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Abstract 

We consider a modification of the well-known system of coalescing random walks in one 
dimension, both in discrete and continuous time. In our models each particle moves with unit 
speed, and it can change its direction of movement only at times of collisions with other particles. 
At these times (and at time 0) the direction is chosen randomly, with equal probability to the left 
or to the right, independently of anything else. In this article, we exhibit the exact distributions 
of particle density and of other relevant quantities at finite time t, and their asymptotics as 
t -~ cx~. In particular, it appears that the density of particles at time t is equal to the probabilit~y 
of the event that a simple random walk starting at site one first hits the origin after time t 
It is noteworthy that a relation of the same kind is known to hold for the standard system 
of coalescing random walks in one dimension, though the proof is quite different in that case. 
© 1997 Elsevier Science B.V. 
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1. Introduction and statement of  results 

Before int roducing the coalescing ideal gas model,  let us first consider  the system 

of  coalescing random walks (CRW) ,  which  is one of  the simplest  interacting particle 

systems. Its state space is 7/* = {all subsets o f  E 1}, and t ime is cont inuous.  At t ime 

0 there is a particle in every site. Each particle performs an independent ,  cont inuous-  

t ime simple r andom walk with j u m p  rate 1, unt i l  it runs into another particle. When 

two particles meet,  they coalesce into one particle, which  resumes the same random 

walk. The behaviour  o f  this system is well  unders tood (see, for instance, Harris, 1976; 

Griffeath, 1979; Bramson  and Griffeath, 1980b; Arratia, 1981). Let St be the posit ion 

of  a cont inuous  t ime simple random walk at t ime t: it starts at 0 and makes jumps  to 

1 (so the total j u m p  rate is 1). Let z(x), x~iY each of  the two ne ighbour  sites at rate 

be the first hi t t ing t ime of  site x: 

z(x) = inf{ t :  Sr = x } .  
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Let pt(CRW) be the "particle density", or the probability that the origin in the sys- 
tem of coalescing random walks described above is occupied at time t. The value of 
pt(CRW) can be computed using a duality relation (Harris, 1976; Bramson and Grif- 
feath, 1980a): it is equal to the probability that in the classical one-dimensional voter 

model  (see, e.g., Liggett, 1985), the opinion of the individual at the origin survives at 
time t. Let nt be the size at time t of the interval of 7/ made up of those sites which 
have inherited the opinion of (0, 0). nt can be viewed as a rate-2 simple random walk 
on 7/+ (or birth and death process) starting at 1, with absorption at 0. 

Hence, 

p,(CRW) = P(nt > O) = P ( z ( -  1 ) > 2t) 

1 
= e-Zt(Io(2t) + Ii(2t)) ~ ~ t -1/2, t--~ c~. ( l )  

The third equality can be obtained by using the Laplace transform (or more directly, 
see Feller, 1968b, p. 60). Iv(t) is the modified Bessel function of the first kind: 

(z/2)~+2m 
Iv(z)= ~--~ m ! r ~ T - m ~ -  1)' (2) 

m=0 

The asymptotics for the particle density of CRW in higher dimensions was obtained 
in Bramson and Griffeath (1980a); duality relations are also exploited, but in this case 
the relation between CRW and simple random walk (the second equality in (1)) is 
distorted by a random factor and is hardly usable at all. 

In Bramson and Griffeath (1980b) it was noted that the asymptotics of pt(CRW) (1) 
remains the same if we start the CRW from an initial configuration distributed according 
to an arbitrary mixing measure /t # 60 on Z* where 60 denotes the measure which 
assigns measure 1 to the empty set. 

It is thus natural to ask, to which extent the asymptotics of pt(CRW) can be influ- 
enced by introducing local dependence in the dynamics of the underlying coalescing 
random walk. One simple example of such process is the following: We start at time 
0 from 2Z, i.e., from the configuration in which all even sites are occupied by par- 
ticles, and assign to each particle a direction of movement: either + 1 or - 1 ,  with 
equal probabilities, independently. The particles begin moving in the assigned direc- 
tions with unit speed, and each particle keeps its direction until it collides with another 
particle. At the collision, the two particles coalesce into one particle, which chooses 
its direction with equal probability in each way, independent of anything else, and 
moves further in this direction. We shall call this interacting particle system coalescin9 

