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Abstract

A recent paper of O’Reilly Regueiro obtained an explicit upper bound on the number of points of a flag-
transitive, point-imprimitive, symmetric design in terms of the number of blocks containing two points.
We improve that upper bound and give a complete list of feasible parameter sequences for such designs
for which two points lie in at most ten blocks. Classifications are available for some of these parameter
sequences.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper was inspired by a recent paper of O’Reilly Regueiro [22] on flag-transitive sym-
metric block designs. In 1987 Davies [7] proved that, for a given value of the parameter λ, the
block size k of a point-imprimitive, flag-transitive 2 − (v, k, λ) design (not necessarily symmet-
ric) was bounded. This implies that, for a given λ, the number of such designs is bounded (see
[8]). However Davies did not give an explicit upper bound for k in terms of λ.

O’Reilly Regueiro (as she prefers to be called) obtained in [22, Theorem 1] an explicit upper
bound as the first main result of her paper, and in the rest of her paper studied point-primitive,
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flag-transitive designs, see also [23]. Our aim is to refine O’Reilly Regueiro’s bound on the size
of point-imprimitive, flag-transitive, symmetric designs, and to study some of the extreme cases.

A t − (v, k, λ) design D = (Ω,B) consists of a set Ω of v points, and a set B of k-element
subsets of Ω , called blocks, such that every t-element subset of points lies in exactly λ blocks.
The design is nontrivial if t < k < v − t , and is symmetric if |B| = v, that is if there is an equal
number of points and blocks. By [4, Theorem 1.1] (or see [12, Theorem 1.27]), if D is symmetric
and nontrivial, then t � 2. Thus we study nontrivial symmetric 2 − (v, k, λ) designs. Our main
result is the following improvement of O’Reilly Regueiro’s result [22, Theorem 1].

Theorem 1.1. Let D = (Ω,B) be a nontrivial symmetric 2 − (v, k, λ) design admitting a flag-
transitive, point-imprimitive subgroup of automorphisms G that leaves invariant a nontrivial
partition C of Ω with d classes of size c. Then there is a constant � such that, for each B ∈ B
and Δ ∈ C, the size |B ∩ Δ| is either 0 or �, and one of the following holds:

(a) k � λ(λ − 3)/2;
(b) (v, k, λ) = (λ2(λ + 2), λ(λ + 1), λ) with (c, d, �) = (λ2, λ + 2, λ) or (λ + 2, λ2,2);
(c) (v, k, λ, c, d, �) = ((λ+2

2 )( λ2−2λ+2
2 ), λ2

2 , λ, λ+2
2 , λ2−2λ+2

2 ,2), and either λ ≡ 0 (mod 4), or
λ = 2u2 where u is odd, u � 3, and 2(u2 − 1) is a square;

(d) (v, k, λ, c, d, �) = ((λ + 6)(λ2+4λ−1
4 ),

λ(λ+5)
2 , λ,λ + 6, λ2+4λ−1

4 ,3), where λ ≡ 1 or
3 (mod 6).

Remark 1.2.

(1) Cases (a) to (d) of Theorem 1.1 are pairwise disjoint except for the parameter sequence
(v, k, λ, c, d, �) = (45,12,3,9,5,3) which arises in both case (b) and case (d).

(2) By a well-known result due to Schützenberger, Chowla & Ryser, and Shrikhande, if the
number v of points is even then k − λ is a square (see Lemma 2.2). We take account of this
result in the proof and we note that it holds in those cases of Theorem 1.1(b)–(d) where v is
even, namely in case (b) with λ even, and in case (c) with λ = 2u2 ≡ 2 (mod 4) and λ − 2 a
nonzero square.

Symmetric designs with λ small are of interest. For example, those with λ = 1 are the projec-
tive planes, while those with λ = 2 are called biplanes. We evaluated the parameter sequences
from Theorem 1.1 with small λ until we found sequences arising from each of the cases, that
did not correspond to Hadamard designs or their complements. To do this we needed to consider
values of λ up to 10. We obtained the following corollary. This extends [22, Corollary 1] that
dealt with values of λ up to 4.

Corollary 1.3. Using the notation of Theorem 1.1, let λ � 10. Then one of the lines of Table 1
holds, where the column headed ‘Case’ records the case of Theorem 1.1. Moreover, in each of
these lines, the permutation groups GC and GΔ

Δ (where Δ ∈ C) are both primitive.

Faced with such a list, questions arise about existence and classification of designs with these
properties and parameters. We summarise what is known about such examples in Remark 1.4.
The cases occurring in O’Reilly Regueiro [22] are those with λ � 4, that is, Lines 1–6 of Table 1.
The information she gave about examples in these cases is included in Remark 1.4.
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Table 1
Parameter sequences for Corollary 1.3

Line v k λ c d � Case Examples Reference

1 16 6 2 4 4 2 (b) 2 [13,22]
2 45 12 3 5 9 2 (b) None [21]
3 45 12 3 9 5 3 (b) and (d) 1 [21]
4 15 8 4 3 5 2 (c) 1 Proposition 1.5
5 96 20 4 16 6 4 (b) � 4 [16,22]
6 96 20 4 6 16 2 (b) � 3 [16]
7 175 30 5 25 7 5 (b)
8 175 30 5 7 25 2 (b)
9 288 42 6 36 8 6 (b)

10 288 42 6 8 36 2 (b)
11 441 56 7 49 9 7 (b)
12 441 56 7 9 49 2 (b)
13 247 42 7 13 19 3 (d) None [22] and Proposition 1.6
14 125 32 8 5 25 2 (c)
15 640 72 8 64 10 8 (b)
16 640 72 8 10 64 2 (b)
17 891 90 9 81 11 9 (b)
18 891 90 9 11 81 2 (b)
19 435 63 9 15 29 3 (d) None Proposition 1.6
20 120 35 10 15 8 5 (a)
21 1200 110 10 100 12 10 (b)
22 1200 110 10 12 100 2 (b)

Remark 1.4.

(1) (Line 1) In 1945 Hussain [13] proved that there are exactly three 2 − (16,6,2) symmetric
designs (biplanes). O’Reilly Regueiro [22, p. 139] described the three designs and showed
that exactly two of them are flag-transitive, and, moreover, that both of the flag-transitive
examples admit a point-imprimitive, flag-transitive subgroup of automorphisms. Hussain’s
examples were obtained also by Nandi [18] by an independent construction in 1946.

