-soliton solution of system (1.1) is determined by


1 = �

2

⎛
⎝ N∑

j=1

1

z̄ − āj

�

⎞
⎠

1/2

, 
2 = �

2

⎛
⎝ N∑

j=1

1

z − aj

�

⎞
⎠

1/2

.

Moreover, p and J are given as follows

p = 1

2

∣∣∣∣∣∣
N∑

j=1

1

z − aj

∣∣∣∣∣∣ , J = 1

4

(
N∑

k=1

1

z − ak

)2

.

When N = 1 the functions 
1 and 
2 can be substituted into the relations which give the Xi , namely (1.2). The
corresponding constant mean curvature surface is determined by

((X1)2 + (X2)2)2 −
(

2 + a2

4
e2X3

)
((X1)2 + (X2)2) + a2

2
e2X3

X2 + 1 − a2

4
e2X3 = 0.

5. A physical application

To give the previous considerations a physical perspective [2,3], consider the classical spin vector S = (S1, S2, S3),
where each Sj depends on the variable t =x0 as well as two spatial degrees of freedom x1, x2. The Sj are real functions
which satisfy

S2
3 + �2(S2

1 + S2
2 ) = 1, (5.1)

and �2 = ±1 represents the curvature of spin phase space. It is associated with the sphere S2 when �2 = 1, or the
pseudosphere when �2 = −1.
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The Landau–Lifshitz equation describes the time evolution of the spin vector and is given by

�tS = S × ∇2S. (5.2)

Let S be a matrix defined by

S =
(

S3 �S̄+
�S+ −S3

)
, (5.3)

where S+ =S1 + iS2 and the bar denotes complex conjugation. In terms of the matrix S, the Landau–Lifshitz equation
can be written as

�tS = 1

2i
[S, ∇2S]. (5.4)

Introduce the variable r defined in terms of the Sj by

r = S1 + iS2

1 + S3
,

then the Cartesian components of the magnetization can be shown to be given by

S1 = r + r̄

1 + |r|2 , S2 = r − r̄

i(1 + |r|2) , S3 = 1 − |r|2
1 + |r|2 . (5.4)

It is clear that these components Sj satisfy constraint (5.1) and �S and Ṡ can be evaluated from (5.4). Substituting the
derivatives into the second form of the Landau–Lifshitz equation, two independent equations in terms of the derivatives
ṙ and ˙̄r are obtained and are given explicitly by

iṙ = −�r + 2r̄
(∇r)2

1 + |r|2 , −i ˙̄r = −�r̄ + 2r
(∇ r̄)2

1 + |r|2 . (5.5)

Transforming the derivatives into complex form, we have

i

4
ṙ + ��̄r = 2r̄

�r �̄r

1 + |r|2 , − i

4
˙̄r + �̄�r̄ = 2r

�̄r̄ �r̄

1 + |r|2 . (5.6)

The related case �2 = −1 can be analyzed in a similar way. The stereographic projection of the pseudosphere onto the
(S1, S2) plane is used

S1 = � + �̄

1 − |�|2 , S2 = � − �̄

i(1 − |�|2) , S3 = 1 + |�|2
1 − |�|2 ,

and the equations of motion are

i�̇ = −�� − 2�̄
(∇�)2

1 − |�|2 , −i ˙̄� = −��̄ − 2�
(∇�̄)2

1 − |�|2 . (5.7)

If t is held fixed, or r and � are t-independent, then systems (5.6) and (5.7) reduce to the usual nonlinear sigma model
equations of form (2.4).

6. Non-constant mean curvature system

We would now like to turn to the case in which the mean curvature H is not strictly constant [12]. The set of functions
which determine a surface with mean curvature function H are given by

�
1 = pH
2, �̄
2 = −pH
1,

�̄
̄1 = pH 
̄2, �
̄2 = −pH 
̄1,

p = |
1|2 + |
2|2. (6.1)

The function H = H(z, z̄) denotes the mean curvature of the surface.
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Proposition 4. If 
1 and 
2 are solutions of the system in (6.1) and � = 
1/
̄2, then 
1 and 
2 are related to �
through the equations


1 = ��
(�̄�̄)1/2

H 1/2(1 + |�|2) , 
2 = (��)1/2

H 1/2(1 + |�|2) , � = ±1. (6.2)

Moreover, � is a solution to the following second order system:

��̄� − 2�̄

1 + |�|2 ���̄� = �̄(ln H)��, ��̄�̄ − 2�

1 + |�|2 �̄�̄��̄ = �(ln H)�̄�̄. (6.3)

The converse of this holds as well. Note the close similarity between system (6.3) and (2.4). In fact, putting H constant
in (6.3), we obtain (2.4) exactly. Using system (6.1), the following conservation laws are found to hold

�(
1
̄2) + �̄(
̄1
2) = 0, �(
2
1) + �̄(
2

2) = 0, �̄(
̄
2
1) + �(
̄

2
2) = 0.