ideal 9as (CIG), and denote the set of x-coordinates of the particles at time i E Z + by 
~i. (Since all the collisions in this process occur at integer times, we shall restrict to 
integer times.) We shall also consider the continuous space and time coalescing ideal 
gas ~ ,  2 E (0, oo), t C [0, oo) which has the same dynamics as described above, but 
its initial distribution is a Poisson point process of density 2 on ~ .  Here and below 
we mark discrete processes and variables with a hat, to distinguish them from the 
continuous ones. 
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This system can be considered as a highly simplified model for aggregation processes 

at low pressure, such as an early stage of  polymerisation in gas phase or aggregation 

of  mist particles. The chemical bonds in the first and the surface tension in the second 

case make the particles coalesce when they meet, and the absence of  air lets them 

move forward without deviating. 

If" we change the collision rule from coalescence to annihilation, we obtain the 

annihilatin,q ideal gas, or the deterministic' surface growth model. It has random initial 
state and deterministic dynamics. This model and its scaling limit are rather good 

understood (see Belitsky and Ferrari, 1995 and references therein). Fisch (1992) has 
found the asymptotic rate of  the particle density, and conjectured that for the coalescing 

case it is the same. This conjecture is now proved in Theorem 1 in this paper. 

First, we examine the discrete system ilt. All the particles have even coordinates at 

even times, and odd coordinates at odd times. 
Introduce 

(ii = P (the particle which started from the origin at time 0 has its first 

collision with another particle at time i), i > O, 

(}i = P (a collision takes place at time i at x = (i rood 2)), i >0 ,  

/3i = P (there is a particle at time i at x = ( imod 2)) 

= P  (~i f) {0,1} C (b), i>~O. 

Here ( i m o d 2 )  denotes the remainder of  dividing i by 2. For convenience, we define 

(?0 = O, ~P0 = 1. 
We shall also need an (independent of ~t) discrete time simple random walk ~,, on 

Z starting at 0. 

l y +  X/=i. i .d. ,  P ( X i = - I ) = P ( X i = I ) = 3 ,  i~  , 

n - I  

i = 0  

Let ~k(x) be the k-th return time of  S,, to the site x ~ Z: 

{ l (X)  = m i n { i  > 0 :  Si=x}, 

~a.(x)=min{i>{k_l(x): S i=x} ,  k > l .  

In the discrete CIG, the increments o f  a trajectory of  a particle are distributed like 

Xi, but they are positively correlated: the covariance of  two increments is equal to the 
probability that there is no collision inbetween. One could expect therefore that the 
particles in CIG will aggregate at a higher rate, and the density of  the particles will 
be asymptotically smaller than that o f  CRW, but this is not the case. In Section 2 we 
shall prove 
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Theorem 1. For the discrete coalescing ideal gas the following relations hold: 

f o r n /> l ,  O ~ = P ( ~ ( O ) = 2 n ) - 2 n  1 2-2~ ~ _ , , ~  ~2v/~ ( 3 )  

~bn = 20n+, = 1 ( 2 n ) 2 - 2 n  ~ 1/,/--3/2 ' 
n - ~  n n ~ x / ~  (4) 

t3 n = 2P(?l(0) >2(n + 1 )) = 2 P ( ~ ( -  1 ) > 2(n + 1 )) 

2 -2n ~ n -1/2. (5) 
\ n + 1 n ~  

Note the similarity between (5) and (1), which we shall discuss later. 
The key step in the proof of the Theorem 1 will be establishing a coupling relation 

which yields the first equality in (3). 
We now proceed with the continuous version of CIG, ~ ,  which was introduced 

o 

above. Let ~;~ be the Palm version of this process, which is obtained by adding a 
t 

o 

particle at the origin to the initial configuration ( ~  = ~0 ~ U {0}) and then using the same 

dynamics. Let P~ and/~';, be the probability measures associated with these processes. 
We define the following densities which characterise these processes: 

O~ ~ dt--/~;, (the particle which started from the origin at time 0 has its 

first collision with another particle at time s E [t, t + dt]), 

~o~dxdt=P~ (there is a collision in the space-time area [O, dx] x [t,t + dt]), 

p~tdx =P~ (there is a particle at time t in the interval [O, dx]) 

= P(~- n [0, dx] # 0). 