(2) (Lines 2–3) Mathon and Spence [17] constructed 3752 pairwise nonisomorphic 2−(45,12,3)

symmetric designs, and showed that at least 1136 of them have a trivial automorphism
group. The existence of a flag-transitive, point-imprimitive example was not resolved in [22].
However in [21] it has been shown that there are exactly two flag-transitive 2 − (45,12,3)

symmetric designs, exactly one of which admits a point-imprimitive, flag-transitive group.
This example satisfies Line 3, but not Line 2.

(3) (Line 4) In 1946 Nandi [19] proved, with an enumeration by hand, that there are exactly five
pairwise nonisomorphic symmetric 2 − (15,7,3) designs, and hence that there are precisely
five pairwise-nonisomorphic 2 − (15,8,4) designs, namely, the complements of the 2 −
(15,7,3) designs. (The complement of a design D = (Ω,B) is the design whose blocks are
the complements in Ω of the blocks in B.) According to Nandi, one of these five designs
had appeared earlier in the 1938 tables of Fisher and Yates [10] and also (the same design)
in the 1939 paper of Bose [2]. However, Nandi did not investigate the automorphism groups
of these designs. O’Reilly Regueiro [22, p. 139] gave a construction of one of them, proving
that it was flag-transitive and point-imprimitive. We prove, in Proposition 1.5, that there is a
unique flag-transitive, point-imprimitive, example with the parameters of Line 4, namely the
design of points and hyperplane complements of the projective geometry PG(3,2).
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An accessible reference for the five 2 − (15,7,3) designs is the CRC Handbook [5, p. 11,
Table 1.23] which lists the block sets. The first computer-aided classification of these five
designs was done by P. Gibbons in 1976, and confirmed by Ivanov, first in a preprint (in
Russian) in 1981, and then in [14,15]. Ivanov mentions that they had been constructed by
Nandi. We are grateful to Mikhail Klin for drawing our attention to the work of Nandi and
Ivanov.

(4) (Lines 5–6) O’Reilly Regueiro [22, pp. 139–140] gave a construction of a flag-transitive,
point-imprimitive symmetric 2− (96,20,4) design associated with a generalised quadrangle
with parameters (3,5). We are grateful to Maska Law, both for explaining the construction,
and also for computing the automorphism group for us. In Remark 4.1 more details about this
design are given. It admits a flag-transitive, point-imprimitive subgroup of automorphisms
satisfying Line 5 of Table 1, but no subgroup satisfying Line 6.
Designs with these parameters arose also in the study in [3] of certain strongly regular graphs,
and it turns out that there are some designs from [3] corresponding to Lines 5 and 6 of
Table 1. We are grateful to Sven Reichard for computing this information about the auto-
morphism groups. Designs satisfying Line 5 or 6 are the subject of further study in [16].

(5) (Other lines) Symmetric designs with the values of v, k,λ in Lines 7–8, 11–12, and 15–18,
and admitting a point-transitive (and hence block-transitive) group of automorphisms, were
constructed by McFarland in 1973 (see [1, VI.7.1]). However, except in the case of Lines 13
and 19, it is not known whether there exist examples that admit a point-imprimitive, flag-
transitive group. The nonexistence of such a design in Line 13 was shown at the end of
the proof of [22, Theorem 1, p. 142], although not required to prove the assertions of that
theorem. The proof is simple, but unfortunately rather hidden in [22], so we give the details in
Proposition 1.6 and extend the argument to eliminate Line 19 also. At the time of publication
of [1] the existence of symmetric designs with v, k,λ as in Lines 9–10, 13, 14, 19–22 was
unresolved.

Proposition 1.5. The design of points and hyperplane complements of the projective geometry
PG(3,2) is the unique design admitting a flag-transitive, point-imprimitive subgroup of automor-
phisms satisfying Line 4 of Table 1.

Proposition 1.6. There are no designs admitting a flag-transitive, point-imprimitive subgroup of
automorphisms satisfying Line 13 or Line 19 of Table 1.

We prove Theorem 1.1 in Section 2, Corollary 1.3 in Section 3, and Propositions 1.5 and 1.6
in Section 4.

2. Proof of Theorem 1.1

Let D,G,C be as in Theorem 1.1. First we give some combinatorial information about D
and G. Choose a point α and a block B ∈ B containing α. Let Δ ∈ C be the class containing α.
By hypothesis |Δ| = c and

v = cd. (1)

Lemma 2.1. G is transitive on F := {(Δ′,B ′) | Δ′ ∈ C, B ′ ∈ B, Δ′ ∩ B ′ �= ∅}, and hence � :=
|Δ′ ∩ B ′| is independent of the pair (Δ′,B ′) in F . Moreover,

k = �s, (2)

where s is the number of classes of C that intersect a block B ′ nontrivially, and � > 1, s > 1.
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Proof. Let (Δ′,B ′) ∈ F and let α′ ∈ Δ′ ∩ B ′. Since G is flag-transitive there exists g ∈ G such
that (α′,B ′)g = (α,B). Since (α′)g = α we have (Δ′)g = Δ, and hence (Δ′,B ′)g = (Δ,B).
Thus G is transitive on F and the rest of the lemma follows. Note that � > 1, s > 1 follow since
each pair of points lies in a block. �

By the definition of a symmetric 2-design, counting (α,α′,B) with α,α′ ∈ B ∈ B gives

λ(v − 1) = k(k − 1). (3)

Similarly, counting (α,α′,B) with α,α′ ∈ B ∈ B and α,α′ in the same class of C, gives

λ(c − 1) = k(� − 1). (4)

Arguing as in [22, p. 141], x := k − 1 − d(� − 1) and λ − x(� − 1) are positive integers and

k = λ(x + �)

λ − x(� − 1)
, (5)

λ(d − 1) = kx. (6)

We make a few trivial observations about these parameters:

λ < k, � < k, k + 1 < v. (7)

The first inequality follows from (3) since v > k; the second follows from (3) and (4) since v > c.
For the third inequality, observe that, if v = k + 1 then (3) implies that λ = k − 1, and then (4)
implies further that k − 1 divides � − 1, contradicting � < k.

We will make use of the following lemma, part of which is the result of Schützenberger,
Chowla and Ryser, and Shrikhande mentioned in Remark 1.2. Proofs of the lemma can be found
in [1, II.3.11 and II.3.12] for part (a) and [1, II.3.9] for part (b).