Surfaces can be induced by using solutions of either (6.1) or both Eqs. (6.3) and (6.2).

Proposition 5. If J = 
̄1�
2 − 
2�
̄1, then the quantity J defined by

J = J +
∫ z̄

z̄0

p2(z, �)�H(z, �) d� (6.4)

is conserved under differentiation with respect to z̄,

�̄J = 0.

Proposition 6. With p defined in (6.1) and J defined in Proposition 5, then p satisfies a second order differential
equation which involves p, J and the mean curvature function H. The equation is given by

��̄ ln p = |J |
p2 − H 2 p2. (6.5)

It has been shown [8] that when H is constant, there is a connection between the time independent Landau–Lifshitz
equation which from (5.4) takes the form

[S, ��̄S] = 0, (6.6)

and the two-dimensional nonlinear sigma model. The matrix S will be referred to as the spin matrix. In terms of the
sigma model variable �, the matrix S is given by

S = 1

1 + |�|2
(1 − |�|2 2�̄

2� −1 + |�|2
)

. (6.7)

Define f and f̄ to be the � dependent factors on the left-hand sides of the sigma model equations in (2.4). System (2.4)
can be written as f = 0 and f̄ = 0. In terms of f and f̄ , the matrix generated by (6.6) is of the form

[S, ��̄S] = 4

(1 + |�|2)2

( �̄f − �f̄ �̄2f − f̄

−f + �2f̄ −�̄f + �f̄

)
.

These results can be summarized as follows.

Proposition 7. If � is a solution of the nonlinear sigma model system (2.4), then the spin matrix S defined by (6.7) is
a solution of the Landau–Lifshitz (6.6).
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Proposition 7 can be adapted to the case in which H is not constant. Define the matrices R and H as follows:

R = 4

(1 + |�|2)2

(−�̄�� ��̄�̄

�� −�2�̄�̄

)
, H =

⎛
⎝ �̄ ln H �̄�̄ ln H

� ln H
1

�
� ln H

⎞
⎠ , (6.8)

where the matrix R depends only on the � variable.

Proposition 8. If � is a solution of sigma model equations (6.3) and the matrices R and H are defined in (6.8), then
the spin matrix S of (6.7) is a solution of the nonhomogeneous Landau–Lifshitz equation

[S, ��̄S] + RH = 0, (6.9)

modulo (6.3).

Finally, let us give an example of a solution to system (6.1). Such solutions are more difficult to determine than in
the case of constant mean curvature. Consider the mean curvature function H specified by the rational function

H(z, z̄) = 1

1 + �2(z + z̄)2
, (6.10)

where � is a real constant, and H is real valued. Substituting H in (6.10) into (6.3), it can be verified that

� = �(z + z̄) = �̄

is a solution to (6.3). Moreover, �� = � = �̄�̄, and by (6.2) the corresponding solution to (6.1) is given by


1 = �
�3/2(z + z̄)

(1 + �2(z + z̄)2)1/2
, 
2 = �

�1/2

(1 + �2(z + z̄)2)1/2
.

Using these functions, the coordinates of a surface can be calculated using (1.2).

7. Conclusions

This work has been found to be very useful in producing many different types of solutions to the nonlinear sigma
model and thereby to the GW system (1.1) which can be used to determine surfaces in R3. The integrability of the model
has also been shown [6]. Some of this work has even been extended to a consideration of surfaces in four-dimensional
Euclidean space [7]. Many of these types of solutions can be interpreted as multisolitons, and the work has many
physical applications, for example, to the area of two-dimensional gravity, quantum field theory, statistical physics and
fluid dynamics [5,10]. We have recently shown that many of our solutions satisfy equations in string theory, that is, they
are common solutions of the Nambu–Goto–Polyakov action and GW system (1.1) [5,14,1]. There is also an application
to the construction of periodic constant mean curvature surfaces. From the group point of view, we have found a way
to construct doubly periodic surfaces in terms of Jacobi functions.
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