It is clear that 0{, ~o]" and p] are finite, positive, continuous functions, and that the 
process ~ is space-stationary, so that these definitions are consistent. 

t 

Now we formulate the continuous analog of Theorem 1: 

o 

Theorem 2. For the processes ~,t ~ (continuous CIG) the following relations hoM: 

1 .t_3/2, (6) O~ ~ = 2e-;°t[Io(--2t) + I1(--2t)] t ~  2 ~  

qg~t = Zt-le-;'tI1 (2t) t ~  V~2~ t-3/2' (7) 

• 2/~At-1/2 P~t=2P(z( - -1)>"2t )=2e-~ t[ I° (2 t )+II (2 t ) ] t~  V -~- ' (8) 

where Iv(z) is defined by (2). 
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Note that although at t ~ 0, both 0{ and p{ are clearly linear in 2: 

this linearity is not preserved when t is big. 
It is not surprising that both continuous and discrete CIG have essentially the same 

asymptotics. More remarkable is the fact that the asymptotics of  the particle densities 
of  these two versions of  CIG, /5 n and pC, are, up to a constant, equal to those of  
the particle density p t (CRW) (1), despite the higher mean square displacements of  
the particles in CIG. Furthermore, all the three densities (t3~, p~ and p d C R W ) )  can 
be expressed through return times of  a simple random walk (see (1), (5) and (8)). 
However,  while (1) follows from a natural coupling between the processes, and another 
less direct coupling exists in (3), we do not see a direct probabilistic relation between 
CIG and the simple random walk, which yields the first equality in (8). 

Along with the asymptotic similarity of  the densities of  CIG and CRW, there is 
also a fundamental difference between them: unlike the latter system (Bramson and 
Griffeath, 1980b, Theorem 1), the asymptotics of  our system are sensitive to the initial 
condition, i.e., to the initial density of  particles. 

2. Further properties and proofs for the discrete case 

Lemma 3. Consider the t ra jec tory  o f  a CIG part ic le  which s tar ts  at  si te Xo at t ime 

to =0.  L e t  (xn, tn), n>~ l be the coordinates  o f  the n-th collision o f  the particle.  

Then 

1. (xn+l -Xn)nEZ ~ (and  hence also (tn+l - tn)nC~ ) is an i.i.d, sequence,  

2. P(xn+l - x~ = k ) =  1 2P(tn+l - t,, := ]k l )=  J ~ ~01~ I, (~)) 

3. ~n=20n+l ,  n>~0, (10) 

4. ~5~=Zq3 i ,  n~>0. (11) 
i>n 

Proof. The system of  CIG is based on an underlying collection of  i.i.d, random vari- 
ables 

{:~x,~: ( x , t ) E 2 ~  x Z + , x + t  is even}, such that 

P(c~x,t = 1 ) =  P(~x,, = - 1 ) =  1/2. (12) 

I f  there is a collision at ( x , t )  then after it the particle takes the direction ~x,t. 
n n 

Fix an integer n > 0  and a sequence ~Jaiji=l~n+l. Let b i =  jail, a = ~ i =  1 ai, b = ~ i =  I hi. 

By translation invariance we can assume that x0 = - ( a  + b). We have to show that the 
events 

A = {xi - xi-1 = ai, i =  l . . . . .  n} 

and 

B = {Xn+l - x .  = a n + l }  
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are independent of each other. Note that A implies (xn, tn)= (x0 + a,b)= ( -b ,b ) .  As- 
sume, without loss of generality, that ~-b,b = 41. Let 

t * =  min{t C Z+: there is a collision at (t + 2, t) and c~t+2,t = - 1 } .  

Under our assumptions, if (xn,t,)= ( -b ,b)  then we have 

x,+l - xn  = t *  + 1. (13) 

The event A is independent of  {~x,t: x > 0}, since any particle which passes through 
the region {(x,t): x > 0 }  cannot visit the point (-b,b) .  On the other hand, t* is 
independent of {~x,t: x~<0}. Hence, t* is independent of A, and so is B, because 
of (13). This proves assertion 1 of the lemma. 