Lemma 2.2. Let D be a symmetric 2 − (v, k, λ) design and set n = k − λ. Then the following
hold:

(a) 4n−1 � v � n2 +n+1. Moreover, v = 4n−1 if and only if D is an Hadamard design (with
k = 2n− 1, λ = n− 1) or its complement; and v = n2 +n+ 1 if and only if D is a projective
plane (with λ = 1) or its complement.

(b) If v is even and v > k, then k − λ is a square.

The following result about orbits of automorphism groups on points and blocks will be used
frequently, often without explicit reference. Proofs may be found in [12, Theorem 1.46] and
[1, III.4.2].

Lemma 2.3. Let D = (Ω,B) be a symmetric 2 − (v, k, λ) design and let G � Aut(D). Then the
numbers of G-orbits in Ω and in B are equal.

Before we begin the detailed analysis, refining the arguments given in [22], we consider the
parameters in case (c) of Theorem 1.1.

Lemma 2.4. Suppose that (v, k, λ) = (( λ+2
2 )( λ2−2λ+2

2 ), λ2

2 , λ), and D is nontrivial. Then either
λ ≡ 0 (mod 4), or λ = 2u2 where u is odd, u � 3, and 2(u2 − 1) is a square.
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Proof. For these parameters λ must be even, and for D to have blocks of size greater than 2, and
hence be nontrivial, we must have λ > 2. Moreover, v is even if and only if λ ≡ 2 (mod 4), so
suppose this is the case. Then by Lemma 2.2, k−λ = λ(λ−2

2 ) is a square. Since gcd(λ,λ−2) = 2,
this implies that λ = 2u2 where u is odd, and 2(u2 − 1) is a square. �

We treat the cases x(� − 1) < x + � and x(� − 1) � x + � separately. First we use the infor-
mation above to prove that Theorem 1.1(a)–(d) holds except for a short list of parameter values.
Then we consider these exceptional parameters and show that they do not correspond to point-
imprimitive, flag-transitive symmetric designs.

Lemma 2.5. If x(� − 1) < x + � then either Theorem 1.1 holds or we have (k, λ, c, d, �) =
(15,6,6,6,3).

Proof. The inequality x(� − 1) < x + � holds if either x = 1 or � = 2 (recall that � � 2). On the
other hand, if x > 1 and � > 2 then 2 � x < �

�−2 = 1 + 2
�−2 � 3, and so (x, �) = (2,3). Thus one

of (i) x = 1, (ii) � = 2, or (iii) (x, �) = (2,3). Also, as noted before (5), x(� − 1) < λ.

Case 1. x(� − 1) < x + � < λ. Here λ − x(� − 1) � λ − (x + �) + 1 � 2 and hence by (5),
k � λ(x + �)/2. If x + � � λ − 3 then Theorem 1.1(a) holds, so we may assume that this is not
the case.

Suppose next that x + � = λ − 2. Then, by (5), k = λ(λ−2)
λ−x(�−1)

and λ − x(� − 1) � 3. If λ −
x(� − 1) � 4 then λ � 5, and hence k � λ(λ−2)

4 � λ(λ−3)
2 and again Theorem 1.1(a) holds. Thus

we may assume that λ − x(� − 1) = 3. Then we have x + � = λ − 2 = x(� − 1) + 1 and in
particular x �= 1 and � �= 2. Thus, by the observation in the first paragraph, (x, �) = (2,3) and
hence λ = 7 and k = 35/3 which is a contradiction.

The remaining case to be considered is x + � = λ − 1. By (5), k = λ(λ−1)
λ−x(�−1)

and λ −
x(� − 1) � 2. If λ − x(� − 1) � 4 then λ � 5 and hence k � λ(λ−1)

4 � λ(λ−3)
2 , and again Theo-

rem 1.1(a) holds. Thus we may suppose that λ−x(�−1) = 2 or 3. Consider first λ−x(�−1) = 3
so that x + � = λ − 1 = x(� − 1) + 2 and in particular (x, �) �= (2,3). In this case k = λ(λ−1)

3 .
If λ � 7 then this expression for k is at most λ(λ−3)

2 and Theorem 1.1(a) holds. Thus we may
assume that λ � 6. If x = 1 then λ = � + 2 so k = (�+1)(�+2)

3 , and as � divides k it follows that
� = 2 and λ = 4 = k, contradicting (7). Thus x �= 1 and so by the observation from the first para-
graph, � = 2. Hence 5 � 3 + x = λ � 6. Since k = λ(λ−1)

3 it follows that λ = 6, k = 10, but then
c−1 = 10/6 which is a contradiction. Thus λ−x(�−1) = 2. Then x +� = λ−1 = x(�−1)+1,
and hence x = �−1

�−2 which implies (�, x,λ) = (3,2,6), and by (5), k = 15. Thus by (3) and (4),
v = 36 and c = d = 6.

Case 2 (The remaining case). x(� − 1) < λ � x + �. We work through the cases given in the
first paragraph of the proof. Suppose that x = 1. Then � − 1 < λ � � + 1. If λ = � + 1 then k =
(�+1)2/2 contradicting (2). Hence λ = � and so using the equations above, k = λ(λ+1), c = λ2,
d = λ+ 2 and Theorem 1.1(b) holds. Next suppose that � = 2 so that x < λ � x + 2. If λ = x + 1
then the equations give k = λ(λ+1), v = λ2(λ+2), c = λ+2, d = λ2, and again Theorem 1.1(b)
holds. If λ = x + 2 then the equations give k = λ2/2, c = λ/2 + 1, d = λ

2 (λ − 2) + 1, so that,
using Lemma 2.4, Theorem 1.1(c) holds. Finally suppose that (x, �) = (2,3) so that 4 < λ � 5.
Then λ = 5 so that by (5), k = 25. However this contradicts the fact that � divides k. �
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Table 2
Parameter sequences for Lemma 2.6

k λ c d �

24 8 7 10 3
24 8 10 7 4

104 13 25 33 4
210 21 41 51 5
210 21 51 41 6
300 25 37 97 4

Lemma 2.6. If x(� − 1) � x + �, then either Theorem 1.1 holds or k,λ, c, d, � are as in one of
the lines of Table 2.

Proof. Here we have λ > x(� − 1) � x + �, and this implies in particular that x � 2 and � � 3.

Case 1. λ � x(� − 1) + 2. If in addition λ � x + � + 3 then by (5), k � λ(x + �)/2 � λ(λ − 3)/2
so Theorem 1.1(a) holds. Thus we may assume that λ < x + � + 3 and then we have x + � + 2 �
x(� − 1) + 2 � λ < x + � + 3. It follows that λ = x + � + 2 = x(� − 1) + 2 and hence x = �

�−2
which implies that (x, �) = (3,3) or (2,4). Solving the equations for λ, k, c, d we find the values
in Lines 1 and 2 of Table 2 for these two cases.

Case 2 (The remaining case). λ = x(� − 1) + 1. Here, by (5),

k = λ(x + �) = λ

(
λ − 1

� − 1
+ �

)
.

Note that, since � divides k = λ(x+�) it follows that � divides λx = x2(�−1)+x, and hence that
� divides x(x −1). Then, since � � 3 we must have x � 3 also. Suppose now that Theorem 1.1(a)
does not hold, that is, k > λ(λ − 3)/2. It follows from the displayed equation above that

λ − 1

� − 1
+ � >

λ − 3

2
. (8)

Multiplying out this gives �2 − ( λ−1
2 )� + 3λ−5

2 > 0, or equivalently(
� − λ − 1

4

)2

>
λ2 − 2λ + 1

16
− 3λ − 5

2
= λ2 − 26λ + 41

16
.

Suppose first that λ � 25. Then 0 < (λ
4 − 21

4 )2 = λ2

16 − 42
16λ + 441

16 � λ2−26λ+41
16 , and hence the

inequality above implies that either (i) � − λ−1
4 > λ

4 − 21
4 , or (ii) λ−1

4 − � > λ
4 − 21

4 . Consider
first case (i) so that � > λ

2 − 22
4 . Here, if x � 4, then λ = x(�− 1)+ 1 > 4(λ

2 − 26
4 )+ 1 = 2λ− 25

which is impossible since λ � 25. Thus, since x � 3, we must have x = 3, and since � � 3 and �

divides x(x −1), it follows that � = 3 or 6. Also, we have that λ = 3(�−1)+1 = 7 or 16 as � = 3
or 6, respectively, contradicting λ � 25. Thus we may assume that case (ii) holds and therefore
� = 3 or 4. If � = 4 then, since λ−1

�−1 + � > λ−3
2 , we find that λ < 31. Moreover, since in this case

λ = 3x + 1 we must have λ = 25 or 28. For λ = 25, solving for k, c, d we find that Line 6 of
Table 2 holds; for λ = 28 we find k = λ(x + �) = 13λ so k − λ = 12λ is not a square, while
c = 40 so v is even, contradicting Lemma 2.2. Suppose now that � = 3. Then λ = 2x + 1, so λ

is odd and x = λ−1
2 , and then we find that k = λ(x + 3) = λ(λ+5

2 ), c = λ + 6 and d = λ2+4λ−1
4 .

Since � = 3 divides k it follows that λ ≡ 1 or 3 (mod 6). Thus Theorem 1.1(d) holds.
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It remains to deal with the case λ � 24. We consider the various possibilities for �. Suppose
first that � = 3. Then as in the previous paragraph, λ = 2x + 1 and we find that Theorem 1.1(d)
holds. Thus we may assume that � � 4. Suppose next that � = 4. Then λ = 3x + 1 � 24 so
3 � x � 7 and as � = 4 divides x(x −1) we have x = 4 or 5, and hence λ = 13 or 16, respectively.
For λ = 13, solving for k, c, d gives the values in Line 3 of Table 2; for λ = 16, we find k =
λ(x + �) = 9λ so k −λ = 8λ is not a square, while c = 28 so v is even, contradicting Lemma 2.2.
Now consider � = 5. Here λ = 4x+1 � 24 and � = 5 divides x(x−1), so we have x = 5. Solving
for λ, k, c, d gives the values in Line 4 of Table 2. Similarly if � = 6 then λ = 5x + 1 � 24, and
so x = 3 or 4, and λ = 16 or 21, respectively. For λ = 21, solving for k, c, d gives the values
in Line 5 of Table 2; for λ = 16, we find k = λ(x + �) = 9λ so k − λ = 8λ is not a square,
while c = 46 so v is even, contradicting Lemma 2.2. Thus we may assume that � � 7. Then
6x + 1 � λ � 24 and hence x = 3. However in this case � cannot divide x(x − 1). �

To complete the proof of Theorem 1.1 we must deal with the seven parameter sequences oc-
curring in Lemmas 2.5 and 2.6. To do this we employ ad hoc group theoretic methods. Note that,
since G is flag-transitive, a point stabiliser Gα is transitive on the set of k blocks containing α,
and a block stabiliser GB is transitive on the k points of B .

Lemma 2.7. There is no flag-transitive, point-imprimitive, symmetric design with (k, λ, c, d, �)

either equal to (15,6,6,6,3), or as in one of the lines of Table 2.

Proof. Suppose there is such a design admitting a flag-transitive group G. For each of the possi-
bilities for the parameter sequence, the pair (k, λ) does not satisfy any of (a)–(d) of Theorem 1.1.
It follows that (k, λ) arises only with (c, d) equal to (6,6), or as in one of the lines of Table 2, and
in all cases the unordered pair {c, d} is uniquely determined, given (k, λ). This implies that the
only nontrivial point partitions preserved by G consist of d blocks of size c (or possibly c blocks
of size d). In particular GC , and GΔ

Δ are primitive subgroups of degree d and c, respectively.
We deal with each of the parameter sequences in turn. Let B ∈ B so that the setwise stabiliser

GB is transitive on the k/� classes of C that intersect B in � points. Let K be the kernel of the
action of G on C, and let S = Soc(K). If K �= 1 then, for Δ ∈ C, both KΔ and SΔ are nontrivial
normal subgroups of the primitive group GΔ

Δ, and hence both are transitive. Thus in this case, K

and S have d orbits of length c in Ω and, by Lemma 2.3 and since they are normal subgroups
of G (transitive on B), they also have d orbits of length c in B.