Now, we drop all the assumptions made above and instead assume that ~0,0 = 41. 
The definition of t* remains the same. One can see that the first collision of the particle 
which starts at the origin occurs at time t* + 1. Hence, 

Oi+l = P ( t *  = i ) .  

This observation together with (13) proves the last equation in (9). 
From the definition of t* it is clear that 

i t * =  i} = {there is a collision at (i + 2, i)} N {~i+2,i = - 1 } .  

Taking the probabilities we obtain 0i+1 = 1/2~bi, which proves (10). 
Eq. (11) follows from the individual ergodic theorem and the fact that each collision 

replaces two particles by one, so that the particle density decreases each time by ~b,, 
[] 

Proof  of  Theorem 1. We shall prove (3) by constructing a bijection between the two 
configuration spaces. 

Let T be the time of the first collision of the CIG particle which starts from the 
origin. Assume for convenience that ~o,0 = + 1. Then all the T + 1 particles which start 
from 0,2 . . . . .  2T coalesce by time T into a single particle with the coordinates (T, T). 
These particles undergo exactly T collisions up to time T, since each collision reduces 
the number of particles by one. Let 

RT = {(2i, 0), i-----0 . . . . .  T} tA {the points of collisions, up to time T, 

of the particles which visit (T, T)}. 

We have just seen that card(Rr)= 2T + 1. 
Let us now order the elements of Rr: 

Rr = {(~0, ?0), (2l, 71 ) . . . . .  (~2r,/'2v)} (14) 

in such way that 

{ i < j }  iff {3~ i ÷ {i < ~Cj ÷ tj or (x  i ÷ ti = 2j ÷ [j and ~/<~)}. 

Such an ordering exists and is unique. 
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Consider the simple random walk 

n - - I  

X. :  0:0. 
i 0 

(We have assumed that e0,0 = 1, and hence $1 = 1. The other case can be treated 
similarly.) 

The mapping between Rr  and ~ 2r (Si)i= 0 is bijective, since, from knowing (xi, ~ i tj ):=o and 
0~ i (~,J , ) / :0 ,  i < 2 T  one can determine (2i+l, t i+l).  Note that 2T is the first return time 

of  the random walk S~ to the origin. Indeed, each step up (~.~.~, = + 1 )  means that the 

next particle in the ordering (14), (xi+l,~+l) is a new particle with {/41 = 0 ,  so we 

can say that such a step adds one particle to the system. On the other side, a step 
down (~,~. : - 1 )  means that a collision takes place at (2i+1,~+1): //+l > 0  and the 

number of  particles decreases by one. Hence, the number of  CIG particles after i steps 

of  construction is equal to Si + 1. At step 2T the number of  particles reduces to one, 
and the random walk returns to zero for the first time. Therefore, 

O~ = P ( T  : n) : P('~I(0) = 2n), 

which yields (3). 

This, with (10), gives (4). The first equation in (5) follows from (3), (10) and (11). 

The second equation follows from the reflection principle (Feller, 1968a, p. 77). ~ 

3. Proofs for the continuous case 

In order to prove Theorem 2 we shall establish the continuous analogs of  some 

relations in Lemma 3 and add one more relation (15), which is necessary to resolve 

the system. 

o 

Lemma 4. For  the processes  ~; ;~ ~e, ~t the fb l lowing  relations hold: 

f0  t ,; --2)(t--s) 0~ : ). e 2;t + ~p';e ~ ds, ( 15 ) 

~p~ = fl 0; 1 t 
2 t + ~ ¢PsOt-s ds, ( l())  

pXt = ¢p~ ds. ( 17 ) 

We shall first show how Theorem 2 follows from Lemma 4. 

Proof of Theorem 2. By applying the Laplace transform to both sides of  the equa- 
tions (15 ) - (17 )  we get: 

)~ ÷ L e ( p )  
L o ( p ) - -  2 2 + p  ' 
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2L ~L~o(p)Lo(p), L~(p) = ~ o(p) + 

2 -L~o(p)  
Lp(p)  -- 

P 

The only solution of this system of equations which satisfies the natural conditions 
limp_.~ L x ( p )  --- 0 is 

Lo(p) = 1 - pi/2(p + 22)-1/2, 

L~(p)  = 2 + p - pl /2(p + 22)1/2, 

Lp(p)  = p-1/2(p + 22)1/2 _ 1. 