Case. (k, λ, c, d, �) = (15,6,6,6,3). Here GB is transitive on the k/� = 5 classes of C that
intersect B in 3 points, and hence GB must fix setwise the unique class Δ ∈ C disjoint from B .
In particular GC is 2-transitive. Since |G : GB | = 36, GB contains a Sylow 5-subgroup P of G.
Let α ∈ B . Then 15 = |GB : GB,α| and hence Pα has index 5 in P . Moreover, Pα fixes Δ and
also the class Δ′ containing α. It follows that Pα fixes all classes in C, and so Pα is a Sylow
5-subgroup of K . Now Pα fixes the 3 points of B ∩ Δ′ setwise and hence Pα fixes Δ′ pointwise.
Now G = NG(Pα)K by the ‘Frattini argument,’ and so NG(Pα) is transitive on C. Hence Pα

fixes every class pointwise, so Pα = 1 and |K| is not divisible by 5.
Now GC and GΔ

Δ are both primitive of degree 6, and hence they have socles isomorphic to
A6 or PSL(2,5) (see [9, p. 324]). Now KΔ is a normal subgroup of GΔ

Δ, and since |K| is not
divisible by 5 it follows that KΔ is trivial, whence K = 1. Thus G is isomorphic to a subgroup
of S6, and in particular |G| is not divisible by 33, so that |GB | is not divisible by 3. Thus GB is
not transitive on the fifteen points of B , contradicting flag-transitivity.
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Now we consider the lines of Table 2.

Line 1: Here (k, λ, c, d, �) = (24,8,7,10,3) and a block stabiliser GB is transitive on the 8
classes of C that meet B in 3 points. Hence GB fixes the two remaining classes, say Δ1,Δ2,
setwise. Moreover, since GB is transitive on B it follows that a Sylow 3-subgroup P of GB

is nontrivial, and since |G : GB | = 70, P is a Sylow 3-subgroup of G. Suppose that P C �= 1.
Then the primitive subgroup GC of S10 contains an element of order 3 fixing at least two classes
of C. It follows from a consideration of the primitive subgroups of S10, see [9, p. 324] that GC

contains A10 and hence that |G : G{Δ1,Δ2}| = 45. This is a contradiction since |G : GB | = 70 and
GB � G{Δ1,Δ2}. Thus P C = 1, and hence |GC | is not divisible by 3. This is a contradiction (see
[9, p. 324]).

Line 2: Here (k, λ, c, d, �) = (24,8,10,7,4) and this time GB is transitive on the 6 classes of C
that meet B in 4 points, and fixes setwise the unique class Δ disjoint from B . In particular GC is
2-transitive, and GB < GΔ. If K = 1 then GΔ acts faithfully on C and also induces a primitive
group on Δ. The only possibility is GΔ

∼= A6 or S6 and G ∼= A7 or S7, respectively. However
a computation in GAP [11] shows that, for the group G = S7 acting transitively of degree 70,
a point stabiliser has orbit lengths 1,6,9,18,36. Thus for neither G = A7 nor G = S7 does the
subgroup GB of index 70 have B as an orbit of length 24.

Hence K �= 1. Then also S = Soc(K) �= 1, and it follows from the second paragraph of the
proof that S has 7 orbits of length 10 in B, so |S : SB | = 10. Now KΔ is a nontrivial normal
subgroup of GΔ

Δ which (see [9, p. 324]) is almost simple with socle T = A5,A6 or A10. Thus
KΔ contains T , and hence S = Soc(K) ∼= T s for some s � 1. We claim that s = 1. Suppose to
the contrary that s � 2, and let Si be the pointwise stabiliser in S of the ith class Δi of C, for
1 � i � 7. Then each Si is nontrivial and G permutes the Si primitively by conjugation. It follows
that the Si are all distinct, and that Si is transitive on Δj for each j �= i. Since |S : SB | = 10, and
in all cases there is a unique G-conjugacy class of subgroups of S of index 10, it follows that
SB contains T s−1 = Si for some i, and hence SB is transitive on at least 6 of the Δj . On the
other hand, SB fixes Δj ∩ B setwise for each j , and |Δj ∩ B| = 4 for 6 of the classes Δj . This
contradiction proves the claim. Thus S ∼= T .

As mentioned above, SB has index 10 in S, and in all cases S has a unique conjugacy class of
subgroups of index 10. Hence SB is the stabiliser in S of a point in each of the classes Δi and
is either transitive on the remaining 9 points of Δi (if T = A6 or A10) or has orbits of lengths 3
and 6 on these points (if T = A5). However if B ∩ Δi �= ∅, then GB,Δi

is transitive on the four
points of B ∩Δi , and contains SB as a normal subgroup. This is a contradiction since the normal
subgroup SB should have equal length orbits in B ∩ Δi .

Line 3: Here (k, λ, c, d, �) = (104,13,25,33,4). By [9, p. 324], the only primitive groups of
degree 33 have socle A33 or PSL(2,32), and hence GC contains one of these groups. Consider
the group GC

B induced by GB on C. The subset of k/� = 26 classes that intersect B in 4 points
forms an orbit for GC

B . In particular, 13 divides |GC | and hence A33 � GC . Then it follows from
[9, Theorem 5.2A], and the fact that |G : GB | = v = 25 · 33 <

(33
3

)
, that GC

B contains A31. This
group has no orbit of length 26 in C so again we have a contradiction.

Line 4: Here (k, λ, c, d, �) = (210,21,41,51,5). By [9, p. 324], the only primitive groups of
degree 51 are A51 and S51, and hence GC contains A51. Consider the group GC induced by
B
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GB on C. Since |G : GB | = v = 41 · 51 <
(51

3

)
, it follows from [9, Theorem 5.2A] that GC

B

contains A49. This contradicts the fact that GB fixes setwise a subset of k/� = 42 classes.

Line 5: Here (k, λ, c, d, �) = (210,21,51,41,6). This time we have, from [9, p. 324], that ei-
ther GC contains A41 or GC � AGL(1,41). Now the block stabiliser GB has index v = 41 · 51
in G, and the subset of k/� = 35 classes that intersect B in 6 points forms an orbit for GC

B .
Thus 7 divides |GC | and hence GC contains A41. Then arguing as for Line 4 we find that GC

B

contains A39. This contradicts the fact that GB has an orbit of length 35 in C.

Line 6: Here (k, λ, c, d, �) = (300,25,37,97,4). The argument is similar to previous ones. We
have, from [9, p. 324], that either GC contains A97 or GC � AGL(1,97). The stabiliser GB has
index v = 37 · 97 in G and has an orbit of length k/� = 75 in C, namely the set of classes that
intersect B in 4 points. Thus 25 divides |GC | and hence GC contains A97. Then arguing as for
Line 4 we find that GC

B contains A96 which is a contradiction. �
We note that the proof of Theorem 1.1 follows immediately from the results of this section.

3. Proof of Corollary 1.3

We use Theorem 1.1 and the information at the beginning of Section 2 to identify a list of
feasible parameter sequences for point-imprimitive, flag-transitive symmetric designs for λ � 10,
thereby proving Corollary 1.3.

Proof. Let D be a nontrivial, flag-transitive, point-imprimitive symmetric design with parame-
ters v, k,λ, c, d, � as in Theorem 1.1, where λ � 10. Suppose first that one of parts (b)–(d) of
Theorem 1.1 holds. A straightforward computation gives the values in all lines of Table 1 except
Line 20. Since each pair (v, k) occurs with a unique unordered pair {c, d}, it follows that the only
possible sizes for nontrivial blocks of imprimitivity for G on points are c and d . Thus the groups
GC and GΔ

Δ (where Δ ∈ C) are primitive.
By Theorem 1.1, we may suppose therefore that k � λ(λ − 3)/2. Then 3 � k � λ(λ − 3)/2 �

35, and hence 5 � λ � 10. Moreover, by (7) it follows that λ < k � v − 2, and in particular,
λ �= 5. Note that 2 < k < v since D is nontrivial, and v = cd with c > 1, d > 1, so v is not a
prime. Also all of (3)–(7) hold. We deal with these values of λ, one by one. As usual, B ∈ B, and
K is the kernel of G on C.

If λ = 6, then 7 � k � 9, and (3) implies that (k, v) = (7,8) or (9,13); but since v � k + 2
and v is not prime, neither of these pairs is possible.

If λ = 7, then 8 � k � 14, and (3) implies that (k, v) = (8,9) or (14,27); but since v �
k + 2, only the second pair is allowed (and D is the complement of an Hadamard design). If
c = 9 then (4) implies that � = 5, which does not divide k. Hence (c, d, x, �) = (3,9,4,2). Now
GB is transitive on the set of 7 classes that meet B in 2 points. Hence 7 divides |GC |, and so
by [9, p. 324], GC has socle PSL(2,8) or A9. In particular, GC is 2-transitive, and hence the
stabiliser in G of any unordered pair of classes has index 36. This is a contradiction since GB

fixes setwise the two classes disjoint from B , and |G : GB | = 27.
If λ = 8, then 9 � k � 20, and (3) implies that (k, v) = (9,10), (16,31) or (17,35); but since

v � k + 2 and v is not prime, only the last pair is allowed (and D is an Hadamard design).
However (4) implies that 17 divides c − 1, which is impossible for any proper divisor of 35.



C.E. Praeger, S. Zhou / Journal of Combinatorial Theory, Series A 113 (2006) 1381–1395 1391
Table 3

Column 1 2 3 4 5 6 7 8 9 10

k 11 15 16 20 21 25 26 30 31 35
v 12 22 25 39 43 61 66 88 94 120

If λ = 9, then 10 � k � 27, and (3) implies that (k, v) = (10,11), (18,35), (19,39), or
(27,79); but since v � k + 2 and v is not prime, only the second and third pairs are allowed
(and D is an Hadamard design or a complement of an Hadamard design). If k = 19, then (4)
implies that v = c and we have a contradiction. Hence (k, v) = (18,35). If c = 7 then (4) implies
that � = 4, which does not divide k. Hence (c, d, x, �) = (5,7,3,3). Now GB is transitive on
the set of 6 classes that meet B in 3 points, and hence GB fixes the unique class, say Δ, dis-
joint from B . Thus GC is 2-transitive. If K = 1 then G ∼= GC � S7, and as GB

B is transitive, 5
divides |G|, so G = A7 or S7 (see [9, p. 324]). However neither of these groups has a subgroup
GB

∼= GC
B of index 35 with orbits in C of lengths 1, 6. Hence K �= 1. The argument just given

also shows that |GC : GC
B | = 7 (not 35), and hence GΔ = KGB and |K : KB | = 5. Now KB fixes

setwise the 3-element set B ∩ Δ′, for each Δ′ �= Δ. Then, since KB has index 5 in K , it follows
that KΔ′

is not 2-transitive. Therefore GΔ′
Δ′ � AGL(1,5). However, the setwise stabiliser in GB

of Δ′ is transitive on the 3 points of B ∩ Δ′, and hence GΔ′
Δ′ has order divisible by 3. This is

a contradiction.
If λ = 10, then 11 � k � 35, and (3) implies that (k, v) is as in one of the columns in Table 3.

Since c is a proper divisor of v, (4) implies that k, v are not as in Columns 1, 2, 3, 5, 6, 7, 9. This
leaves (k, v) = (20,39), (30,88) or (35,120). Consider the first pair. If c = 13 then � = 7 which
does not divide k. Hence (c, d, x, �) = (3,13,6,2) (here D is a complement of an Hadamard
design). Since GB is transitive on the set of 10 classes that intersect B in 2 points, 5 divides |GC |
and it follows from [9, p. 324] that GC contains A13. This however implies that 11 divides |GC

B |,
so GB cannot fix a set of 10 classes setwise. Next consider the pair (k, v) = (30,88). In this case
(4) and (6) imply that 3 divides both c − 1 and d − 1, and hence {c, d} = {4,22}. However if
c = 22 then � = 8 which does not divide k. So (c, d, x, �) = (4,22,7,2). By [9, p. 324] it follows
that GC contains A22 or M22, and hence GB has index 4 in the stabiliser of a class, say Δ (since
the class-stabilisers are the only intransitive subgroups of GC of index dividing 88). Since GC

Δ

has socle A21 or PSL(3,4) (with no proper subgroups of index dividing 4), it follows that GC
B

contains this socle and so is transitive on C \ {Δ}, contradicting the fact that GB fixes setwise the
set of 15 classes that intersect B in 2 points. Finally consider the pair (k, v) = (35,120). In this
case (4) and (6) imply that 7 divides both c − 1 and d − 1, and hence {c, d} = {8,15}. However if
c = 8 then � = 3 which does not divide k. So (c, d, x, �) = (15,8,2,5), as in Line 20 of Table 1.
This completes the proof. �
4. Final commentary on examples

In this section we discuss in Remark 4.1 the example for Line 5 of Table 1 given in [22]. We
are grateful to Maska Law for giving us the information contained in this remark. Also we prove
Proposition 1.5 establishing the uniqueness of the example for Line 4 mentioned in Remark 1.4,
and Proposition 1.6 proving nonexistence of examples for Lines 13 and 19.