Now, we can use the fact that the Laplace transform of a sum of two modified Bessel 
functions I0 and I1 is given by 

LIoOt)+tl(~t)(P) ---- ~( (P  + •)1/2 (p  _ 2)-~/2 _ 1 ), 

to invert the Laplace transforms of 0] and p~ and obtain (6) and (8). The density 
of collisions ~pt ~ can be computed by taking the derivative of the particle density p]. 
The asymptotics of these probability densities are then obtained by the application of 
a Tauberian theorem ((Feller, 1968b), Theorem 4, p. 423). The first equation in (8) 
can be checked by comparing the expression for p~ with (1). This completes the proof 
of Theorem 2. [] 

Proof  of Lemma 4. First, we note that the first two statements of Lemma 3 have 
straightforward continuous analogs. 

For given x, t, Ax and At  let us denote by Mix,  t, Ax ,  At] the interior of the space- 
time region surrounded by the parallelogram with vertices {(x, t), (x+  Ax, t), (x+  A x +  
At, t + At), (x + At, t + At)}, together with its lower and left boundaries [(x, t), (x + 
Ax,  t))  U [(x, t), (x ÷ At, t + At)).  The area of M[x, t, Ax, At] is Iz~cl • At, and hence, 

P~(there is a collision in M [ x , t , ~ x ,  A t ] )=~o~ ' lAx lA t+ lAx I - o(At). 

In the case t = 0 the lemma is trivial. 
Let us now fix some t > 0, and take At  > 0, which shall later be shrunk to zero. 

o 

In order to prove (15) we take a look at the Palm version of the process, ~ ,  and 
assume, without loss of generality, that the particle starting at 0 went initially to the 
right. 

Consider the event 

C={the  number of particles at time 0 in the interval [2t, 2 t + 2 A t )  is at most 1}. 

Note that P(C)--- 1 - O((At)2). 
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t + ~ t -  

t 

8k 

. . '% 

' ""  :'F 

y -  s 2t 2t + 2,~t 

Fig. 1. Computation of 0{. 

Fix N>~I, and break the interval [0, t) into N subintervals of  the length A s = t / N  

by the points sk =kt/N,  O<<.k<<.N. Under the condition C we have (see Fig. 1) 

{the particle starting at 0 has its first collision in It, t + At)}  

= ({ the  first particle to the right of  0 is at the time 0 in [2t, 2t + 2At)}  

N {it starts going to the left}) 

(b' 
U ({there is a collision at some point (s ,y )  in 

\ k--0 

M[2t + 2 A t  - sk ,s~, -2/k t ,  As]} 

n {after this collision the particle goes to the left} 

G {at time 0 there are no particles between 0 and y -  s} ) ) .  

Now, we let first As  and then At  tend to 0. In the limit the complement of  the 
condition C becomes negligible, and we obtain the integral equation (15). 

To prove (16) we turn to the process ~x,. For given x and t, we introduce the same 
partition of [0, t) as above. Let Ax be of  order At. Now we shall condition on the 
event 

D----{the number of  particles at time 0 in the interval [0, Ax)  is at most I}. 

Given D, we have 

{there is a collision in M[x,t, Ax,  At]} 

=({ there  is a particle in [0, z2xx) at time 0} 

Cq {it starts going to the right} 

A{its first collision after time 0 takes place within the interval It, t+ • t )} )  

(b' 
U ({there is a collision at some time s in M[sk,sk, Ax,  As]} 

\ k=O 
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N {after this coll is ion the particle goes to the right} 

N {the interval be tween this and the next  coll is ion 

is in [t - s, t - s + A t ) } ) ) .  

Now, we obtain the integral equat ion (16)  by  the same l imit ing procedure as above. 

Final remarks 

• Our  technique cannot  be applied to higher dimensions .  It seems unl ikely  that exact 

results can be obtained there for finite time, but  perhaps asymptot ics  can be computed 

by  a different technique.  We can guess that in higher d imens ions  the particle densi ty 

has asymptotic  order of  t -~,  with a possible  logari thmic correction coefficient, as in 

the C R W  case (Bramson  and Griffeath, 1980a). 

• More  realistic models  should have more  than just  two possible speeds with which a 

particle can move.  
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