Remark 4.1. The example of a flag-transitive, point-imprimitive symmetric 2 − (96,20,4) de-
sign in [22] arises from a certain configuration of lines and points of a generalised quadrangle
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of order (3,5). We explain this construction for generalised quadrangles of order (q − 1, q + 1)

since the same construction gives one of the examples for Line 1.
These designs are obtained by taking the point set Ω as the set of lines of a generalised

quadrangle (GQ) with parameters (q − 1, q + 1) associated with a 2-transitive hyperoval H in
a projective plane PG(2, q) contained in projective space PG(3, q), where q = 2 or 4 for Line 1
and Line 5, respectively. The lines of the GQ are precisely the q2(q + 2) lines of PG(3, q) that
meet the hyperoval H and that do not lie in the plane containing H . The block set B of the design
is also labelled by the lines of the GQ: for a block B ∈ B, the set of lines of the GQ (points of Ω)
it contains is the set of q(q + 1) lines of the GQ that meet the line labelling B in a point not
on the hyperoval. Since 2-transitive hyperovals exist only for q = 2,4, and since 2-transitivity
seems to be necessary for flag-transitivity of the design, this construction may not give a larger
family of flag-transitive examples.

It was suggested in [22] that the flag-transitive 2 − (96,20,4) design obtained in this way
has automorphism group 243.S6. However computation, using GAP [11], verified that the auto-
morphism group G is 26.3S6, the stabiliser of a line of the GQ is 22(3 : S5), and this subgroup
(which is the stabiliser of both a point and a block of the design) is transitive on the 20 lines
forming the block corresponding to this line. Moreover, there is a unique G-invariant partition
consisting of 6 classes of size 16. Each of these classes is a spread in the GQ (that is, a set of
lines of the GQ such that each point of the GQ is on exactly one of these lines). Thus this design
is flag-transitive and point-imprimitive with the parameters of Line 5. For more details about the
geometrical nature of this construction, a reader may wish to consult [20].

4.1. Proof of Proposition 1.5

In this subsection we prove the uniqueness of the flag-transitive, point-imprimitive
2 − (15,8,4) design. The five pairwise nonisomorphic 2 − (15,7,3) designs are listed in
[5, Table 1.23, p. 11]. One way to establish uniqueness would be to examine all five of these
designs, compute their automorphism groups, and prove that only one has a point-imprimitive
subgroup that acts flag-transitively on the complementary design. However, to be consistent with
the spirit of the paper, we decided to give a theoretical proof. First we identify the example.

Lemma 4.2. Let D = (Ω,B) be the design of points and complements of hyperplanes of
PG(3,2). Then Aut(D) has subgroups G1 ∼= S5 and G2 = G1.3 acting flag-transitively and
point-imprimitively, satisfying Line 4 of Table 1.

Proof. The automorphism group Aut(D) ∼= A8 has a subgroup X = A7 that is 2-transitive on
points and on hyperplane complements. Let α ∈ Ω and B ∈ B. Since XB has orbits of lengths 1,
14 in B, it follows from Lemma 2.3 that XB has two orbits in Ω , and these must be the set B of
size 8, and its complement.

Let G = S5 be the stabiliser of an unordered pair in the natural action of X on 7 points. Then
Xα

∼= PSL(2,7) and XαG = X, so G is transitive on the point set Ω , and hence also on the
block set B. Now GB = XB ∩ G ∼= D8 is a Sylow 2-subgroup of XB , and since XB is transitive
on B (of size 8), it follows that its Sylow 2-subgroup GB must be transitive on B also. Thus G

is flag-transitive. Finally Gα = Xα ∩ G is also isomorphic to D8, and there is exactly one proper
subgroup of G properly containing Gα , namely D8 < S4 < S5. Thus G is point-imprimitive,
preserving a point-partition with 5 classes of size 3, and Line 4 of Table 1 holds.
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Thus the lemma is proved for the subgroup G1 = G. The normaliser of G1 in A8 is G2 =
G1.3 ∼= (A5 × Z3).2. Since G2 contains G1, it acts flag-transitively on D. The point stabiliser
(G2)α is D8.3 ∼= S4, and since (G2)α < (A4 × Z3).2 < G2, it follows that G2 also preserves a
point-partition with 5 classes of size 3 (the same partition that is preserved by G1). Thus Line 4
of Table 1 also holds for G2. �

Now we begin the proof of Proposition 1.5. Let D = (Ω,B) be a symmetric 2 − (15,8,4)

design admitting a flag-transitive, point-imprimitive subgroup of automorphisms G. Then G sat-
isfies Line 4 of Table 1, so G leaves invariant a partition C of Ω with 5 classes of size 3, and each
block meets k/� = 4 of the classes in � = 2 points. Let B ∈ B. Then B is disjoint from exactly
one class of C, say Δ. Thus GB < GΔ < G, and |GΔ : GB | = 3, |G : GΔ| = 5. Moreover, GB is
transitive on the 4 classes of C that meet B in 2 points. Hence GC is 2-transitive of degree 5, and
so GC is one of F20, A5 or S5 (see [24, p. 178]). First we handle the case where G acts faithfully
on C.

Lemma 4.3. If G is faithful on C, then D,G are as in Lemma 4.2 with G = G1.

Proof. Suppose that G ∼= GC . Since G is flag-transitive, its order is divisible by 120, and so
G ∼= S5. This implies that, for α ∈ Ω , Gα

∼= D8 (a Sylow 2-subgroup of G), and so the action
of G on Ω is permutationally isomorphic to the action of the group G1 ∼= S5 of Lemma 4.2 on
the points of PG(3,2). Thus we may identify Ω with the set of points of PG(3,2). Similarly
GB

∼= D8, and the action of G on B is permutationally isomorphic to the action of G1 on the
(complements of) hyperplanes of PG(3,2). Since B is a GB -orbit in Ω of size 8, and since GB

has only one orbit of this size, it follows that B is the complement of a hyperplane of PG(3,2),
and the lemma is proved. �

Now we deal with the case where G is not faithful on B.

Lemma 4.4. If G is not faithful on C, then D,G are as in Lemma 4.2 with G = G2.

Proof. Suppose that the kernel K of the action of G on C is nontrivial, and let C = {Δ1, . . . ,Δ5}.
Then KΔi is a normal subgroup of the primitive group G

Δi

Δi
and hence K is transitive on Δi , for

each i. This means that K is isomorphic to a subgroup of S5
3 . By Lemma 2.3 it follows that K has

exactly 5 orbits in B, say B1, . . . ,B5, and since K is normal in G, each Bi has length 3. Thus, for
each B ∈ B, |K : KB | = 3 and hence |GBK| = 3|GB |. Therefore |GC : GC

B | = |G : GB | = 5. For
each of the possibilities for GC (namely F20,A5 and S5), the group GC has a unique conjugacy
class of subgroups of index 5, and hence GBK = GΔ for some Δ ∈ C. We may therefore label
the Bi in such a way that, for B ∈ Bi , GBK = GΔi

, and GC
B = GC

Δi
. We observed above that GB

fixes the unique class of C from which it is disjoint. Since GC
B is transitive on C \ {Δi}, it follows

that, for B ∈ Bi , B ∩ Δi = ∅.
Let S = O3(K) = Zs

3, the largest normal 3-subgroup of K . Then S is transitive on each of
the Δi and each of the Bi . Let B ∈ B1. Then GC

B = GC
Δ1

, B ∩ Δ1 = ∅, and |S : SB | = 3. Now
SB fixes setwise the two points of B ∩ Δi for each i �= 1. Since SB is a 3-group this implies that
SB fixes Δi pointwise for each i �= 1. Suppose that SB �= 1. Then SB induces a cyclic group of
order 3 on Δ1, fixing all other points of Ω . For each i there exists gi ∈ G such that Δ

gi

1 = Δi ,
and the conjugate S

gi permutes the three points of Δi and no others. This implies that S is the
B
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direct product of the five subgroups S
gi

B , for 1 � i � 5, and hence |S| = 35. However this means
that |SB | = 34, which is a contradiction. Hence |S| = 3.

Now S � K � S5
3 and |K : S| is a power of 2. This means that S is self-centralising in K ,

and hence either K = S or K = S.2 ∼= S3, and in both cases K acts faithfully on each of the Δi .
Let C = CG(K), so G/C is isomorphic to a subgroup of Aut(K). If CC = 1 then C � K and
|G/C| is divisible by 5, which is a contradiction. Hence CC �= 1, and so CC is transitive. Now C

is normal in G and so either C has 3 orbits of length 5 in Ω , or C is transitive on Ω . Now the
C-orbits in Ω form a G-invariant partition, and by Corollary 1.3, G has no invariant partition
consisting of 3 classes of size 5. Hence C is transitive on Ω and, by Lemma 2.3, C is also
transitive on B.

We claim that G has a normal subgroup C0 × K , where C0 ∼= A5, C0 ∩ K = 1, and
|G : (C0 × K)| � 2.

Case 1. K ∼= S3. Here Aut(K) = Inn(K) ∼= K , and so G = CK and C ∩ K = 1. Hence G =
C ×K , and C ∼= CC = GC = F20, A5 or S5. Since C is transitive on the 15 points of Ω it follows
that C ∼= A5 or S5. Define C0 to be the derived subgroup of C. Then C0 has all the required
properties with |G : (C0 × K)| = |GC : CC

0 | � 2.

Case 2. K = S. Here |G : C| � |Aut(K)| = 2, K < C, and KB = 1. Thus GC
B

∼= GB and, since
GB is transitive on B , 8 divides |GB | which in turn divides |GC |. It follows that GC ∼= S5. Then,
since |G : C| � 2, CC contains A5. Let C0 be the derived subgroup of C. Then CC

0 = A5 and,
since the Schur multiplier of A5 is only Z2 (see [6]), it follows that C0 ∩ K = 1. Thus again we
have C0 ∼= A5 and C0 × K normal in G of index at most 2.

Thus the claim is proved. By Corollary 1.3 and Lemma 2.3, it follows as before that C0 is
transitive on both Ω and B. Now C0 has a unique conjugacy class of subgroups of index 15,
namely the Sylow 2-subgroups. Hence each Sylow 2-subgroup H of C0 is the stabiliser in C0 of
both a point, say α, and a block, say B . Using a small computation in GAP we find that the orbit
lengths of H in Ω (and also in B) are 1, 1, 1, 4, 4, 4. Hence B is the union of two of the three
H -orbits of length 4 in Ω .

Since H fixes exactly 3 points of Ω , it follows that the centraliser of C0 in Sym(Ω) has
order 3. In particular, C0 does not centralise a subgroup S3, and hence we are in Case 2 with
K = S = Z3. In fact we have that G = NSym(Ω)(C0) = (A5 × Z3).2 (a subgroup of index 2 in
S5 × S3). In particular G contains a subgroup H1 ∼= S5 acting transitively on Ω , G is isomorphic
to the group G2 of Lemma 4.2, and the action of G on Ω is permutationally isomorphic to the
action of G2 on the points of PG(3,2). Moreover, (H1)α has a unique orbit of length 8 in Ω ; this
must be the block B , and it follows that D is the design of Lemma 4.2. �

Now the proof of Proposition 1.5 is complete. Existence of the design with the required sym-
metry properties follows from Lemma 4.2, and uniqueness from Lemmas 4.3 and 4.4.

4.2. Proof of Proposition 1.6

Finally we give a proof of Proposition 1.6, similar to the proof in [22, p. 142]. Suppose (for
a contradiction) that D = (Ω,B) is a symmetric 2 − (247,42,7) or 2 − (435,63,9) design
admitting a flag-transitive, point-imprimitive subgroup of automorphisms G. Then G satisfies
Line 13 or 19 of Table 1, so G leaves invariant a partition C of Ω with 19 classes of size 13
or 29 classes of size 15, and each block meets k/� = 14 or 21 of the classes in � = 3 points,
respectively. Let B ∈ B, Δ ∈ C.
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Then GB is transitive on the k/� classes of C that meet B in 3 points. Hence GC is primitive of
degree 19 or 29, and has order divisible by 14 or 21, respectively. It follows from [9, p. 324] that
GC is Sd or Ad . This means that GC is transitive on the (k/�)-element subsets of C, and hence,
as g ranges over G, each (k/�)-element subset of C occurs as the set of classes intersecting some
block Bg . Thus 247 = |B| �

(19
14

)
or 435 = |B| �

(29
21

)
, respectively, which is a contradiction,

thereby proving Proposition 1.6. �
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